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Abstract: The increasing amount of rain produces a number of issues in Kerala, particularly in urban
regions where the drainage system is frequently unable to handle a significant amount of water in such
a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena
and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance
the outcomes of conventional flood detection models, deep learning techniques are extensively used
in flood control. Therefore, a novel deep hybrid model for flood prediction (DHMFP) with a combined
Harris hawks shuffled shepherd optimization (CHHSSO)-based training algorithm is introduced
for flood prediction. Initially, the input satellite image is preprocessed by the median filtering
method. Then the preprocessed image is segmented using the cubic chaotic map weighted based
k-means clustering algorithm. After that, based on the segmented image, features like difference
vegetation index (DVI), normalized difference vegetation index (NDVI), modified transformed
vegetation index (MTVI), green vegetation index (GVI), and soil adjusted vegetation index (SAVI) are
extracted. The features are subjected to a hybrid model for predicting floods based on the extracted
feature set. The hybrid model includes models like CNN (convolutional neural network) and deep
ResNet classifiers. Also, to enhance the prediction performance, the CNN and deep ResNet models
are fine-tuned by selecting the optimal weights by the combined Harris hawks shuffled shepherd
optimization (CHHSSO) algorithm during the training process. This hybrid approach decreases the
number of errors while improving the efficacy of deep neural networks with additional neural layers.
From the result study, it clearly shows that the proposed work has obtained sensitivity (93.48%),
specificity (98.29%), accuracy (94.98%), false negative rate (0.02%), and false positive rate (0.02%) on
analysis. Furthermore, the proposed DHMFP–CHHSSO displays better performances in terms of
sensitivity (0.932), specificity (0.977), accuracy (0.952), false negative rate (0.0858), and false positive
rate (0.036), respectively.

Keywords: combined Harris hawks shuffled shepherd optimization algorithm; convolutional neural
network; flood prediction; median filter; satellite images

1. Introduction

In general, flooding poses a serious risk to automobiles and disrupts traffic, leading
to swept-away automobiles, injuries, and fatalities among passengers [1,2]. Cities have to
create flood maps to lessen the risk throughout weather events with remote monitoring of
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flooding. However, urban environments are very complicated, with streams at submeter
resolutions, narrow and short-lived floods, and ponding [3], which cause the flooding
degree to be discontinuous. These three factors make mapping urban flood events difficult.
Applying strategies to hydrologic models used in flood forecasting [4,5] is difficult due to
these factors. More conventional approaches are used to map urban flooding as well as
flood risk. High-resolution hydrologic modeling is efficient at small scales, but with current
technology, it is difficult to obtain the computational power. Extremely accurate inputs are
needed to precisely estimate the urban flooding at community level [6]. The necessity for
less computation-intensive mapping or forecasting techniques for flooding is demonstrated
by these constraining variables.

In order to increase control over flood risks, remote sensing offers the advantage
of [7,8] large-scale flooding without the requirement of extremely precise inputs as well as
computation-intensive methods. Investigations on flood prediction have been conducted
in areas like aerial imagery or satellite imagery. The radar is an active sensor that monitors
the Earth’s surface regardless of the level of cloud cover [9]. SAR data are determined
to be unsuitable for mapping floods in urban areas because of its shadow and stopover
in a complex urban context [10]. Rapid flood mapping is usually accomplished using
unsupervised detection approaches because there is less ground truth data available in real-
world applications. However, through additional information and improved procedures,
some accomplishments have been seen in employing SAR for applications related to urban
floods, with the integration of improved data and new image processing methods. The
major contributions of this study are as follows:

• Cubic chaotic map weighted based k-means clustering is proposed for the segmenta-
tion process.

• Hybrid classification combining CNN and deep ResNet is proposed with a CHHSSO-
based training process via tuning the optimal weights of the hybrid model.

The structure of this research work is as follows: Section 2 describes a survey of existing
work on flood prediction. Section 3 provides the DHMFP’s overall process. Section 4 offers
an explanation of the CHHSSO algorithm procedure. Section 5 discusses the results and
comparisons. At last, Section 6 delivers the conclusion.

2. Literature Review

In 2019, Huynh et al. [11] developed a novel processing technique-based time series
analysis in order to estimate the floodable regions in the Mekong Delta by means of modern
satellite images. These were important concerns in which experts were interested, and in
order to map flood zones and control flood risks, as well as observe and detect changes in
floodable regions, researchers used image LiDAR/image RADAR.

In 2020, Goldberg et al. [12] used operational weather satellites to discuss mapping,
assessing, and forecasting floods generated by snowmelt and ice jams. It was anticipated
that satellite-based flood forecasts would enable more quantitative forecasts on the break-
down timing and areas of floods caused by ice jams and snowmelt when combined with
temperature readings. With the help of this study’s attempts and results, the flood products
from VIIRS and GOES-R offered wide-end users’ dynamic detection and forecasting of
floods caused by snowmelt and ice jams.

In 2020, Moumtzidou et al. [13] expanded an approach to recognize floods in a time
series and examined the prediction of flood events by comparing two successive Sentinel-2
images. DCNN, which was fine-tuned and pre-trained, was utilized to detect floods by
testing various input series of three water-sensitive satellite bands. The proposed strategy
was measured against various remote sensing-based baseline CD methodologies. The
suggested approach helped the crisis management authority determine and assess the
impact of the floods more accurately.

In 2021, Du et al. [14] created a ML-based method with the help of Google Earth Engine
for mapping and predicting the daily downscaling of 30-m flooding. Utilizing retrievals
from SMAP and Landsat along with rainfall predictions from the NOAA global prediction
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model, the CART approach was developed and trained. Independent verification revealed
a strong correlation (R = 0.87) between FW forecasts over randomly chosen dates and
Landsat readings.

In 2021, Mateo-Garcia et al. [15] developed a flood segmentation method that ran
effectively on the accelerator on the PhiSat-1 and generated flood masks to be transferred
rather than the raw images. The current PhiSat-1 mission from the ESA attempted to make
this notion easier to demonstrate by offering hardware capabilities to carry out onboard
processing and incorporating a power-constrained ML accelerator along with the software
to execute customized applications.

In 2021, Paul and Ganju [16] suggested a pseudo-labeling method for semi-supervised
learning that gained steadily better accuracy by obtaining trust estimates via U-Net ensem-
bles. Specifically, a cyclical method was used, consisting of three stages:

(1) Training an ensemble method of multiple U-Net frameworks through a high-confidence
hand-labeled dataset given;

(2) Filtering out poorly generated labels;
(3) Combining the generated labels with an early-obtainable, strong-confidence hand-

labeled dataset.

