
Received 11 September 2023, accepted 7 October 2023, date of publication 13 October 2023,
date of current version 19 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3324536

Using Continuous Integration Techniques in Open
Source Projects—An Exploratory Study
MICHAL R. WRÓBEL , JAROSLAW SZYMUKOWICZ,
AND PAWEL WEICHBROTH , (Member, IEEE)
Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland

Corresponding author: Michal R. Wróbel (michal.wrobel@pg.edu.pl)

ABSTRACT For a growing number of software projects, continuous integration (CI) techniques are
becoming an essential part of the process. However, the maturity of their adoption in open source projects
varies. In this paper, we present an empirical study on GitHub repositories to explore the use of continuous
integration techniques in open source projects. Following the Goal-Question-Metric (GQM) approach,
3 research questions and 7 metrics were defined for such a goal. We mined 10 repositories of open source
projects with 101,149 pull requests, 399,671 commits from 20,432 developers. This was followed by
exploratory data analysis for each metric. In summary, our results indicate that (RQ1) most failed CI builds
required a small change in the pull request to fix the code; (RQ2) CI builds of smaller pull requests are more
likely to succeed than larger ones; (RQ3) there was no correlation found between developer experience
in committing to the project and the success rate of CI builds. Most of the projects studied have not yet
developed a mature approach to using continuous integration techniques. In these cases, developers do not
thoroughly test code before submitting pull requests. Furthermore, the results of the study confirmed that
developers tend to submit pull requests with small amounts of new or modified code.

INDEX TERMS Continuous integration, mining software repositories, open source projects.

I. INTRODUCTION
Undeniably, nowadays software systems support activities in
almost any aspects of the human life. Despite the ubiquity of
many applications and the high rate of new applications, the
software development process is a complex one. It requires
the involvement of many stakeholders [1], including cus-
tomers, business analysts, developers, managers, testers and
administrators, among others [2]. Moreover, the cooperation
of many parties, a considerable challenge is meeting software
development standards that have increased over time [3].
These standards include application security, reliability and
development time, just to name a few.

Continuous practices [4], such as continuous integration
(CI) [5] and continuous delivery (CD) [6], are now an
indispensable part of most software projects [7]. They
focus on the automatic verification of changes made to the

The associate editor coordinating the review of this manuscript and

approving it for publication was Giuseppe Destefanis .

software source code [8]. Such verification is essential in the
development of software, which is inherently complex, with
individual components dependent on each other. In addition,
it is necessary to verify that the changes introduced do not
violate already existing functionality [9]. There are teams
where such verification is still done manually by so-called
manual testers [10].
However, this approach is increasingly being supported,

or even entirely replaced by automated tests run as part
of continuous integration [11]. In addition, such things as
code style verification [12], i.e. whether the code is written
according to good practices and is consistent with the rest
of the source files, is now also automatically verified [13].
Many projects have a customized environment where the
appropriate style in which to write code is verified or even
enforced. Such plug-ins are commonly used in integrated
development environments (IDE), so that in real time the
programmer can see suggestions on code style. Nowadays,
it is a common standard to use these programs for continuous

113848

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-1117-903X
https://orcid.org/0000-0002-1645-0941
https://orcid.org/0000-0003-3982-6355


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

integration as well [14], and a positive code style inspection is
considered a necessary condition to let changes through [15].

Building a program after merging changes is also often
a complex task [16], considering the multi-platform nature
of the modern applications, as well as the use of multiple
components such as various libraries [17]. The task of
building a finished program from code is time-consuming
when performed manually, but at the same time is well-
suited to be automated [18], occasionally requiring updating
the build script [19]. Automating the application building,
and verifying it once the changes have been incorporated
is called continuous delivery and is also now a common
practice [20]. It usually occurs in projects in tandem with
continuous integration and is popular in both commercial [21]
and open source projects [22].

The purpose of this article is to explore the use of
continuous integration techniques in open source projects.
Much of the work to date has been devoted to the good
and bad practices of using continuous integration techniques
and how to optimise their configuration, which is described
in more detail in Section II. The goal of the paper is to
gain insight into how developers use CI in practice. To this
end, we have posed three research questions, largely inspired
by observations we have made during our involvement in
projects using continuous integration techniques, which will
allow us to verify our intuition about the use of these
techniques by developers.

• RQ1. Howmuch effort was required to fix the code after
CI failed build?

• RQ2. How does the amount of changes introduced in
pull request affect the success of the build?

• RQ3. Does the experience of the contributor affect the
success of CI builds?

For this purpose, data was collected from 10 repositories
of open source projects from the GitHub platform, including
information on commits and results of continuous integration
build runs. On the basis of the collected data, an analysis was
conducted to answer the research questions posed.

The rest of this paper is organized as follows: Section II
presents the related works and Section III our research design.
The results of the analysis are presented in Section IV,
followed by a discussion in Section V, and finally a
conclusion in Section VI.

II. RELATED WORK
Numerous papers on CI/CD have been published in the
literature up to today. Hence, we selected and discussed the
most relevant ones, taking into account the scope and domain
of the topic.

Santos et al. evaluated the impact of five CI sub-practices
with regard to the productivity and quality of GitHub open-
source projects [23]. As the method, regression models were
used to analyze whether projects upholding the CI sub-
practices are more productive and/or produce fewer bugs.
The findings from this study shows that there is a positive

correlation between the Commit Activity and Build Activity
and the increase in the number of merged pull requests.

Silva and Bezerra classified CI bad practices, based
on the criteria of their frequency occurrence and the
severity level [24]. Besides, authors argue that despite using
continuous integration within the industrial software projects
the numerous of errors were recognized, yet some quality
improvements were also acknowledged.

A similar goal was the aim of Felidré et al.’s study,
where unhealthy continuous integration practices were inves-
tigated [16]. As a result, they found that almost 60% of
projects had infrequent commits, the average code coverage
was quite high, and the vast majority of projects had long
unfixed builds.

