
Neuro-Oncology Advances
5(1), 1–11, 2023 | https://doi.org/10.1093/noajnl/vdad134 | Advance Access date 5 November 2023

1

© The Author(s) 2023. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of 
Neuro-Oncology.

Anna Giczewska†, , Krzysztof Pastuszak†, Megan Houweling†, , Kulsoom U. Abdul, Noa Faaij,  
Laurine Wedekind, David Noske, Thomas Wurdinger, Anna Supernat, and Bart A. Westerman

Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical 
University of Gdańsk, Gdańsk, Poland (A.G., K.P., A.S.); Center of Biostatistics and Bioinformatics, Medical University 
of Gdańsk, Gdańsk, Poland (K.P., A.S.); Department of Algorithms and System Modeling, Gdansk University of 
Technology, Gdańsk, Poland (K.P.); Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit 
Amsterdam, Amsterdam, The Netherlands (M.H., U.K.A., N.F., L.W., D.N., T.W., B.A.W.); Cancer Center Amsterdam, 
Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands (M.H., U.K.A., N.F., L.W., D.N., T.W., 
B.A.W.); The WINDOW Consortium (www.window-consortium.org) (M.H., U.K.A., T.W., B.A.W.)
†These authors contributed equally to this work.

Corresponding Authors: Bart A. Westerman PhD, Department Neurosurgery, room CCA3.36, Brain Tumor Center Amsterdam, Cancer 
Center Amsterdam CCA, Amsterdam UMC, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands (westerman@amsterdamumc.
nl); Anna Supernat PhD, Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and 
Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland (anna.supernat@gumed.edu.pl).

Abstract 
Background.   In recent years, drug combinations have become increasingly popular to improve therapeutic out-
comes in various diseases, including difficult to cure cancers such as the brain cancer glioblastoma. Assessing the 
interaction between drugs over time is critical for predicting drug combination effectiveness and minimizing the 
risk of therapy resistance. However, as viability readouts of drug combination experiments are commonly per-
formed as an endpoint where cells are lysed, longitudinal drug-interaction monitoring is currently only possible 
through combined endpoint assays.
Methods.   We provide a method for massive parallel monitoring of drug interactions for 16 drug combinations in 
3 glioblastoma models over a time frame of 18 days. In our assay, viabilities of single neurospheres are to be esti-
mated based on image information taken at different time points. Neurosphere images taken on the final day (day 
18) were matched to the respective viability measured by CellTiter-Glo 3D on the same day. This allowed to use of 
machine learning to decode image information to viability values on day 18 as well as for the earlier time points 
(on days 8, 11, and 15).
Results.   Our study shows that neurosphere images allow us to predict cell viability from extrapolated viabilities. 
This enables to assess of the drug interactions in a time window of 18 days. Our results show a clear and persistent 
synergistic interaction for several drug combinations over time.
Conclusions.   Our method facilitates longitudinal drug-interaction assessment, providing new insights into the 
temporal-dynamic effects of drug combinations in 3D neurospheres which can help to identify more effective ther-
apies against glioblastoma.

Longitudinal drug synergy assessment using 
convolutional neural network image-decoding of 
glioblastoma single-spheroid cultures  
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Key Points

•	 Image processing based on convolutional neural networks (CNNs) allows us to 
estimate the viability in each well.

•	 Estimated cell viabilities can be used for synergy estimation at different time 
points.

•	 Our method allows for longitudinal assessment of drug interactions.

Glioblastoma (GBM) is the most common adult brain tumor 
and the median survival of patients is 14 months,1–3 where 
only 5% of the patients are alive after 5 years.4 Although 
GBM occurrence varies worldwide,5 in the United States, 
more than 12 000 glioblastoma cases are diagnosed each 
year.6 The last change of the standard of care to adjuvant 
Temozolomide was initiated in 1997,7 and follow-up efforts 
have shown only ineffectual success resulting in limited 
current options.8 Thus, there is still a need to discover new 
treatments for patients with GBM.