In 2021, Roland Lowe et al. [17] showed how topographic deep learning can be used
to estimate the depth of an urban pluvial flood. This study looks into how deep learning
was set up to predict 2D supreme depth maps during urban flood events as accurately as
possible. This was accomplished by adapting the U-NET neural network design, which is
frequently used for image segmentation. The results reveal reduced CSI to 0.5 and RMSE
scores (0.08 m) for screening procedures. However, the double-peak event’s increased
forecast inaccuracy highlighted a weakness in accurately catching the dynamics of flood
occurrences.

In 2021, Marcel Motta et al. [18] showed how to anticipate urban floods utilising both
machine learning and geographic information systems. In order to create a flood prediction
system that can be utilised as a useful tool for urban management, this project will combine
machine learning classifiers with GIS methodologies. This method created reasonable risk
indices and factors for the occurrence of floods and was useful for developing a long-term
smart city plan. Random forest was the most effective machine learning model, with
an accuracy of 0.96 and a Matthew’s correlation coefficient of 0.77. However, the higher
sensitivity resulted in a larger false-positive rate, indicating that the system threshold needs
to be further adjusted.

In 2021, Mahdi Panahi et al. [19] proposed two deep learning neural network archi-
tectures, CNN and RNN, for the spatial prediction and mapping of flood possibilities. A
geospatial database with information for previous flood disasters and the environmental
parameters of the Golestan Province in northern Iran was built in order to design and
validate the predictive models. The SWARA weights were used to train the CNN and RNN
models, and the characteristic method was employed to validate them. According to the
findings, the CNN model performed marginally better at forecasting future floods than
RNN (AUC = 0.814, RMSE = 0.181). However, they frequently produce incorrect results
and have a tendency to shorten the complicated form of flood disasters.

In 2021, Susanna Dazzi et al. [20] proposed the concept of predicting the flood stage
by means of ML models. Using mostly upstream stage observations, this work evaluated
the ML models’ propensity to forecast flood stages at a crucial gauge station. All models
offered adequately accurate predictions up to 6 h in advance (e.g., root mean square error
(RMSE) 15 cm and Nash–Sutcliffe efficiency (NSE) coefficient > 0.99). Additionally, the
outcomes imply that the LSTM model should be used because, while taking the most
training time, it was reliable and accurate at forecasting peak standards.

In 2021, Xinxiang Lei et al. [21] presented convolutional neural network (NNETC) and
recurrent neural network (NNETR) models for flood prediction. After that, flooded areas
were spatially divided at random in a 70:30 ratio for the construction and validation of
flood models. By means of area under the curve (AUC) and RMSE, the models’ prediction
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accuracy was verified. The validation findings showed that the NNETC model’s prediction
performance (AUC = 84%, RMSE = 0.163) was marginally superior to the NNETR model’s
(AUC = 82%, RMSE = 0.186). To create a flood danger map for metropolitan areas even
though the output contains a relative error of up to 20% (based on AUC).

In 2022, Georgios I. Drakonakis et al. [22] presented supervised flood mapping via
CNN by employing multitemporal Sentinel-1 and Sentinel-2. In this paper, OmbriaNet was
presented, which completely depends on CNN. It uses the temporal variations between
flood episodes that are retrieved by various sensors to detect variations among permanent
and flooded water areas. This paper demonstrated how to build a supervised dataset
on new platforms, assisting in the management of flood disasters. But, CNNs have been
applied to supervised classification with limited spatial scale and delivering acceptable
outcomes.

In 2022, Kamza et al. [23] developed remote sensing and geographic information
system (GIS) technology to examine the changes in the northeastern Caspian Sea coastline
and forecast the severity of flooding with rising water levels. The proposed method (remote
sensing and GIS) for making dynamic maps was being used to track the coastline and
predict how much flooding would occur in a certain area. As a result, it was possible to
forecast the flooding of the northeast coast using a single map. But this research contains a
variation in sea level and continuous ecosystem deterioration current, which reduces the
prediction quality.

In 2022, Tanim et al. [24] suggested a novel unsupervised machine learning (ML)
method for detecting urban floods that included the Otsu method, fuzzy rules, ISO-
clustering techniques, and was focused on change detection (CD) methodology. In order
to create and train ML algorithms for flood detection, this research integrated data from
remote sensing satellite imagery with information from ground-based observations gener-
ated from police department reports about road closures. By utilizing satellite images and
lowering the risk of flooding in transport design and urban infrastructure development,
this systematic technique is ideally helpful for other cities in danger of urban flooding as
well as for identifying nuisance floods.

In 2022, Peifeng Li et al. [25] presented a deep learning algorithm (CNN–LSTM) to
directly compute runoff in two-dimensional rainfall radar maps. The NSE results from the
research mentioned above are lower or on par with those from this study’s CNN–LSTM
model. If the training data are carefully chosen, the model’s Nash–Sutcliffe efficiency (NSE)
value for runoff simulation throughout the periods could exceed 0.85. When the extreme
values were missed in the one-fold training dataset, the CNN–LSTM miscalculated the
extreme flows.

According to the aforementioned research, the information that was retrieved from
the data typically exceeds the limitations of the measurements, even if the satellite data
have a high degree of uncertainty. However, the data have not been properly analysed
in order to determine how various remote sensing techniques and analyses were used to
locate the flooded area.

Until now, many approaches have been implemented to evaluate remote sensing-based
systems. Unsupervised deep learning algorithms are more reliable because they are faster,
use less training data, take less time to run, and also provide superior computing efficiency.
Therefore, a hybrid deep learning model named DHMFP–CHHSSO is proposed for flood
detection, which provides greater performance with a lower data count and processing
time for improved fast flood mapping. The suggested technique helps other towns in
danger of urban flooding by using satellite data to reduce the flood risk of transportation
projects and urban structure development in addition to flood detection.

3. Proposed Deep Hybrid Model for Flood Prediction with CHHSSO-Based Training
(DHMFP) Algorithm

The purpose of this research is to suggest a technique for satellite image flood detection.
The overall block diagram of the proposed DHMFB model is revealed in Figure 1. The
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study is divided into five stages: dataset collection, preprocessing, segmentation, feature
extraction, and flood prediction. The detailed description of the proposed methodology is
described below.
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Figure 1. Pictorial representation of the DHMFP model.