The hypothesis, stating that automated reporting approach
supports early identification and prevention of anti-patterns
and decay in continuous integration, was investigated by
Carmine et al. through the study on the 18,474 build logs from
the 36 selected Java projects [25]. In total, 8520 incidents
were detected (including 3823 high-severity warnings), and
later evaluated by group of 13 developers, who eventually
confirmed the relevance of delivered information with regard
to the four anti-patterns, namely: Slow Build, Skip Failed
Tests, Late Merging, Broken Release Branch. In conclusion,
the CI anti-patterns early detection are significantly sup-
ported by deploying automated reporting tools.

Another important problem addreessed by Saidani et al.
[26], concerned the impact of continuous integration on
changing the way how software developers practice refac-
toring, understood in terms of frequency, size and involved
developers. In conclusion, the authors argue that the con-
tinuous integration adoption is associated with a cut in
the refactoring size, while refactoring frequency along with
the number of developers, responsible for code refactoring
decreased after the shift to CI.

Lima and Vergilio performed a systematic mapping
study on test case prioritization in continuous integration
environments, identifying their main characteristics and their
evaluation aspects [27]. The results show that the great
majority of studies relied on the history-based approach
which takes advantage of failure and test execution history.
The evaluation is based on the comparison which makes use
of measures such as time and number (percentage) of faults
detected.

Since continuous integration is claimed to be an expensive
practice, over the years the researchers have introduced
a numerous of approaches that aim to reduce the work-
load. However, in same cases the wrong decisions lead
to skipping builds which are undesirable to be skipped.
In this context, Jin and Servant [28] put forward the
following research question: which builds are really safe
to skip? Besides the qualitative and comprehensive topic
analysis, the authors introduced a novel approach, termed as
PreciseBuildSkip, which maximizes build failure observation
and reduces the cost of CI through the strategy of build
selection.

VOLUME 11, 2023 113849

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

Ghaleb et al. empirically explored characteristics of CI
builds which could have been relatedwith the long duration of
CI builds, performed on over 104k CI builds from 67 projects
hosted on the GitHub [29]. The results show that, along
with commonly known factors, including project size, team
size, build configuration size, and test density, there are
other affecting long build durations, namely: rerunning failed
commands multiple times, as well as triggering builds on
weekdays or at daytime. On the other hand, the authors
argue that builds may run faster if their configurations are set
up (i) to cache content that does not change frequently, or
(ii) to finish as soon as all the required jobs complete. Thus,
using an appropriate CI build configurations aid their proper
maintenance, and in particular reduce long build durations.

A different approach to identifying the factors influencing
the success of a CI build was taken by Barrak et al. They
developed and trained a nine-dimensional random forest
model, which confirmed that build and author history and
code complexity were the most important predictors of build
failures [30].

The empirical study of Golzadeh et al. shows the bigger
picture of continuous integration, covering the period of nine
years and collected over 91k GitHub repositories of active
npm packages having used at least one CI service [31].
In summary, in 2022 the rise and the dominance of GitHub
Actions was observed in less than 18 months time. On the
other hand, the decrease of Travis usage occurred, likely due
to a combination of policy changes and migrations to GitHub
Actions.

Kinsman et al. investigated how developers perceive and
use GitHub and how activity indicators (the number of
pull requests merged and nonmerged, number of comments,
the time to close pull requests, and number of commits)
change after their adoption [32]. While only the minority of
repositories have adopted GitHub Actions, then the use of
GitHub Actions increased the number of monthly rejected
pull requests and decreased the monthly number of commits
on merged pull requests.

Saidani et al. introduced an automated approach to
downsize of CI build time, as well as to deliver support
tool to developers by predicting the CI build outcome
[33]. More specifically, the presented continuous integration
build failure prediction model was based on Multi-Objective
Genetic Programming (MOGP). Designed with the aim of
finding the best combination of CI built features and their
appropriate threshold values, the model innovatively utilized
two conflicting objective functions to deal with both failed
and passed builds.

Laukkanen et al. conducted a systematic literature review
in order to identify issues encountered during continuous
delivery adoption, along with their causes and possible
solutions [34]. In total, 40 problems, 28 casual relationships,
along with 29 solutions with regard to adoption of continuous
delivery were identified. The most frequent problems were
related to testing and integration, while the most critical
concerned testing and system design. Eventually, solutions

were thematically synthesized into six domains, namely:
system design, integration, testing, release, human and
organizational, and resource.

Another empirical study, performed by Wang et al. on the
149 open-source projects [35], aimed to observe the effect of
test automation maturity on product quality, test automation
effort, and release cycle, assembled in the context of
continuous integration. The results show that higher levels
of test automation maturity have had a positive impact on
the product quality, as well as decreasing its release cycles.
Moreover, authors claim that there is a lack of increased
test automation effort due to higher levels of test automation
maturity and product quality. In other words, if one applies
best CI practice to mature test automation activities, the
outcomes are to be expected are twofold: the product quality
improvement and the release cycle acceleration.

Furthermore, since its introduction, continuous integration
has impacted software development industry by creating new
avenues for software quality evaluation. More specifically,
accordingly to Yu et al. [36], CI environments can be used as
valuable information source, leading to the improvement of
non-functional requirements testing in terms of its efficiency
and effectiveness.

In summary, we found well-written case studies and sys-
tematic reviews focusing on continuous integration practices
with the aim of evaluating and summarising the results.
However, few studies have addressed the question of how
much effort is required to implement the necessary changes
after a CI build failure. Given its operational and economic
importance, there has been a curious lack of interest in
uncovering CI practices in terms of source code maintenance
and effectiveness. This study aims to fill this gap by
conducting a comprehensive survey of open source projects
hosted on the GitHub service.