Drug combinations can increase a single drug’s effec-
tivity or potency, minimizing toxicity and drug resistance, 
and are commonly used to treat cancer.9 GBM is a very 
heterogeneous tumor sensitive to drug combination treat-
ment.10,11 There are 3 possible drug-interaction effects: 
additivity, synergy, and antagonism.12 Synergistic inter-
actions are most desirable. To estimate drug interactions, 
2 fundamentally different metrics Bliss Independence 
(BLISS13) and Loewe Additivity (LOEWE14) are commonly 
used. Another alternative is the Highest Single Agent 
(HSA)15 metric. Each metric captures distinct character-
istics of drug interactions. Therefore, considering each 
of the mentioned synergy methods separately seems 
beneficial.16

The rapid advancement of image processing technology 
coupled with machine learning (ML) models allows for cap-
turing biological interactions in an automated fashion. For 
this, an image (with cellular viability) must be converted 
into a mathematical object.17 The presence of noise, inad-
equate clarity, and poor contrast in images are recurring 
factors affecting image-based assessments.18 Trivializing, 
neural networks (NNs) are a series of ML algorithms that 
are inspired by the operations of a brain to identify rela-
tionships in data. The convolutional neural network (CNN 
or ConvNet) is a subtype of NNs commonly used in image 
and speech recognition.19 A specific type of CNNs that uses 
shortcut connections from shallow layers to deep layers 
is known as densely connected convolutional networks 
(DenseNet).20 DenseNet achieved state-of the-art perfor-
mance in various image-processing tasks.21

The application of machine learning algorithms for the 
prediction of cell viabilities based on image processing was 
previously studied in cancer research through cytology,22,23 
and in other research areas including musculoskeletal medi-
cine,24 ophthalmology,25 and nephrology.26 Models22,23 were 
trained based on tissue images including many cells per 
image, whereas other24–26 focused on predicting viabilities 
not for cancer research. Furthermore, none of the published 
so far methods developed a cell viability predictive model 
based on single 3D neurospheres. Therefore, neither of 
these models could have been applied to our data.

In our study, we applied DenseNet architecture to build a 
predictive model for cell viability estimation. These results 
were further processed to provide synergy estimation. 
Consequently, the obtained synergies were used for the 
drug combination’s effect assessment.

Materials and Methods

Ethical Statement

All methods were carried out in accordance with relevant 
guidelines. Primary glioma sphere cultures were provided 
by MD Anderson Cancer Center, University Medical Center 
Groningen, and Massachusetts General Hospital in accord-
ance with approval by the Institutional Review Boards. The 
use of tissues for experiments was exempt from requiring 
consent in all Institutes. Patient materials obtained from 
the University Medical Center Groningen were obtained 
after routine diagnostics, coded according to the National 
Code for the Good Use of Patient Material.

Cell Culture, Image Acquisition, Viability, and 
Synergy Determination

Glioblastoma sphere cultures (GSC11 and GSC7-10) 
were obtained via single-patient surgical resections pro-
vided by Dr. Bhat (The University of Texas MD Anderson 

Importance of the Study

Understanding interactions between drugs over time 
is critical to estimate effectiveness and avoid therapy 
resistance. We show that convolutional neural network 

mediated image processing allows to estimate cancer 
cell viabilities that further enables the assessment of 
drug-interaction efficacy in a longitudinal fashion.
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Cancer Center, Houston, TX, USA) and Prof. Sulman (NYU 
Langone’s Perlmutter Cancer Center/NYU Grossman 
School of Medicine, New York, NY, USA). Dr. Bakhos 
Tannous (Harvard/MGH, Boston, MA, USA) provided the 
GBM8 model. The chosen models are representative of 
different genetic subgroups of glioblastoma, that is, EGFR 
amplified (GSC11), PDGFRA amplified (GBM), or chro-
mosome 7 gained (GSC7-10). All models were cultured 
in Neurobasal-A medium (NBM) supplemented with N-2 
(100x), B-27 without vitamin A (50x), GlutaMAX™ supple-
ment, 1% penicillin/streptomycin (all from ThermoFisher 
Scientific, Waltham, MA, USA), 20 ng/ml human EGF, 20 
ng/ml human bFGF (Peprotech, London, UK), 5 IU/ml 
heparin (Amsterdam UMC pharmacy, Amsterdam, the 
Netherlands). Cell lines were cultured at 37 °C, 5% CO2. 
Single-cell suspensions were generated using Accutase 
(ThermoFisher Scientific, Waltham, MA, USA), by 
incubating neurospheres for 5 min at 37 °C, diluting with 
NBM, and resuspension of cell pellet in complete NBM. All 
GBM cultures were certified mycoplasma-free by regular 
testing via http://www.microbiome.nl/.