3.1. Dataset Description

The dataset is obtained from https://earthobservatory.nasa.gov/images/92669/before-
and-after-the-kerala-floods (accessed on 22 August 2018). Kerala has continued to suffer
from a “once-in-a-century” flood that destroyed homes, forced close to one million individ-
uals to evacuate their homes, and claimed hundreds of lives. On 8 August 2018, a period
of severe rain fell across the area. Prior to the flood, on 6 February 2018, the operational
land imager (OLI) aboard the Landsat 8 satellite captured the left image (bands 6-5-3). The
image (bands 11-8-3) was captured by the Multispectral Instrument on board the European
Space Agency’s Sentinel-2 satellite on 22 August 2018, following the area’s flooding. There
are multiple rivers in the area that have overflowed onto the shorelines. Forty towns were
submerged by water from the Karuvannur River, which also carried a 1.4-mile (2.2-km)
strip of land that connected two national highways. Plenty of residents were forced out
by the Periyar River’s elevated flood levels. Images from the Sentinel-2 satellite could be
downloaded using ten or more additional bands. For this dataset, near-infrared radiation
bands, for instance, are a band of data that are available. The radiation that is present (or
absent) in an image can be visualized using NIR to construct an index. This option will not
be investigated because this dataset does not include the NIR wavelength ranges. But it is
important to note that using NIR data, this classification assignment could be approached
in another way [26].

3.2. Preprocessing: Input Image

Ib(i, j): b = {1, 2, . . . , B} , where B indicates the number of bands and B = 13 includes
coastal aerosol, blue, green, red, vegetation red edge, vegetation red edge, vegetation red
edge, NIR, vegetation red edge, water vapour, SWIR-curris, SWIR, and SWIR. The input
image is preprocessed using the median filter (MF) technique. The goal of MF [27] is to
analyse the pixel sizes in a given domain and replace the centre pixel’s value with the

https://earthobservatory.nasa.gov/images/92669/before-and-after-the-kerala-floods
https://earthobservatory.nasa.gov/images/92669/before-and-after-the-kerala-floods
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median of that field. In Equation (1), r(i, j) indicates the noise, the MF technique is used
to sort the sliding filter window pixels, and the final outcome pixel value pI(i, j) of the
filtering outcome indicates the middle value of the series.

pI
b(i, j) = Median

{
r(i, j), Ib(i, j) ∈ Oij

}
(1)

Oij refers to the domain window centred on (i, j). The preprocessed image is indicated
as pI

b, which is then given as an input to the segmentation process and is explained in the
subsequent section.

3.3. Cubic Chaotic Map Weighted Based k-Means Clustering for Segmentation

Using the preprocessed image pI
b, the segmentation process will be performed by

employing the k-means clustering method [28]. The k-means algorithm [29] divides the
image pixels into clusters based on some type of similarity metric. k-means clustering [30] is
the most prevalent strategy, considering the preprocessed image pI

b pI
b = { f1, . . . , fn} ∈ Rp

(pixels), pI
b must be divided into k distinct groups in order to reduce the variation within

each cluster. This problem is formulated based on the minimization of the objective obj
specified in Equation (2), where λ represents a group of cluster centroids, and

∥∥ fi − λj
∥∥ 2

represents the squared Euclidean distance measure.

obj =
N

∑
i=1

min
1≤j≤k

∥∥ fi − λj
∥∥ 2 (2)

As per the proposed work, a new objective function obj is defined in Equation (3),
where ms represents the power mean, ϕ represents the random numbers with ϕ � 0, and

wl represents the weight of the pixel
( p

∑
l=1

wl = 1
)

, which is estimated by the cubic chaotic

map. Here, ms(y) =
(

1
k

k
∑

i=1
gs

i

) 1
s

and the weighted norm ‖g‖2
w =

p
∑

l=1
wl g2

l is represented in

Equation (3),

obj =
n

∑
i=1

ms

(
‖ f − λ1‖2

w, . . . , ‖ f − λk‖2
w

)
+ ϕ

p

∑
l=1

wl log wl (3)

Cubic chaotic map [31]: The cubic map is a recursive discrete-time dynamical system
with an infinite number of unsustainable recurrent points and chaotic behaviour which is
expressed in Equation (4):

wk+1 = ∂wk

(
1− w2

k

)
, wk ∈ (0, 1) (4)

Finally, the segmented outcome is indicated as SI
b = λj=1...C, where C indicates the

number of clusters based on the obj.

3.4. Vegetation Index-Based Feature Extraction

From the SI
b, features like DVI, NDVI, MTVI, GVI, and SAVI are extracted, which is

elaborated in Table 1.
According to the overall indices, the final extracted feature set Fset is defined in

Equation (10).
Fset = [DVI NDVI MTVI GVI SAVI] (10)
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Table 1. Spectral indices for feature extraction.

Index Definition Equation

DVI [32]

This index can differentiate between
vegetation and soil, but it cannot
distinguish between radiance and
reflectance that result from atmospheric
factors or shadows. DVI is calculated in
Equation (5).

DVI = SI
b=2 − SI

b=1 (5)

NDVI
[32]

NDVI is robust in a variety of situations
due to the normalized difference
formulations it uses, together with the
maximum reflectance and absorption
areas of chlorophyll. The NDVI is a
metric of rich, healthy vegetation that is
calculated using Equation (6).

NDVI = (SI
b=2−SI

b=1)
(SI

b=2+SI
b=1)

(6)

MTVI
[33]

By substituting the wavelength of 750 nm
with 800 nm because reflectance is
impacted by variations in leaf and
canopy patterns, the MTVI index in
Equation (7) renders TVI acceptable for
LAI calculations.

MTVI = 1.2
[
1.2
(
SI

b=3 − SI
b=4
)
− 2.5

(
SI

b=5 − SI
b=4
)]

(7)

GVI [34]

The GVI index in Equation (8) reduces
the impact of the background soil while
highlighting the presence of green
vegetation. In order to create new
modified bands, it employs global
coefficients that balance the pixel values.
Where TM refers to thematic mapper.

GVI = (−0.2848 ∗ TM1) + (−0.2435 ∗ TM2)+
(−0.5436 ∗ TM3) + (0.7243 ∗ TM4) + (0.0840 ∗ TM5) + (−0.1800 ∗ TM7)

(8)

SAVI [32]

The SAVI index in Equation (9) is
comparable to NDVI but handles the
impact of soil pixels. It makes use of a
canopy background adjusting factor L,
which depends on vegetation density and
frequently needs to know how much
vegetation is present.

SAVI =
1.5∗(SI

b=2−SI
b=1)

(SI
b=2+SI

b=1+0.5)
(9)

3.5. Hybrid Model for Flood Prediction

The final feature set Fset is subjected to the hybrid model for flood prediction that
trains with the extracted feature set. The hybrid model includes CNN and deep Residual
Network (deep ResNet). The hybrid concept works in this way: the extracted feature
set Fset is subjected to both classifiers simultaneously, and the outcomes from them are
averaged to obtain the final prediction results.