III. RESEARCH DESIGN
A Goal-Question-Metric (GQM) approach was chosen to
answer the research questions and thus achieve the defined
goal. The GQM method was introduced to measure goal-
oriented quality [37]. Over time, however, this approach has
been adopted to structure research in many areas of software
engineering, and has been widely used in other studies with
similar settings (e.g. [38], [39], [40], [41]).

By design, the GQM provides a well-defined framework
for setting research objectives, analyzing collected data, and
deriving results. It was used in the study to bring clarity and
structure to the application of CI in open source projects.
By setting a research goal, formulating relevant questions,
and defining specificmetrics, it ensures objectivity in the data
analysis and interpretation [42].

A. METRICS
Three questions were posed to explore the use of continuous
integration techniques in open-source projects and identify
good practices in their use. Further, up to three metrics were
defined for each question:

113850 VOLUME 11, 2023

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

Q1. How much effort was required to fix the code after CI
failed build?

• Q1M1: Extent of changes required to improve the code
after CI failed build.

• Q1M2: Time to deliver a commit fixing CI failed build.
• Q1M3: Number of changes in files of each type after CI
build failure.

Q2.How does the number of changes introduced in the pull
request affect the success of the build?

• Q2M1: Dependency of build result on a number of lines
changed in source files.

• Q2M2: Dependency of build result on a number of lines
changed in test files.

• Q2M3: Number of commits in pull request.
Q3. Does the experience of the contributor affect the

success of CI builds?
• Q3M1: Number of CI failed builds depending on the
experience of the contributor.

These metrics mainly concern three aspects of source code
maintenance, namely: commits, pull requests and continuous
integration build runs. In version control systems, a commit
refers to a certain point in a project’s source code history
tree. This is a way for developers to indicate that changes
they have made should be retained in the repository. When
developers decide that the changes they have implemented are
mature enough and tested enough to be merged into the main
branch of the project, they create a so-called pull request.
In this way, all modifications made, which may consist of
one or more commits, can undergo a review process by
peers and be evaluated by the continuous integration tool.
During the CI process, an application is built from source
code and then all implemented tests are executed. Such build
run can either succeed or fail. Once a pull request has been
submitted, developers can continue to submit new commits,
e.g. to improve the code in line with the reviewers’ comments,
or to fix bugs that were revealed during the build run that
ended in failure.

B. REPOSITORIES
The subjects of the study were open source projects with
both code repositories and the continuous integration infras-
tructure entirely using the GitHub service infrastructure.
This service offers continuous practice management as one
element of repository control. For open source projects, the
GitHub service offers free use of infrastructure within certain
limits. The data of such projects is publicly available via the
REST API. This data includes pull requests, commits and CI
build results, among others.

Ten repositories were selected for the study, shown in
Table 1. The choice of repositories was guided by the
intention to examine large and very active projects as well as
smaller ones. In this respect, the number of pull requests was
taken into account. The largest repository analysed, flutter,
has more than 35,000 pull requests, and the smallest, CBL-
Mariner, less than 1,000. The others range from 1,400 to
16,000 pull requests, more or less evenly distributed. Such a

selection of study subjects allows the metrics to be analysed
also in terms of project size.

C. DATA ACQUISITION
In order to collect the data, a Python program was developed
that queried the GitHub service via a REST API for data
related to continuous integration and stored the results in a
database. When automatically collecting data, an important
limitation was that the GitHub API only allows five thousand
queries per hour, which severely limited the amount of data
collected. As a result, it was necessary to collect data for about
a month to gather sufficient volume of information.

The data was retrieved from GitHub in March and April
2022. Altogether data on 101,149 pull requests, 399,671
commits by 20,432 developers were downloaded. Detailed
metrics on the data collected from the individual repositories
are shown in the Table 1.

IV. RESULTS
This section presents the results of a study analyzing metrics
related to continuous integration in selected open source
projects software development projects. The study aimed to
provide answers to stated questions about the factors that
impact pull requests success.

A. Q1: HOW MUCH EFFORT WAS REQUIRED TO FIX THE
CODE AFTER CI FAILED BUILD?
Understanding what effort is needed to fix code after a
failed continuous integration (CI) build can help to manage
development projects and allocate resources more effectively.
This enables project managers and development teams to
make more informed decisions about how to prioritise
individual tasks and thus perform their work more efficiently.

1) Q1M1: EXTENT OF CHANGES REQUIRED TO IMPROVE
THE CODE AFTER CI FAILED BUILD
This metric measures how serious the errors were in the
prepared pull requests that caused the compilation to fail. The
metric was called the ‘‘fixing lines ratio’’ and was defined
as the ratio of the number of new lines of code in the first
pass that fixed the run to the number of new lines introduced
in the first pull request that failed. For example, if the first
commit that failed the build changed 100 lines of code, and
the commit that fixed the build changed 10 lines, the metric
will be 0.1. On the other hand, if there were more lines in the
commit that fixed the build than in the commit that broke it,
the value of the metric will be greater than 1.

For all the repositories studied, the distribution of metric
values is shown in the Figure 1, and detailed results are
presented in Table 2. For more than 40% of the cases
where a commit caused a build to fail, it required a minor
amount of code modifications, i.e. the number of modified
lines accounted for no more than 20% of the code line
modifications in the initial commit. In only 33.94% of cases it
was necessary to modify the same or greater number of lines
of code than in the initial commit.

VOLUME 11, 2023 113851

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

TABLE 1. Repositories selected for the study.

TABLE 2. Changes required to improve the code after CI failed build.

FIGURE 1. Changes required to improve the code after CI failed build.

The histograms in Figure 2, and Table 3, provide a
summary of this data broken down by repository. For the
repository with the highest number of cases in which a
commit in pull requests caused the build to fail, i.e. the
flutter repository, code improvements usually required only
minor changes. A similar situation occurs with the lexical
repository. This may indicate that the developers submitting
pull requests are not sufficiently testing the changes they are
making in their working environments. This may be a sign of
immaturity in the code development process.