All tumors matched the IDH-wild type status, and diag-
nosis was based on histology analysis done by a neuro-
pathologist. In case of lack of clarity of the tumor grade, 
an epic methylation profile was generated from paraffin-
embedded tissue and matched to WHO criteria. Cell lines 
were also subjected to epic methylation array profiling al-
lowing us to determine the copy-number profile, however, 
the interpretation of the subtype of tumor could deviate 
since there is no stromal infiltration in cell cultures as com-
pared to clinical material.

Cell-repellent round bottom Cellstar® 96-well plates 
(Greiner, Alphen aan den Rijn, Netherlands) were used to 
seed cell cultures at a cell density of 750 cells/well allowing 
the formation of one spheroid per well for up to 18 days 
of culture. The protocol is based on earlier work.27,28 Three 
different patient-derived GBM cell lines, GBM8, GSC7-10, 
and GSC11, were selected for drug combination screening. 
These cell lines were selected intentionally since each of 
them exhibits different features that are prevailing for pa-
tients with GBM. GSC11 shows epidermal growth factor 
receptor (EGFR) amplification and GSC7-10 exhibits chro-
mosome 7 gain but no obvious amplifications. GBM8 has 
shown EGFR diploidy and amplification in platelet-derived 
growth factor receptor A (PDGFRA) and MYCN instead.

Combenefit (“Combinations Benefit”) is complimentary 
and publicly available software that allows for estimating 
BLISS, LOEWE, and HSA synergistic and/or antagonistic 
drug combination effects assessment.29 It uses information 
about cell viability to make a proper drug-interaction esti-
mation. Cell viability is defined as the number of healthy 
cells in a sample,30 and cell viability assays are used to 
measure the cell condition in response to drugs or chem-
ical agents.30–32 Different types of assays are used to screen 
for outcomes in a process of most effective treatment de-
velopment.30 The CellTiter-Glo 3D (CTG 3D) assay is a com-
monly used method to determine the number of viable 
cells in 3D cell culture. It uses ATP that is liberated from 
lysed cells which drives a chemiluminescent reaction that 
is measured by a luminometer. This approach claims to be 
more sensitive than other methods that depend on other 
metabolic mechanisms not always strongly activated in 

glioblastoma.33 CTG 3D-measured cell viabilities can then 
be used as an input for Combenefit.

Spheroid phase-contrast images were automati-
cally taken with IDL virtual machine software via a Leica 
DMI3000 microscope (Leica, Rijswijk, the Netherlands) on 
a number of days throughout the experiment (1, 4, 8, 11, 15, 
and 18 days). On days 4 and 11, after images were taken, 
the Neurobasal-A medium (NBM) was revitalized by the re-
placement of 50 μl with fresh NBM. Secondly, drug com-
bination treatments were applied on days 4 and 11 (drug 
combinations used in the study were in depth described34) 
for drug concentrations at ranges as described (Tables 1 
and 2). Subsequently, on days 8 and 15, recovery periods 
were established throughout the removal of the drug com-
binations via complete refreshment of the NBM. Finally, on 
day 18, cell viability was measured by CTG 3D luminescent 
cell viability assay (Promega, Madison, WI, USA) according 
to the manufacturer’s protocol to assess the effect of drug 
combination treatment. Relative light units (RLUs) were 
measured via the Tecan Infinite® 200 reader using iControl 
1.10 software, followed by normalization of the RLUs 
based on DMSO control (≤0.1% DMSO) to normalize it to 
the maximal cell viability (set to 100%). The data consist of 
technical duplicates of each of the 16 drug combinations.