3.5.1. CNN Model

The input to CNN [35] is Fset. A high-level review of CNNs in the area of classification
is provided in this part, where convolutional, down sampling, and activation layers are
some of the layers that make up CNNs; each layer applies a specific task to the incoming
data. Initial convolutional layers inside the network retrieve low-level features, while
subsequent layers extract more intricate semantic factors. These “extract features Fset” are
then used for classification. The kernel weights S and CNN biases are learned from a set
of input images through a technique known as back propagation. The main aspects of
the images from any location are summarized by the kernel values, which are referred
to as parameters. These kernel weights conduct an element-wise dot product as they
travel across an input image, producing intermediate outcomes that are later added to
the learned bias value. The result of each neuron is then defined by input; these results
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are referred to as activation maps. A different kind of layer, termed pooling, is used by
CNNs to decrease the parameter count and assist in preventing overfitting. In a CNN,
activation functions are employed to provide non-linearity, enabling the network to learn
more intricate input patterns [36]. To conclude, CNNs develop spatially-aware depictions
through many stacked layers of computation in contrast to traditional image classification
models, which could be over-parameterized based on intrinsic characteristics in the image.

3.5.2. Deep ResNet Model

The input to deep ResNet [37] is Fset. The fundamental advantage of ResNets is its
capacity to build deep networks with a large number of weighted layers. Gradients from the
loss function to the different layers find it increasingly challenging to back propagate without
decreasing to zero or expanding as the depth of a network rises. By utilizing a skip link,
ResNets enable gradients to travel over layers without being attenuated. The residual function
I
(

Fset) in Equation (11) is learned from the residual block D(u), which is defined as follows:

D(u) = I
(

Fset)+ Fset (11)

By using labeled data to train the weight layers S∗, the residual function I
(

Fset) is
learned. Any form of neural network layer, such as fully connected or convolutional layers,
may be used as weight layers. By declaring D(u) as 0 for particular sections of the network,
the residual block enables the forward pass across the network to choose to skip over those
sections. By using various feature extractor layers, each of which can extract a different
potential characteristic of the input, it is now possible to construct an extremely deep
network [38]. Only the sections of the network necessary for categorizing a given input
case are activated for that instance [39]. Figure 2 represents the hybrid classification model
combining CNN and deep ResNet.
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Deep learning applications frequently experience the over-fitting issue, which has a
detrimental effect on predicting fresh data. This specifically happens when the learning
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model is closely suited to the training data. In this study, a hybrid classification model
named CNN and deep ResNet increases the amount of training data examples and the
number of passes on the existing training data, which makes the model lightweight to
overcome the over-fitting issue.

4. Training Phase: Combined Harris Hawks Shuffled Shepherd Optimization
(CHHSSO) Algorithm

According to this study, the CNN and deep ResNet classifiers’ weight matrices S and
S∗ are fine-tuned using the CHHSSO approach, with an objective of error minimization.
Weights S and S∗ are provided as the input solution to the CHHSSO method. Equation (12)
defines the given objective ob of CHHSSO, and er denotes the error between predicted and
actual value. As per this work, the flood is predicted, and the difference between the target
value and the predicted value is estimated during the error calculation.

ob = Min [er] (12)

The CHHSSO algorithm is a combination of Harris hawks optimization (HHO) [40]
and the shuffled shepherd optimization algorithm (SSOA) [41]. The solution update for
HHO is performed by the SSOA according to the CHHSSO algorithm. The fundamental
aim of HHO [42] was to reproduce the ordinary hunting behaviour of the hawk and prey’s
motion to identify results for a single-objective problem.

4.1. Proposed Exploration Phase

This stage explains the hawks’ location while searching for its prey. It relies on
two different methods. The first method describes how hawks locate prey based on the
placements of the actual (Si, i = 1, 2, . . . , N), N represents the hawks’ count provided in
Equation (13). The second method, however, describes how hawks identify prey based on
their position on a random tree (Srand) which is depicted in Equation (14), where Si(t + 1)
indicates position update of hawks in succeeding iteration t, while Srand(t) indicates the
hawks’ present position, r1, r2, r3, r4 and q indicates the random integers within (0, 1). In
Equation (15), Sm(t) indicates the mean positions for overall hawks. However, as per the
proposed logic, the (Srand) calculation is based on the best, worst, and current position, as
specified in Equation (15). Sprey(t) indicates the prey position.

Si(t + 1) =

{
Srand(t)− r1 |Srand(t)− 2r2S(t)| q ≥ 0.5(
Sprey(t)− Sm(t)−U

)
, q ≺ 0.5

(13)

Here, U = r3(lb + r4(ub− lb))

S(t) =

N
∑

i=1
Si(t)

N
(14)

According to CHHSSO, Srand(t) is calculated in Equation (15).

Srand(t) =
Sbest(t) + Sworst(t) + S

3
(15)

4.2. Proposed Transition from Exploration to Exploitation

This phase of HHO tries to define and model how hawks modify their behaviour from
the exploration stage to the exploitation stage. This behaviour is dependent on the prey’s
escape energy (Eg), which is expressed in Equation (16).
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Eg = 2Eg0

(
1− t

t∗

)
(16)

According to CHHSSO, (Eg) is calculated in Equation (17), where C is the chaotic
random number estimated by the logistic map function. A polynomial map of degree
2 called the logistic map in Equation (18) is frequently used as a classic illustration of
how extremely straightforward non-linear dynamical equations may produce complicated,
chaotic behaviour.

Eg = 2CEg0

(
1− t

t∗

)
(17)

Φk+1 = aΦk(1−Φk) (18)

Eg0 refers to the prey’s initial energy; Eg represents the escaping energy; t represents
the iteration count; and t∗ refers the maximum iteration.

4.3. Exploitation Phase

The primary two components of this stage are hawk hunting techniques and prey
escape behaviours [43]. Around four strategies were followed in the exploitation stage:

• soft besiege;
• hard besiege;
• soft besiege having progressive fast dives;
• hard besiege having progressive fast dives.

4.3.1. Soft Besiege

Here, if |Eg| ≥ 0.5 and r ≥ 0.5, this method results in a single gentle besiege. The
modelling of this behaviour is shown in Equation (19), where ∆S(t) in Equation (20) stands
for the variations among the rabbit’s position vector and the new position in iteration t.
The prey escape method, Jp = 2(1− r5), varied at random throughout each iteration. r5
indicates the random integer within (0, 1).