On the other hand, in the bitcoin repository, the situations
where a commit causes a build to fail are relatively few, but
their fixes in most cases require more work, i.e., making
changes to a significant number of lines of code.

2) Q1M2: TIME TO DELIVER A COMMIT FIXING CI FAILED
BUILD
The next metric determines howmuch time it takes to prepare
a commit, correcting a failing build. The metric was defined

as the time from submitting the commit that caused the build
to fail, to submitting the commit that fixed the build.

For all the repositories studied, the distribution of metric
values is shown in the Figure 3, and detailed results are
presented in Table 4. In most cases (54.21%), it took no more
than 3 hours to prepare a commit that fixed the build. This
means that introducing the necessary code modifications was
not too complex. The change to fix the build took more than
a day to prepare only 19.67% of the cases. It should also
be noted that only repositories of open source projects were
examined. This means that at least some of the developers
work on the project part-time, which can significantly affect
the time it takes to prepare a fix.

The graphs in Figure 4, and Table 5, provide a summary of
this data broken down by repository. Among the repositories
examined, three, i.e. flutter, bitcoin and terraform, deviate
significantly in the distribution of fix preparation time. They
are among the most active projects studied, with 35,956,
16,174 and 11,012 pull requests, respectively. This may
indicate that such projects have longer fix delivery times
than less active projects. On the other hand, in the case of
the django repository, which is also a very active project
with 14,746 pull requests, the time to deliver a commit that
fixes the build, is definitely shorter. However, this repository
is notable for the very low number of situations where a
build has failed after an initial commit to pull requests. This
may indicate a high degree of maturity in the process of
introducing new functionality into the code.

3) Q1M3: NUMBER OF MODIFIED FILES OF EACH TYPE
AFTER CI BUILD FAILURE
The last metric for the first question, concerned the types
of files that were modified after a failed build. Three
groups of files were distinguished: source files, test files,
and configuration files. From the point of view of the
amount of work involved in preparing a fix, the last two
are particularly interesting. Changing test files can imply
two things: either that the tests developed so far are broken,
or that the developer has changed the test just to get the
build to pass. Either way, it indicates some deficiency in the
application of the continuous integration process. All tests
should be prepared and verified in advance to catch any
errors when implementing new functionality. Changing test
files indicates either that the developer who created the pull

113852 VOLUME 11, 2023

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

FIGURE 2. Code lines modification ratio by repositories.

request did not review the tests he or she developed, or that
the tests prepared earlier did not cover all cases. On the
other hand, modifying test files just to pass a build would
be a completely reprehensible practice. Frequent changes to
configuration files may indicate the immature state of the
continuous integration process.

For all the repositories studied, the distribution of metric
values is shown in the Figure 5, and detailed results are
presented in Table 6.More than half of themodified files were

source files, but asmany as 36.74%were test files and 10.91%
were configuration files. These results may indicate a certain
immaturity of the continuous integration process. Analyzing
the metrics for individual repositories, shown in Table 7,
only two deviate from this distribution. For the devilutionX
project, as many as 85.13% of the changes involved
source files. For the CBL-Mariner project, on the other
hand, the vast majority of changes involved configuration
files.

VOLUME 11, 2023 113853

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

TABLE 3. Code lines modification ratio by repositories.

FIGURE 3. Time to deliver fix.

TABLE 4. Time to deliver fix.

4) SUMMARY
Based on the metrics collected to answer RQ1, it can
be concluded that implementing changes to fix a broken
build generally requires little effort. However, the level of
effort depends on the project’s activity and the maturity of
its process for introducing new functionality and changes.
Projects with a high number of pull requests may require
more time to prepare the necessary fixes.

In contrast, projects with a mature continuous integration
process, where build failures after pull requests are relatively
rare, would require more significant changes to address any
issues. However, a more effective approach for such projects
would be to detect bugs early during the test run, while they
are still in the developer’s local work environment.

Based on the data collected, it can be observed that many
developers in the open source projects studied rely heavily
on CI systems and often neglect to test the pulled code in
their own development environments. This behavior suggests

that there is room for improvement in testing practices within
these projects.

B. Q2: HOW DOES THE AMOUNT OF CHANGES
INTRODUCED IN PULL REQUEST AFFECT THE SUCCESS OF
THE BUILD?
Intuitively, the smaller the number of changes made to
the code, the smaller the chance that the build will fail.
Implementing a large number of new features, and thus a large
number of new lines of code, increases the likelihood that a
programmer will make a mistake. On the other hand, even a
small fix can lead to bugs at the interface between different
modules that a programmer working on a large project may
not even be aware of. Three metrics were analyzed to answer
the question of how the number of changes in the project
affects the success of the build run.

1) Q2M1: DEPENDENCY OF BUILD RESULT ON NUMBER OF
LINES CHANGED IN SOURCE FILES
This metric summarises the number of lines modified in the
source files for successful and unsuccessful build runs. Nine
ranges for the number of modified lines were defined and the
number of successful and unsuccessful runs was calculated
for each range. The results are shown in Table 8.

The difference in percentage points between the number
of successful and failed runs for each range is shown in
Figure 6. It can be observed that the greatest difference in
favour of successful runs actually occurs for small commits,
where the number of modified lines does not exceed 30. For
commits with more than 100 modified lines, more builds
fail than succeed. A certain anomaly can be observed in the
case of commits for the range where the number of modified
lines exceeds 5,000. Closer analysis of this case showed
that it was related to the fact that there were relatively few
such commits and, in addition, almost all from only two
repositories, i.e. microsoft/vscode and flutter/flutter. In the
former, for commits in which more than 5,000 lines of code
were modified, there were an unexpectedly high number of
those completed successfully. Corresponding graph for data
from all repositories, excludingmicrosoft/vscode, is shown in
Figure 7, where a clear dependency can be seen that, as the
number of modified lines in a commit increases, the chance
that a build run will fail increases.