Based on the data obtained from the experiment de-
scribed above, the first objective of our study was to 
develop a cell viability prediction model that besides pre-
diction on day 18 will also focus on viability prediction 
over time of the experiment (days 8, 11, and 15). That fur-
ther allowed for longitudinal changes synergy estimation.

It is important to distinguish the difference between the 2 
sets of collected data in our study. The first part consists of 
the data available on day 18, including pictures of cells and 
CTG 3D-measured cell viability. On day 18, photographs of 
all GBM cultures undergoing different drug combination 
treatments were collected. Drug combinations were tested 
in duplicates. Not including control cases, each plate con-
tained 36 wells with cell cultures. One of 36 wells in each 
plate had no exposure to drugs. The remaining 35 wells 
were exposed to different doses of drugs. In an ideal sce-
nario, with no manual image preselection, we would ex-
pect 3456 cell images per each day of our experiment. To 
most optimally train the prediction model, photos with 
poor quality or suspected staining were manually ex-
cluded, resulting in a total of 2728 photos collected on day 
18. Photos taken on earlier days were not manually pre-
selected, and all available images were used, regardless of 
the quality and noise, resulting in a set of 3456 pictures for 
each day. An additional set of 144 photos with empty wells 
was added to the train set as a reference.

Observed cell viabilities as determined by CTG 3D on 
day 18 served as labels for each cell photo taken on day 18 
and were used in our predictive model. In the second data 
set (with data collected on days 8, 11, and 15) all available 
images were used regardless of the quality and the noise 
in the photos. Moreover, no CTG 3D cell viability equiva-
lent was present for any of these images.

To develop a prediction model that is able to predict cell 
viability over time it was required to split all of our images 
into training and testing datasets. Photos for eight arbitrarily 
selected drug combinations were selected as a training set, 
and sensitivity analysis for a fully randomized selection of 
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drug combinations as a train set was performed as well. 
The photos for the remaining eight drug combinations were 
used as an independent test set. Our model trained on the 
data available on day 18 and used all available photos on 
other days to make predictions, so there was no split into 
training and testing on days other than day 18. To address 
the concern of the differences in the size of cell cultures 
across different days, for each day we used the viability of 
cell culture with no treatment as the reference (100% via-
bility) and normalized the remaining cell cultures on the 
given day accordingly. For both, the preprocessing and 
neural network, parameter tuning was performed using 
only the training set. Mean squared error was used as a 
measure for a model evaluation during the training process.

Data Processing and Analysis

The 2 main goals in our study were to firstly accurately 
predict cell viabilities, and afterward use these predicted 

viabilities for synergy calculations. Prior to performing any 
prediction, image preprocessing was implemented.

The following steps were taken in an image 
preprocessing (Figure 1B). First, contrast maximization 
was performed to minimize the impact of differences in 
lighting in the background. Subsequently, median fil-
ters and blurring were applied to reduce the number of 
remaining small artifacts. Since each image contained 
a large margin with no visible cells present, the margins 
were trimmed. The images were rescaled to 224 × 224 res-
olution. Additionally, threshold-based filtering was used to 
remove the remaining artifacts from the photographs.

Cell viability predictions were performed over time (days 
8, 11, 15, and 18). Supervised DenseNet-based convolu-
tion neural network was adapted for the regression task. 
Predicted cell viabilities for the test set were compared 
with the readouts. For the readouts predicted and real 
viabilities, if data from both repetitions was available, the 
mean predicted and real viabilities were compared. If the 

Table 1.  Drug Concentration Ranges for Drug Combination Screen.

Stock Concentration (mM) Drug Range (μM)

1 0.0500 0.0167 0.0056 0.0019 0.0006 0.0000

0.1000 0.0333 0.0111 0.0037 0.0012 0.0000

10 1.0000 0.3333 0.1111 0.0370 0.0123 0.0000

0.5000 0.1667 0.0556 0.0185 0.0062 0.0000

2.0000 0.6667 0.2222 0.0741 0.0247 0.0000

5.0000 1.6667 0.5556 0.1852 0.0617 0.0000

Table 2.  Highest Used Drug Concentration Per Drug Per GBM Culture.