Si(t + 1) = ∆S(t)− Eg
∣∣ Jp Sprey(t)− S(t)

∣∣ (19)

∆S(t) = Sprey(t)− S(t) (20)

4.3.2. Hard Besiege

If |Eg| ≺ 0.5 and r ≥ 0.5, this method results in two hard besieges. The hawks’
position update is provided in Equation (21).

Si(t + 1) = Sprey(t)− Eg|∆S(t)| (21)

As per CHHSSO, the hawks’ position update is performed by the SSOA, which is
provided in Equation (22).

Snew
i = Sbest

i + stepsizei + Levy(β) (22)

4.3.3. Soft Besiege: Having Progressive Fast Dives

Whenever the prey retains adequate power for effective escape, |Eg| ≥ 0.5 and the
hawks are still building a soft besiege r ≺ 0.5, this method updates the hawks’ position. To
increase the exploitation power as predicted by Equations (23) and (24), team fast dives
depending on the levy flights that are carried out, where R indicates the problem dimension,
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LF in Equation (25) indicates the function of levy flight, and Q indicates the random vector
with 1× R size; V indicates the exploitation capacity.

U = Sprey(t)− Eg
∣∣ Jp Sprey(t)− S(t)

∣∣ (23)

V = U + Q× LF(R) (24)

LF(S) =
l × σ∣∣∣m∣∣∣ 1

γ

, σ =

 Γ(1 + γ)× sin
(πγ

2
)

Γ
(

1+γ
2

)
× γ× 2(

γ−1
2 )

 1
γ

(25)

where l, m indicates the random integer within (0, 1), and γ indicates the constant number
assigned with 1.5. Furthermore, Equation (26) can be used to determine the hawks’ location
update in soft besiege using the progressive fast dives approach.

S(t + 1) =
{

U i f Z(U) ≺ Z(S(t))
V i f Z(V) ≺ Z(S(t))

(26)

4.3.4. Hard Besiege Having Progressive Fast Dives

Here, hawks built a hard besiege around r ≺ 0.5; prey is unable to escape |Eg| ≺ 0.5 .
This method is based on the hard besiege model given in Equation (27).

S(t + 1) =
{

U′ i f Z(U′) ≺ Z(S(t))
V′ i f Z(V′) ≺ Z(S(t))

(27)

The pseudocode of CHHSSO is mentioned in Algorithm 1.

Algorithm 1: Pseudocode of CHHSSO

Input: S and S∗

Output: S and S∗ (Optimal weights)
Initialize: Si, i = 1, 2, . . . , N
While end step is not reached do
Compute hawks’ fitness value
Assign Sprey as prey position (best position)
for each hawk Si do
Update jump strength Jp as well as initial energy Ego
Jp = 2(1− rand()), Ego = 2 rand()− 1
Update Eg as per the proposed Equation (17) with logistic map randomization
Update vector position using Equation (13), with new Srand(t) calculation
if |Eg | ≥ 1 then
if |E g| ≥ 0.5 and r ≥ 0.5
Update vector position by Equation (19)

end if
end if
else if |Eg | ≺ 0.5 and r ≥ 0.5 then
Update vector position by Equation (22) as per CHHSSO
else if |Eg | ≥ 0.5 and r ≺ 0.5
Update vector position by Equation (26)
else if |Eg | ≺ 0.5 and r ≺ 0.5 then
Update vector position by Equation (27)

end if
end if

end if
end for
end while
Return Sprey
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5. Results and Discussion

The proposed flood detection in the satellite image is implemented in PYTHON. The
operating system requires Windows 11, Mac OS X 10.11, 64-bit Linux, CPU (Intel), RHEL
6/7, 16 GB of RAM, and 5 GB of free disk space. The following experimental setups are
used:

• type of network: CNN and deep ResNet models.
• learning percentage: 60, 70, 80, and 90.
• Bands: coastal aerosol, blue, green, red, vegetation red edge, vegetation red edge,

vegetation red edge, NIR, vegetation red edge, water vapour, SWIR-curris, SWIR, and
SWIR.

• Batch parameter: 32.
• Epochs parameter: 50.

To assess the results of the different networks, performances such as accuracy, preci-
sion, sensitivity, specificity, FPR, FNR, NPV, F-measure, and MCC are formulated using
Equations (28)–(36), respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(28)

Precision =
TP

TP + FP
= 1− FDR (29)

Sensitivity =
TP

TP + FN
= 1− FNR (30)

Speci f icity =
TN

TN + FP
= 1− FPR (31)

FPR =
FP

FP + TN
= 1− TNR (32)

FNR =
FN

FN + TP
= 1− TPR (33)

NPV =
TN

TN + FN
= 1− FOR (34)

F−measure =
2TP

2TP + FP + FN
(35)

MCC =
TP× TN − FP× FN√

(TP + FP) + (TP + FN) + (TN + FP) + (TP + FN)
(36)

The assessment of the deep hybrid model for flood prediction with CHHSSO-based
training (DHMFP) is performed over deep belief networks (DBN), recurrent neural net-
works (RNN), long short term memory (LSTM), support vector machines (SVM), bidirec-
tional gated recurrent units (Bi-GRU), shuffled shepherd optimization algorithm (SSOA),
Harris hawks optimization (HHO), COOT, arithmetic optimization algorithm (AOA),
change detection (CD) approach [12], and fully convolutional neural networks (FCNN) [19],
regarding accuracy, NPV, FPR, and so on. To further illustrate the effectiveness of the
DHMFP, statistical analysis, an ablation study, and segmentation accuracy are performed
and tested. Additionally, the original and segmented images are displayed in Figure 3.

In Figure 3, the first column (a) represents the sample images that were taken from the
collected dataset. While the second column (b) represents the segmented image using the
conventional k-means algorithm, where it overlaps with the pre-existing data, it therefore
fails to find a better portion for flood-affected regions. The third column (c) represents the
segmented image using the FCM method, which is one of the most common methods of
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image segmentation. However, this method does not have the capability to distinguish
objects with similar colour intensity. Initially, it detected the flooded region; after some
time, it detected the static regions near flood areas; therefore, the accuracy of this method
is nearly low. Finally, the fourth column (d) represents the segmented image performed
by the proposed DHMFP method. Here, the flood regions (paths) are detected accurately
without overlapping with the pre-existing data. From that image, the greenish portion
denotes the overall affected area, while the orange-coloured portions denote the path of
flooding flowing through the affected regions.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 21 
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ்ା்ே்ା்ேାிାிே  (28)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ்்ାி = 1 − 𝐹𝐷𝑅  (29)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ்்ାிே = 1 − 𝐹𝑁𝑅  (30)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = ்ே்ேାி = 1 − 𝐹𝑃𝑅  (31)