113854 VOLUME 11, 2023

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

FIGURE 4. Time to deliver fix by repos.

2) Q2M2: DEPENDENCY OF BUILD RESULT ON NUMBER OF
LINES CHANGED IN TEST FILES
The next metric is similar to the first, except that it takes into
account the number of modified lines in the test files. The
values for each range are shown in Table 9 and the difference
in percentage points between the number of successful and
failed runs for each range is shown in Figure 8
In the case of the test files, no such clear relationship

can be observed as with the number of lines modified in
the source files. However, it does confirm that the fewer

lines modified, the greater the chance that the build will
succeed.

3) Q2M3: NUMBER OF COMMITS IN PULL REQUEST
The last metric shows how many commits are submitted in
a single pull requests. It is good practice for developers to
commit small changes so that in case of an error they can
easily roll back to a working version. However, on the other
hand, merging numerous commits into the main branch in a
single pull requests can unnecessarily obscure the git history.

VOLUME 11, 2023 113855

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

TABLE 5. Time to deliver fix by repos.

FIGURE 5. Number of modified files in each group.

TABLE 6. Number of modified files in each group.

TABLE 7. Files type by repos.

TABLE 8. Number of modified lines in source files depending on result of
the build.

It is therefore common practice to squash commits, before
submitting a pull request.

TABLE 9. Number of modified lines in test files depending on result of
the build.

TABLE 10. Number of commits in pull requests.

A summary of the number of pull requests for each of the
6 ranges is shown in Table 10. The results confirm that
the developers of the studied open source projects follow
the approach of pushing a small number of commits in pull
requests. Over 73% of PRs had no more than two commits,
and almost 90% no more than five.

Figure 9 shows, in addition to the number of commits in
the PR, the number of modified lines. There is a clear trend
towards small pull requests, where the number of modified
lines is low. In 43.14% of Pull Reqeusts no more than 10 lines
were modified, and in a further 21.14% between 11 and 20.
Only in less than 20% of cases were more than 100 lines of
code modified.

Looking closely at the data in Table 11, which shows
the number of commits in PR for each of the repositories
studied, the django/django repository can be distinguished.
In its case, as many as 91.11% of pull requests consisted
of one or two commits, and only 3.16% consisted of more
than five. On the other hand, there are the flutter/flutter,
microsoft/CBL-Mariner and microsoft/vscode repositories,
where the number of PRs with one or two commits is less
than 70%. An interesting observation is that all these projects
are managed by large technology corporations, the first by
Google, the other two by Microsoft.

113856 VOLUME 11, 2023

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

FIGURE 6. Number of modified lines in source files depending on result of the build.

FIGURE 7. Number of modified lines in source files depending on result of the build, microsoft/vscode excluded.

4) SUMMARY
In response to RQ2, based on the calculated metrics, it is
possible to confirm the intuitive hunch that the smaller the

number of changes introduced in the code, the greater the
chance that the launch of the CI build will succeed. In the
repositories examined, for commits where the number of

VOLUME 11, 2023 113857

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

FIGURE 8. Number of modified lines in test files depending on result of the build.

TABLE 11. Number of commits in pull requests by repository.

modified lines of code exceeded 100, more runs ended in
failure than in success.

The study confirmed that developers aim to submit small
pull requests where possible, thus increasing the chance that
the continuous integration run will be successful. In terms
of both the number of commits and the number of modified
lines, small pull requests were far more frequently submitted
than large ones.

C. Q3: DOES THE EXPERIENCE OF THE CONTRIBUTOR
AFFECT THE SUCCESS OF CI BUILDS?
Intuitively, the more experience a programmer has, the
fewer mistakes he or she should make. However, our own
experience and observations have shown that this is not
always the case with CI builds. By investigating whether
there is a correlation between the success of a build and the
experience of the pull request author, we can gain valuable
insight into how developers select and handle the issues they
work on.

1) Q3M1: CI RUN RESULTS DEPENDING ON THE
EXPERIENCE OF THE CONTRIBUTOR
The experience of the developers is crucial to the efficiency
and quality of their work. For this reason, it would appear
that commits from more experienced programmers will fail
less often than those from novices. However, the skills
of developers cannot be reliably determined from the data
downloaded fromGitHub. The number of commits submitted
to a given repository was taken as a factor of contributor
experience.

The values for the nine ranges of the number of commits
submitted are shown in Table 12. The difference in percentage
points between the number of successful and failed runs for
each range is shown in Figure 10

The results are surprising with no apparent correlation
between the experience of the contributors and the rate of
successful runs. On the contrary, novice contributors, defined
as those with fewer than 10 commits to the repository,
appear to have the highest percentage of successful builds.

113858 VOLUME 11, 2023

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

FIGURE 9. Number of commits and modified lines in pull requests.

Therefore, it was examined whether any of the repositories
were disturbing the summary results. A visualisation of the
results is shown for each repository in Figure 11.
In fact, only for the two repositories, i.e. bitcoin/bitcoin

and starship/starship, a clear correlation can be observed that,
as the experience of the contributors increases, the difference
between runs resulting in success than failure increases.

This phenomenon may be related to the types of tasks
contributors implement. Programmers who are new to a
project tend to choose simple tasks that are easier to complete
without error. Only as they gain experience they begin to
implement more complex tasks. A second factor may be
the increased confidence of experienced developers. In such
cases, they may not test the new code thoroughly enough

VOLUME 11, 2023 113859

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

FIGURE 10. Summary CI run results depending on the experience of the contributor.

TABLE 12. Summary CI run results depending on the experience of the
contributor.

in their development environment and immediately submit a
pull request.

2) SUMMARY
In response to RQ3, the experience of the contributors
working on the project was found to have no effect on the
build success rate. For some of the repositories studied,
it appeared that builds triggered by commits from more
experienced developers were more likely to fail than those
submitted by novice contributors.