GBM8 GSC11 GSC7-10

Maximum Concentration (μM) for 3-Fold Dilution

# Drug 1 Drug 2 Drug 1 Drug 2 Drug 1 Drug 2 Drug 1 Drug 2

1 CGP-082996 Obatoclax mesylate 5 0.50 5 0.50 5 0.50

2 Lapatinib Gemcitabine 5 0.05 5 5.00 5 5.00

3 Lapatinib Vinorelbine 5 0.05 5 0.05 5 0.05

4 Lapatinib Obatoclax mesylate 5 0.50 5 0.50 5 0.50

5 Erlotinib Gemcitabine 5 0.05 5 5.00 5 5.00

6 Erlotinib Vinorelbine 5 0.05 5 0.05 5 0.05

7 CGP-082996 Thapsigargin 5 0.05 5 0.05 5 0.05

8 Lapatinib Thapsigargin 5 0.05 5 0.05 5 0.05

9 Lapatinib Tipifarnib 5 1.00 5 5.00 5 5.00

10 Lapatinib Bleomycin 5 1.00 5 5.00 5 1.00

11 Tipifarnib NVP-TAE684 1 0.50 5 0.50 5 0.50

12 Pazopanib BMS-536924 0.1 1.00 5 5.00 5 1.00

13 PHA-665752 NVP-LAQ824 0.1 0.05 0.5 0.05 0.1 0.05

14 Thapsigargin Midostaurin 0.05 0.05 0.05 1 0.05 1

15 Bleomycin A-770041 1.00 1.00 5.00 1 1.00 5

16 Lapatinib CGP-082996 5 5 5 5 5 5
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data was available only for a single repetition, it was used 
instead of the mean.

The inferred cell viabilities were used as an input for the 
Combenefit drug synergy analysis. Estimated synergies 
from observed CTG 3D cell viabilities (real data) were 
available only on day 18. Synergies calculated from the 
predicted viabilities were compared with the synergies 
obtained from the real data.

Missing Data

Combenefit uses matrices with cell viabilities to estimate 
the synergy of drug combinations, and missing values are 
not allowed in these matrices. Therefore, observed missing 
values in cell viabilities obtained from (CTG 3D) assay and 
predictive model were handled in the following manner: 
when any missing value in the matrix in the monotherapy 
well was observed, then that specific matrix was not con-
sidered for Combenefit analysis. At the same time, if the 

second matrix was complete, the calculation of synergy 
was based on this complete second matrix while the first 
matrix stayed excluded. Missing values in any other place 
than the monotherapy wells did not result in the exclusion 
of that specific matrix in a synergy calculation, the missing 
value was constituted with 100% viability.

In a model performance interpretation, any missing data 
in predicted or observed synergy or viability values for 
specific drug combinations resulted in the exclusion of the 
whole sample in the presented analysis.

Results

Data Preparation for Building Cell Viability 
Prediction Model

Longitudinal assessment of drug interactions enables 
to prioritize effective drug combinations with enduring 

Drug combination experiments

Amount of viable cells
(Cell titer Glo-3D)

Seed GBM cells in low
adhesion plate

Drug treatments

Day –4 0 4 8 11 15 18 days post seeding

Testing
~50%

Training and validation

Image processing

Image collection

Synergy evaluation Synergy calculation

Measured

Viability prediction

Performance
testing
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T
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M
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C
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B