𝐹𝑃𝑅 = ிிା்ே = 1 − 𝑇𝑁𝑅  (32)

𝐹𝑁𝑅 = ிேிேା் = 1 − 𝑇𝑃𝑅  (33)

𝑁𝑃𝑉 = ்ே்ேାிே = 1 − 𝐹𝑂𝑅  (34)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = ଶ்ଶ்ାிାிே  (35)

𝑀𝐶𝐶 = ்ൈ்ேିிൈிேඥ(்ାி)ା(்ାிே)ା(்ேାி)ା(்ାிே)  (36)

The assessment of the deep hybrid model for flood prediction with CHHSSO-based 
training (DHMFP) is performed over deep belief networks (DBN), recurrent neural net-
works (RNN), long short term memory (LSTM), support vector machines (SVM), bidirec-
tional gated recurrent units (Bi-GRU), shuffled shepherd optimization algorithm (SSOA), 
Harris hawks optimization (HHO), COOT, arithmetic optimization algorithm (AOA), 
change detection (CD) approach [12], and fully convolutional neural networks (FCNN) 
[19], regarding accuracy, NPV, FPR, and so on. To further illustrate the effectiveness of the 
DHMFP, statistical analysis, an ablation study, and segmentation accuracy are performed 
and tested. Additionally, the original and segmented images are displayed in Figure 3. 

    

 
  

 

 
   

(a) (b) (c) (d) 

Figure 3. Original and segmented images for flood detection in satellite images. (a) Sample images; 
(b) images segmented using conventional k-means; (c) using the FCM method; and (d) using the 
proposed DHMFP. 

Figure 3. Original and segmented images for flood detection in satellite images. (a) Sample images;
(b) images segmented using conventional k-means; (c) using the FCM method; and (d) using the
proposed DHMFP.

5.1. Analysis of DHMFP with Regard to Positive Measures

The review of DHMFP for flood detection in satellite images is evaluated against DBN,
RNN, LSTM, SVM, Bi-GRU, SSOA, HHO, COOT, AOA, CD, and FCNN for numerous
measures, as exhibited in Figure 4. In Figure 4a, a higher precision of approximately 90.92%
is accomplished by DHMFP at the learning percentage of 80; though, DBN is 0.796, RNN is
0.771, LSTM is 0.784, SVM is 0.859, Bi-GRU is 0.835, SSOA is 0.695, HHO is 0.769, COOT is
0.681, AOA is 0.872, CD is 0.889, and FCNN is 0.76, respectively. When the learning percent-
age is adjusted to 60, DHMFP reaches a specificity of 98.29%, whilst the specificity of other
classifiers is as follows: DBN = 81.34%, RNN = 84.43%, LSTM = 85.56%, SVM = 58.74%,
Bi-GRU = 63.57%, SSOA = 83.91%, HHO = 82.80%, COOT = 78.55%, AOA = 59.18%,
CD = 62.78%, and FCNN = 65.86%.
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For 90% of the learning percentage, the DHMFP generated an accuracy of 94.98%;
at the same time, the DBN, RNN, LSTM, SVM, BI-GRU, SSOA, HHO, COOT, AOA, CD,
and FCNN generated a lesser accuracy of 85.67%, 83.91%, 84.74%, 89.68%, 88.19%, 73.85%,
86.93%, 84.98%, 90.58%, 91.17%, and 79.54%, respectively. The sensitivity obtained by the
DHMFP at the 90th learning percentage is 93.48%, whereas at the 70th learning percent-
age, the sensitivity recorded by the DHMFP is 80.97%. Simultaneously, the sensitivity
maintained by DHMFP at the 80th learning percentage is 83.65%, even though at the 60th
learning percentage, the sensitivity established by DHMFP is 91.89%. Thereby, it affirms
the possibility of the DHMFP’s the flood detection in satellite images.
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5.2. Analysis of DHMFP with Regard to Negative Measures

The study on DHMFP based on flood detection in satellite images is estimated over
DBN, RNN, LSTM, SVM, Bi-GRU, SSOA, HHO, CCOT, AOA, CD, and FCNN, as described
in Figure 5a,b. At the 90th learning percentage, the DHMFP offered the FNR of 0.02, which
is contrasted to DBN = 0.152, RNN = 0.185, LSTM = 0.174, SVM = 0.005, Bi-GRU = 0.009,
SSOA = 0.283, HHO = 0.125, COOT = 0.208, AOA = 0.086, CD = 0.088, and FCNN = 0.091,
respectively. DHMFP yielded the lowest FPR of 0.024, whilst the DBN, RNN, LSTM, SVM,
Bi-GRU, SSOA, HHO, COOT, AOA, CD, and FCNN obtained the FPR of 0.083, 0.094,
0.089, 0.236, 0.338, 0.098, 0.094, 0.134, 0.036, 0.188, 0.34, and 0.273, respectively. Thus,
the DHMFP’s supremacy over other traditional classifiers in terms of negative metrics
is revealed.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Remote Sens. 2023, 15, 5037 15 of 21

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 21 
 

 

For 90% of the learning percentage, the DHMFP generated an accuracy of 94.98%; at 
the same time, the DBN, RNN, LSTM, SVM, BI-GRU, SSOA, HHO, COOT, AOA, CD, and 
FCNN generated a lesser accuracy of 85.67%, 83.91%, 84.74%, 89.68%, 88.19%, 73.85%, 
86.93%, 84.98%, 90.58%, 91.17%, and 79.54%, respectively. The sensitivity obtained by the 
DHMFP at the 90th learning percentage is 93.48%, whereas at the 70th learning percent-
age, the sensitivity recorded by the DHMFP is 80.97%. Simultaneously, the sensitivity 
maintained by DHMFP at the 80th learning percentage is 83.65%, even though at the 60th 
learning percentage, the sensitivity established by DHMFP is 91.89%. Thereby, it affirms 
the possibility of the DHMFP’s the flood detection in satellite images. 

5.2. Analysis of DHMFP with Regard to Negative Measures 
The study on DHMFP based on flood detection in satellite images is estimated over 

DBN, RNN, LSTM, SVM, Bi-GRU, SSOA, HHO, CCOT, AOA, CD, and FCNN, as de-
scribed in Figure 5a,b. At the 90th learning percentage, the DHMFP offered the FNR of 
0.02, which is contrasted to DBN = 0.152, RNN = 0.185, LSTM = 0.174, SVM = 0.005, Bi-
GRU = 0.009, SSOA = 0.283, HHO = 0.125, COOT = 0.208, AOA = 0.086, CD = 0.088, and 
FCNN = 0.091, respectively. DHMFP yielded the lowest FPR of 0.024, whilst the DBN, 
RNN, LSTM, SVM, Bi-GRU, SSOA, HHO, COOT, AOA, CD, and FCNN obtained the FPR 
of 0.083, 0.094, 0.089, 0.236, 0.338, 0.098, 0.094, 0.134, 0.036, 0.188, 0.34, and 0.273, respec-
tively. Thus, the DHMFP’s supremacy over other traditional classifiers in terms of nega-
tive metrics is revealed. 