V. DISCUSSION
The goal of this study was to investigate how continuous
integration techniques are used by developers in open source
projects. Answering the three research questions posed
through an exploratory study of selected code repositories
of open source projects provided insights into the practical

application of CI techniques. Thus, we believe that this study
makes a significant contribution to the field of computer
science by adding important new insights.

In most of the repositories examined, fixing the bugs that
caused the build to fail required modifying a small number
of lines of code and was delivered by the developers quickly,
usually within a few hours. This may indicate that developers
are not fully testing their code in the local development
environment before submitting a pull request. However,
in projects where it was much less common for a commit to
break the build, bug fixes required more code changes and
were more time-consuming. In our opinion, there is a much
more desirable approach. The continuous integration systems
should not be an excuse for developers not to sufficiently test
the code they deliver. Another disturbing metric that confirms
the immature approach to continuous integration is the type
of files modified after a failed build. Only slightly more than
half of the changes weremade to source files, whilemore than
35%were made to test files. This again shows that developers
are not paying enough attention to creating and verifying unit
tests.

The results of the study confirmed that commits with a
small number of changes have a greater chance of completing
the build successfully. On the other hand, as the size of the
commit increases, the likelihood of the build failing increases,
and huge commits with several thousand modified lines are
more likely to fail than succeed. According to the results
collected, developers are working in linewith this observation
– the vast majority of pull requests consist of one or two
commits and no more than a dozen lines changed. In our

113860 VOLUME 11, 2023

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

FIGURE 11. Summary CI run results depending on the experience of the contributor for each repository.

view, this is a good practice that should be promoted among
developers. Not only does it minimize the risk of introducing
bugs into the code, but also makes it easier for collaborators
to prepare code reviews.

Finally, the intuition that commits from experienced
developers are more likely to succeed than those from newer
developers has not been confirmed. This is most likely
related to the fact that experienced developers undertake
more complex tasks. In our opinion, this is the appropriate
approach. By solving simple tasks, novice developers become
familiar with the project and slowly gain experience.
Eventually, as time passes and more tasks are completed, they
can take on more challenging issues.

A. THREATS TO VALIDITY
Following the approach proposed by Wohlin et al. [43],
a methodological analysis of threats to validity was con-
ducted. The threats are outlined in the following order:
internal validity, construct validity, and finally external
validity.

Internal validity is a concern with threats that may
have an impact on the independent variables [43]. In this
context, there may be risks associated with drawing incorrect
conclusions about the maturity of a project based on the
analysis of the data collected alone. Future work will include
analysis of other development project artifacts for a more
holistic view of the problem.

VOLUME 11, 2023 113861

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

Construct validity refers to the extent to which the results
of a test can be generalized to the underlying theoretical
construct [43]. The choice of metrics is the main risk in this
area. The GQM approach, which allows exploratory research
to be well structured, was chosen to minimise this risk.

External reliability refers to factors that limit the ability
to generalise experimental results to industrial practice [43].
In this respect, a potential threat may be related to the
number of repositories studied. However, our main goal was
to thoroughly investigate the use of CI systems over the years.
Therefore, for the 10 selected repositories, a large dataset
consisting of 101,149 pull requests, 399,671 commits from
20,432 developers was collected. We believe that this risk has
been mitigated by selecting repositories that are diverse in
size and activity.

VI. CONCLUSION
This paper describes the results of an exploratory study
of the use of continuous integration techniques in open
source projects. The study defined 3 research questions and
8 metrics. Data extracted from 10 GitHub repositories of
open source projects were then analysed for the use of CI
techniques.

The results allow us to draw the following three main
conclusions. Firstly, the majority of the problems that
were discovered during the CI build runs required a small
change in the pull request to fix the code. However,
we identified projects with a more mature approach to
software development, where failed build runs were rare.
In these cases, fixing the code required major code changes.
This shows that in most of the projects studied, developers
do not sufficiently test the code before submitting a pull
request, indicating an immature approach to using continuous
integration techniques. Secondly, developers tend to submit
pull requests with small amounts of new or modified code,
leading to a greater chance of CI build success. Thirdly, there
was no correlation found between developer experience in
committing to the project and the success rate of CI builds.
We believe this is because more experienced developers take
on more complex problems to solve.

Furthermore, in future research, we would like to inves-
tigate the maturity of open source projects in terms of their
use of continuous integration techniques. To this end, we plan
to analyse other available software engineering artefacts
from selected projects and compare the results with the data
collected in this study.

REFERENCES
[1] P. Weichbroth, ‘‘A case study on implementing agile techniques and

practices: Rationale, benefits, barriers and business implications for
hardware development,’’ Appl. Sci., vol. 12, no. 17, p. 8457, Aug. 2022.

[2] M. A. Akbar, J. Sang, A. A. Khan, M. Shafiq, S. Hussain, H. Hu, M. Elahi,
and H. Xiang, ‘‘Improving the quality of software development process
by introducing a new methodology–AZ-model,’’ IEEE Access, vol. 6,
pp. 4811–4823, 2018.

[3] M. A. Akbar, W. Naveed, A. A. Alsanad, L. Alsuwaidan, A. Alsanad,
A. Gumaei, M. Shafiq, and M. T. Riaz, ‘‘Requirements change man-
agement challenges of global software development: An empirical
investigation,’’ IEEE Access, vol. 8, pp. 203070–203085, 2020.

[4] R. Subramanya, S. Sierla, and V. Vyatkin, ‘‘From DevOps to MLOps:
Overview and application to electricity market forecasting,’’ Appl. Sci.,
vol. 12, no. 19, p. 9851, Sep. 2022.

[5] M. S. Khan, A. W. Khan, F. Khan, M. A. Khan, and T. K. Whangbo,
‘‘Critical challenges to adopt DevOps culture in software organizations:
A systematic review,’’ IEEE Access, vol. 10, pp. 14339–14349, 2022.

[6] M. Marinho, R. Camara, and S. Sampaio, ‘‘Toward unveiling how SAFe
framework supports agile in global software development,’’ IEEE Access,
vol. 9, pp. 109671–109692, 2021.

[7] O. Springer, J. Miler, and M. R. Wróbel, ‘‘Strategies for dealing
with software product management challenges,’’ IEEE Access, vol. 11,
pp. 55797–55813, 2023.

[8] Z. S. Li, C. Werner, N. Ernst, and D. Damian, ‘‘Towards privacy
compliance: A design science study in a small organization,’’ Inf. Softw.
Technol., vol. 146, Jun. 2022, Art. no. 106868.

[9] K. Gallaba and S. McIntosh, ‘‘Use and misuse of continuous integration
features: An empirical study of projects that (Mis)Use travis CI,’’ IEEE
Trans. Softw. Eng., vol. 46, no. 1, pp. 33–50, Jan. 2020.

[10] R. Haas, D. Elsner, E. Juergens, A. Pretschner, and S. Apel, ‘‘How can
manual testing processes be optimized? Developer survey, optimization
guidelines, and case studies,’’ in Proc. 29th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., Aug. 2021, pp. 1281–1291.

[11] A. Marcolini, N. Bussola, E. Arbitrio, M. Amgad, G. Jurman, and
C. Furlanello, ‘‘Histolab: A Python library for reproducible digital
pathology preprocessing with automated testing,’’ SoftwareX, vol. 20,
Dec. 2022, Art. no. 101237.

[12] F. Zampetti, G. Bavota, G. Canfora, and M. D. Penta, ‘‘A study on
the interplay between pull request review and continuous integration
builds,’’ in Proc. IEEE 26th Int. Conf. Softw. Anal., Evol. Reeng. (SANER),
Feb. 2019, pp. 38–48.

[13] A. Łuczak, K. Stróżański, and C. Orłowski, ‘‘A model of a parallel design
environment for the development of decision-making IoT systems,’’ in
Transactions on Computational Collective Intelligence XXXVII. Cham,
Switzerland: Springer, 2023, pp. 157–170.

[14] B. Loriot, F. Madeiral, and M. Monperrus, ‘‘Styler: Learning formatting
conventions to repair checkstyle violations,’’ Empirical Softw. Eng.,
vol. 27, no. 6, p. 149, Nov. 2022.

[15] Q. Zhang, D. K. Hong, Z. Zhang, Q. A. Chen, S. Mahlke, and Z. M. Mao,
‘‘A systematic framework to identify violations of scenario-dependent
driving rules in autonomous vehicle software,’’ Proc. ACM Meas. Anal.
Comput. Syst., vol. 5, no. 2, pp. 1–25, Jun. 2021.

[16] W. Felidre, L. Furtado, D. A. D. Costa, B. Cartaxo, and G. Pinto, ‘‘Contin-
uous integration theater,’’ in Proc. ACM/IEEE Int. Symp. Empirical Softw.
Eng. Meas. (ESEM), Sep. 2019, pp. 1–10.

[17] K. Weiss, M. Rottleuthner, T. C. Schmidt, and M. Wählisch, ‘‘PHiLIP
on the HiL: Automated multi-platform OS testing with external reference
devices,’’ ACM Trans. Embedded Comput. Syst., vol. 20, no. 5s, pp. 1–26,
Oct. 2021.

[18] S. M. Embury and C. Page, ‘‘Effect of continuous integration on build
health in undergraduate team projects,’’ in Proc. Int. Workshop Softw. Eng.
Aspects Continuous Develop. New Paradigms Softw. Prod. Deployment,
Chateau de Villebrumier, France: Springer, Mar. 2018, pp. 169–183.

[19] F. A. Abdul and M. C. S. Fhang, ‘‘Implementing continuous integration
towards rapid application development,’’ inProc. Int. Conf. Innov.Manage.
Technol. Res., May 2012, pp. 118–123.

[20] V. Saquicela, G. Campoverde, J. Avila, and M. E. Fajardo, ‘‘Building
microservices for scalability and availability: Step by step, from beginning
to end,’’ in New Perspectives in Software Engineering. Cham, Switzerland:
Springer, 2021, pp. 169–184.

[21] A. Alnafessah, A. U. Gias, R. Wang, L. Zhu, G. Casale, and A. Filieri,
‘‘Quality-aware DevOps research: Where do we stand?’’ IEEE Access,
vol. 9, pp. 44476–44489, 2021.

[22] Y. Wu, Y. Zhang, T. Wang, and H. Wang, ‘‘Characterizing the occurrence
of dockerfile smells in open-source software: An empirical study,’’ IEEE
Access, vol. 8, pp. 34127–34139, 2020.

[23] J. Santos, D. A. da Costa, and U. Kulesza, ‘‘Investigating the impact of
continuous integration practices on the productivity and quality of open-
source projects,’’ inProc. 16th ACM/IEEE Int. Symp. Empirical Softw. Eng.
Meas., Sep. 2022, pp. 137–147.

[24] R. Silva and C. Bezerra, ‘‘Investigating the impact of bad practices in
continuous integration on closed-source projects,’’ in Anais Estendidos do
XII Congresso Brasileiro de Software, Teoria e Prática. Nashville, TN,
USA: SBC, 2021, pp. 46–52.

113862 VOLUME 11, 2023

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. R. Wróbel et al.: Using CI Techniques in Open Source Projects—An Exploratory Study

[25] C. Vassallo, S. Proksch, H. C. Gall, andM. Di Penta, ‘‘Automated reporting
of anti-patterns and decay in continuous integration,’’ in Proc. IEEE/ACM
41st Int. Conf. Softw. Eng. (ICSE), May 2019, pp. 105–115.