  
(a) (b) 

Figure 5. Negative measure analysis (DHMFP versus conventional schemes): (a) FNR; (b) FPR. 

5.3. Analysis of DHMFP with Regard to Other Measures 
DHMFP is contrary to numerous previous models in terms of NPV, F-measure, and 

MCC, as shown in Figure 6a–c. In particular, the NPV of DHMFP for the 80th learning 
percentage is 0.927, whereas the conventional methods scored a very low NPV. Notably, 
DBN is 0.908, RNN is 0.885, LSTM is 0.899, SVM is 0.826, Bi-GRU is 0.835, SSOA is 0.849, 
HHO is 0.855, COOT is 0.842, AOA is 0.829, CD is 0.869, and FCNN is 0.772, respectively. 
When the learning percentage is set to 90%, the classifiers DBN, RNN, LSTM, SVM, Bi-
GRU, SSOA, HHO, COOT, AOA, CD, and FCNN obtained the f-measures of 81.83%, 
78.29%, 79.87%, 87.93%, 86.64%, 72.56%, 84.62%, 85.83%, 88.74%, 88.98%, and 77.24%, re-
spectively. Simultaneously, the DHMFP MCC at the 60th learning percentage is 91.28%, 
while at the 90th learning percentage it produces an MCC of 96.37%. Therefore, the 
DHMFP provides enhanced flood detection performance due to the considerable en-
hancement of the other measures. 

Figure 5. Negative measure analysis (DHMFP versus conventional schemes): (a) FNR; (b) FPR.

5.3. Analysis of DHMFP with Regard to Other Measures

DHMFP is contrary to numerous previous models in terms of NPV, F-measure, and MCC,
as shown in Figure 6a–c. In particular, the NPV of DHMFP for the 80th learning percentage
is 0.927, whereas the conventional methods scored a very low NPV. Notably, DBN is 0.908,
RNN is 0.885, LSTM is 0.899, SVM is 0.826, Bi-GRU is 0.835, SSOA is 0.849, HHO is 0.855,
COOT is 0.842, AOA is 0.829, CD is 0.869, and FCNN is 0.772, respectively. When the learning
percentage is set to 90%, the classifiers DBN, RNN, LSTM, SVM, Bi-GRU, SSOA, HHO,
COOT, AOA, CD, and FCNN obtained the f-measures of 81.83%, 78.29%, 79.87%, 87.93%,
86.64%, 72.56%, 84.62%, 85.83%, 88.74%, 88.98%, and 77.24%, respectively. Simultaneously, the
DHMFP MCC at the 60th learning percentage is 91.28%, while at the 90th learning percentage
it produces an MCC of 96.37%. Therefore, the DHMFP provides enhanced flood detection
performance due to the considerable enhancement of the other measures.
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5.4. Ablation Study DHMFP

The ablation study of the model without optimization, the model with conventional
k-means, and DHMFP is delineated in Table 2. Flood prediction without CHHSSO, flood
prediction with cubic chaotic map weighted based k-means clustering, and DHMFP ac-
quired precisions of 89.22%, 87.65%, and 93.65%, respectively. The FPR of the flood predic-
tion without CHHSSO = 0.105, flood prediction with cubic chaotic map weighted based
k-means clustering = 0.136, and DHMFP = 0.036. The accuracy, FNR, and NPV of the
DHMFP are 95.21%, 0.085797, and 90.59%, respectively.

Table 2. Ablation study on flood prediction without CHHSSO. Flood prediction with the cubic
chaotic map weighted based k-means clustering algorithm and CHHSSO–DHMFP.

Flood Prediction
without

CHHSSO

Flood Prediction with Cubic
Chaotic Map Weighted Based

k-Means Clustering
Algorithm

Flood Prediction
with

CHHSSO–DHMFP

Sensitivity 0.861 0.854 0.932
FPR 0.105 0.136 0.036
NPV 0.832 0.793 0.906

Precision 0.892 0.877 0.937
F-measure 0.859 0.823 0.869
Specificity 0.828 0.806 0.977

MCC 0.724 0.754 0.868
Accuracy 0.895 0.873 0.952

FNR 0.172 0.165 0.0858

5.5. Prediction Error Statistics on the Performance of DHMFP over Traditional Systems

A statistical analysis of five case scenario studies, including the standard deviation,
mean, best, median, and worst, is performed in order to examine the efficacy of DHMFP
flood detection in satellite images. Additionally, the DHMFP is appraised over DBN, RNN,
LSTM, SVM, Bi-GRU, SSOA, HHO, COOT, AOA, CD, and FCNN, and the outcomes are
provided in Table 3. While giving consideration to the best-case scenario, the DHMFP
maintained an error rate of 0.034, though the DBN has 0.113, RNN has 0.132, LSTM has
0.119, SVM has 0.124, Bi-GRU has 0.144, SSOA has 0.170, HHO has 0.131, COOT has
0.153, AOA has 0.123, CD has 0.163, and FCNN has 0.226, respectively. Thus, it has been
ascertained that the DHMFP is adequate for flood detection in satellite images.

Table 3. Statistical analysis with respect to error for DHMFP versus traditional systems.

Methods Best Median Standard Deviation Worst Mean

DBN 0.113 0.057 0.003 0.113 0.109
RNN 0.132 0.072 0.004 0.132 0.127
LSTM 0.119 0.071 0.004 0.119 0.113
SVM 0.124 0.059 0.077 0.103 0.044

Bi-GRU 0.144 0.010 0.104 0.107 0.044
SSOA 0.170 0.049 0.022 0.177 0.134
HHO 0.131 0.012 0.035 0.134 0.079
COOT 0.153 0.039 0.019 0.151 0.128
AOA 0.123 0.044 0.067 0.118 0.044
CD 0.163 0.010 0.100 0.146 0.044

FCNN 0.226 0.018 0.043 0.229 0.176
DHMFP 0.034 0.086 0.009 0.033 0.022

5.6. Assessment of Segmentation Performance

The analysis of the segmentation performance of the DHMFP is contrasted to conven-
tional k-means, FCM, and OmbriaNet–CNN [22], which are represented in Table 4. The
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dice score of the improved k-means is 0.863, whilst the conventional k-means is 0.676 and
the FCM is 0.787. The Jaccard coefficient of the improved k-means is 0.889, while the con-
ventional k-means and FCM gained the Jaccard coefficients of 0.732 and 0.739. Additionally,
analysing the segmentation accuracy, the improved k-means are proven to have a higher
rating of 0.894 than the conventional k-means, FCM and OmbriaNet–CNN [22], which
have obtained lower values of 0.785, 0.654, and 0.865, respectively.

Table 4. Analysis of segmentation results of the improved k-means over existing methods.

Performance Measures Improved
k-Means

Conventional
k-Means FCM OmbriaNet–CNN

[22]

Dice Score 0.863 0.676 0.787 N/A
Jaccard Coefficient 0.889 0.732 0.739 N/A

Segmentation Accuracy 0.894 0.785 0.654 0.865
N/A—not available.

5.7. Convergence Analysis

In order to indicate the pre-eminences of the DHMFP in flood detection, it is evaluated
over the DBN, RNN, LSTM, SVM, Bi-GRU, SSOA, HHO, COOT, AOA, CD, and FCNN,
which are exposed in Figure 7. The DHMFP attains an error rate of approximately 0.45
during the first iteration; this is less than SSOA (0.54), HHO (0.75), COOT (0.48), AOA
(0.59), and BMO (0.63). During the 17.5th iteration, the DHMFP had an error value of 0.63;
meanwhile, the SSOA, HHO, COOT, AOA, and BMO maintained error values of 0.21, 0.23,
0.34, 0.22, and 0.29, respectively. This highlights that DHMFP can afford precise outcomes
for flood detection in satellite images.
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5.8. Analysis of Training and Validation Losses

One of the most widely used metrics is the ratio of training loss to validation loss over
time. While the training loss indicates how effectively the model matches training data, the
validation loss indicates how well the model matches new data. The graphical depiction
of training and validation loss is exposed in Figure 8a, which shows that the training loss
started to decrease and reached a value of 0.02 over 100 epochs, while the validation loss
reached a value of 0.05 over the same time period. While training accuracy denotes the
accuracy of trained data, validation accuracy denotes the accuracy of new data. Figure 8b
shows the graphical representation of training and validation accuracy. From Figure 8b,
it clearly displays that training accuracy starts at 0.9894 at 100 epochs, while validation
accuracy achieves 0.9813 at 100 epochs.
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5.9. Discussion

Here, a novel deep hybrid model for flood prediction (DHMFP) based CHHSSO is
suggested for flood prediction. The proposed CHHSSO based on DHMFP is compared
to a number of existing models, including OmbriaNet-CNN [22], DBN, RNN, LSTM,
SVM, Bi-GRU, SSOA, HHO, COOT, AOA, CD, and FCNN. The improved k-means have
attained a dice score (0.863), Jaccard coefficient (0.889), and segmented accuracy (0.894)
for the segmentation study. The final extracted feature set is used to perform hybrid
classification using CNN and deep ResNet classifiers to obtain the final feature set. The
CHHSSO algorithm then adjusts the weight of CNN and deep ResNet. For that analysis,
the proposed DHMFP receives the following values from the results: sensitivity = 93.48%,
specificity = 98.29%, accuracy = 94.98%, FNR = 0.02%, and FPR = 0.02%. The effectiveness
of DHMFP flood detection in satellite images is investigated using a statistical analysis,
which is elaborated in Table 2. These analyses clearly demonstrate that the suggested
DHMFP maintains an error rate of 0.034 despite the values of DBN (0.113), RNN (0.132),
LSTM (0.119), SVM (0.124), Bi-GRU (0.144), SSOA (0.170), HHO (0.131), COOT (0.153),
AOA (0.123), CD (0.163), and FCNN (0.226). Furthermore, the proposed DHMFP–CHHSSO
displays better performances in terms of sensitivity (0.932), specificity (0.977), accuracy
(0.952), false negative rate (0.0858), and false positive fate (0.036), respectively. While consid-
ering the segmentation performance, improved k-means are compared with conventional
k-means, FCM, and OmbriaNet–CNN [22]. From the analysis, it clearly shows that an
improved k-means achieved a higher accuracy of 0.894, while other methods have 0.785,
0.654, and 0.865, respectively. Hence, from the overall analysis, it is determined that the
proposed DHMFP is sufficient for flood detection in satellite images when compared with
other existing models.

6. Conclusions

This research developed a new deep hybrid model for flood prediction with the
CHHSSO-based training (DHMFP) algorithm. Here, the input satellite image was prepro-
cessed using the MF approach. The preprocessed image was then segmented using the
improved k-means clustering procedure. After that, depending on the segmented image,
features like DVI, NDVI, MTVI, GVI, and SAVI were extracted. Using the final extracted
feature set, hybrid classification was performed. The final feature set was given as an input
to both the CNN and deep ResNet classifiers. The output obtained from both optimized
classifiers was averaged to obtain the final predicted outcome. The fine tuning of CNN and
deep ResNet weight was performed by the combined Harris hawks shuffled shepherd opti-
mization (CHHSSO) algorithm. Furthermore, the CHHSSO’s performance was assessed,
and the results were effectively validated. According to the findings, the proposed DHMFP
obtained the following values for sensitivity, specificity, accuracy, and FNR: 93.48%, 98.29%,
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94.98%, and 0.02 and 0.02, correspondingly. To evaluate the effectiveness of the DHMFP
flood detection in satellite images, a statistical study was performed that included the
standard deviation, mean, best, median, and worst. Based on that data, it was evident that
the proposed DHMFP maintained an error rate of 0.034 even though the DBN, RNN, LSTM,
SVM, Bi-GRU, SSOA, HHO, COOT, AOA, 0.123, CD, and FCNN all had values of 0.113,
0.132, 0.119, 0.124, 0.144, 0.144, 0.144, 0.131, 0.131, 0.153, 0.153, 0.123, and 0.163, respectively.

The ability of CNNs to learn directly from raw pixel data without the necessity for
manual feature engineering or preprocessing is one of their key advantages. This means
that the most prominent aspects of the images, such as edges, forms, colours, textures, and
objects, may be automatically discovered and adapted to. This also makes the training
and inference processes faster and more effective by reducing the dimensionality and
complexity of the input data. However, ResNet, a potent deep neural network architec-
ture, has transformed the area of computer vision by making it possible to build deeper
and more precise networks. ResNet is complicated, prone to overfitting, and has poor
interpretability, among other drawbacks. To overcome the above-stated limitations and
improve the classification accuracy of flood prediction models, this research can be fur-
ther extended by analysing unique deep learning with additional hybrid combinations of
optimization techniques.
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