[26] I. Saidani, A. Ouni, M. W. Mkaouer, and F. Palomba, ‘‘On the impact of
continuous integration on refactoring practice: An exploratory study on
TravisTorrent,’’ Inf. Softw. Technol., vol. 138, Oct. 2021, Art. no. 106618.

[27] J. A. P. Lima and S. R. Vergilio, ‘‘Test case prioritization in continuous
integration environments: A systematic mapping study,’’ Inf. Softw.
Technol., vol. 121, May 2020, Art. no. 106268.

[28] X. Jin and F. Servant, ‘‘Which builds are really safe to skip? Maximizing
failure observation for build selection in continuous integration,’’ J. Syst.
Softw., vol. 188, Jun. 2022, Art. no. 111292.

[29] T. A. Ghaleb, D. A. da Costa, and Y. Zou, ‘‘An empirical study of the long
duration of continuous integration builds,’’ Empirical Softw. Eng., vol. 24,
no. 4, pp. 2102–2139, Aug. 2019.

[30] A. Barrak, E. E. Eghan, B. Adams, and F. Khomh, ‘‘Why do builds
fail?—A conceptual replication study,’’ J. Syst. Softw., vol. 177, Jul. 2021,
Art. no. 110939.

[31] M. Golzadeh, A. Decan, and T. Mens, ‘‘On the rise and fall of CI services
in GitHub,’’ in Proc. IEEE Int. Conf. Softw. Anal., Evol. Reeng. (SANER),
Mar. 2022, pp. 662–672.

[32] T. Kinsman, M. Wessel, M. A. Gerosa, and C. Treude, ‘‘How do software
developers use GitHub actions to automate their workflows?’’ in Proc.
IEEE/ACM 18th Int. Conf. Mining Softw. Repositories (MSR), May 2021,
pp. 420–431.

[33] I. Saidani, A. Ouni, M. Chouchen, and M. W. Mkaouer, ‘‘Predicting
continuous integration build failures using evolutionary search,’’ Inf. Softw.
Technol., vol. 128, Dec. 2020, Art. no. 106392.

[34] E. Laukkanen, J. Itkonen, and C. Lassenius, ‘‘Problems, causes and
solutions when adopting continuous delivery—A systematic literature
review,’’ Inf. Softw. Technol., vol. 82, pp. 55–79, Feb. 2017.

[35] Y. Wang, M. V. Mäntylä, Z. Liu, and J. Markkula, ‘‘Test automation
maturity improves product quality—Quantitative study of open source
projects using continuous integration,’’ J. Syst. Softw., vol. 188, Jun. 2022,
Art. no. 111259.

[36] L. Yu, E. Alégroth, P. Chatzipetrou, and T. Gorschek, ‘‘Utilising CI
environment for efficient and effective testing of NFRs,’’ Inf. Softw.
Technol., vol. 117, Jan. 2020, Art. no. 106199.

[37] V. R. B. G. Caldiera and H. D. Rombach, ‘‘The goal question metric
approach,’’ in Encyclopedia of Software Engineering, 1994, pp. 528–532.

[38] P. Lima, J. Melegati, E. Gomes, N. S. Pereira, E. Guerra, and P. Meirelles,
‘‘CADV: A software visualization approach for code annotations distribu-
tion,’’ Inf. Softw. Technol., vol. 154, Feb. 2023, Art. no. 107089.

[39] S. Stradowski and L. Madeyski, ‘‘Exploring the challenges in software
testing of the 5G system at Nokia: A survey,’’ Inf. Softw. Technol., vol. 153,
Jan. 2023, Art. no. 107067.

[40] M. Ahrens and K. Schneider, ‘‘Improving requirements specification use
by transferring attention with eye tracking data,’’ Inf. Softw. Technol.,
vol. 131, Mar. 2021, Art. no. 106483.

[41] Y. Crespo, C. López-Nozal, R. Marticorena-Sánchez, M. Gonzalo-Tasis,
and M. Piattini, ‘‘The role of awareness and gamification on technical debt
management,’’ Inf. Softw. Technol., vol. 150, Oct. 2022, Art. no. 106946.

[42] R. Malhotra, Empirical Research in Software Engineering: Concepts,
Analysis, and Applications. Boca Raton, FL, USA: CRC Press, 2016.

[43] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Berlin, Germany:
Springer, 2012.

MICHAL R. WRÓBEL received the Ph.D. degree
in computer science from the Gdańsk University
of Technology, Gdańsk, Poland, in 2011. Since
2006, he has been with the Faculty of Electronics,
Telecommunications and Informatics, Department
of Software Engineering, Gdańsk University of
Technology. He is currently an Assistant Professor
with the Gdańsk University of Technology. He is
also a member of the Emotions in HCI Research
Group, where he researches software usability,

affective computing, and software management methods. His research
interest includes a modern approach to software development management,
with a particular focus on the role of human factors in software engineering.

JAROSLAW SZYMUKOWICZ is currently pursu-
ing the Ph.D. degree with the Gdańsk University
of Technology. He is a Backend Software Devel-
oper. His research interest includes designing
and creating innovative software and processes
around it.

PAWEL WEICHBROTH (Member, IEEE) rece-
ived the M.A. degree in statistics from the
University of Gdańsk, Poland, in 2003, and the
Ph.D. degree in artificial intelligence from the
University of Economics in Katowice, Poland,
in 2014.

Moreover, for over 20 years, he was a Business
Consultant and an IT Lecturer. Since 2018, he has
been an Expert for the Ministry of Digital Affairs
on a project for the development of public digital

services. He is currently an Assistant Professor with the Department of
Software Engineering, Gdańsk University of Technology. In this regard,
he has authored over 40 research papers as journal articles, conference
papers, and book chapters. His main research interests include software
quality, machine learning, and knowledge management. He has been a
member of the Scientific Community of Business Informatics and several
international conference program committees. He has been actively acting
as a reviewer and as an organizer.

VOLUME 11, 2023 113863

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