 Figure 1.  Biological experiment description and a pipeline of DenseNet-based CNN application to synergy prediction framework. A. Graph 
illustrating main study procedures. GBM cells were examined over 18 days time period. Images were taken on days 0, 4, 8, 11, 15, and 18. Drug 
combinations were applied between days 4 and 8, as well as days 11 and 15. Cell titer Glo-3D cell viability assessment was performed on day 
18 only. Images under the axis with days show spheroid cell growth over time. B. Scheme of the DenseNet-based CNN framework used in the 
study. Images available on day 18 were divided into training and testing datasets. Automated preprocessing on all images was performed, and 
DenseNet-based CNN models were used for cell viability prediction. Observed through cell titer Glo-3D cell viabilities were used as labels in our 
prediction model. Combenefit software was used for further synergy estimation.
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effects. However, this assessment is currently challenged 
given that viability readouts are commonly determined 
as an endpoint. To perform a label-free assessment of lon-
gitudinal drug interactions, we set out to perform mas-
sive parallel monitoring of the cell viabilities for single 
neurospheres by using multiple recorded photographic im-
ages for each sphere. The key to such an effort is to be able 
to match extended sets of available images to individual 
neurosphere viabilities for different drug combinations 
and different GBM models. Available images would then 
allow us to estimate cell viabilities over time in a label-free 
fashion using image processing and machine learning.

We performed an experiment in a laboratory setting 
where 3 different GBM cultures were individually treated 
with 16 different drug combinations. Photographs were 
taken on several days, including the endpoint of day 18. 
We titrated 2 drugs in 3-fold dilutions from starting concen-
trations (see Tables 1 and 2). This dilution was performed 
in a 6 × 6 matrix where drugs are titrated individually but 
also diametrically in all combinations of 5 different con-
centrations using a solvent-only control as a reference for 
normalization. Experiments were performed in technical 
duplicates as 2 independent plates. The experiment de-
scription and data flow are shown in Figures 1A and B.

All images collected on day 18 were divided into 2 data 
set with an even split, 50% and 50% accordingly. Half of 
the samples were selected for training and validation pur-
poses and another half for testing. Samples selected for 
training and validation were further split into training (70%) 
and validation (30%) sets. Both training and validation im-
ages were used for tuning the preprocessing step (some 

photos contained artifacts, the light was different etc.), but 
the training and validation split was preserved for model 
development purposes. Photos for 8 arbitrarily selected 
drug combinations (including Bleomycin and A-770041; 
CGP-082996 and Obatoclax Mesylate; Thapsigargin and 
Midostaurin; Lapatinib and Obatoclax Mesylate; CGP-
082996 and Thapsigargin; Lapatinib and Thapsigargin; 
PHA-665572 and NVP-LAQ824; Lapatinib and Tipifarnib) 
were selected as a training set which contained 1437 im-
ages. The photos for the remaining 8 drug combinations 
were used as an independent test set, which consisted of 
1291 photographs. Our model was trained and tested on 
the data available on day 18 only and therefore, no split 
into training and testing was necessary on other days than 
day 18.

Image Processing Allows for Cell Viabilities 
Prediction

To assess drug interactions, the estimated cell viability ef-
fect of each drug or its combination should match the ac-
tual measured viability. To estimate this viability from the 
images, we applied contrast maximization, median fil-
ters, blurring, rescaled the images, and applied a Dense 
Convolutional Neural Network architecture. The meas-
ured viability based on CellTiter-Glo ATP measurements 
(CTG 3D) was taken to train the image-based model built 
on day 18 data. From this pre-trained model, viabilities 
were estimated at earlier time points, including days 8, 
11, 15, and 18 (Figure 2A). Scatter plots of predicted on 
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Figure 2.  Accuracy of predicted cell viabilities. A. Illustration of the study design. B. Scatter plots of viabilities observed on day 18 versus pre-
dicted on other study days for all cell lines and all drug combinations (where both predicted and observed viabilities occurred) presented over 
the study period (days 8, 11, 15, and 18). Strong association on day 18 is presented due to the fact that the observed cell viabilities were obtained 
only on day 18. The remaining scatter plots relationships weaken over time, as expected. C. Exemplary observed and predicted viability heatmaps 
of dual drug combination of lapatinib and obatoclax in GBM8 (PDGFRA amplified), GSC11 (EGFR amplified), and GSC7-10 (EGFR gain) on day 18.
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each day versus observed on day 18 viabilities are de-
picted in Figure 2B. As expected, a strong relation be-
tween observed and predicted viabilities can be seen on 
day 18 (adj R-squared = 0.984; P-value < 2.2e−16). This ro-
bust association was weaker when looking at earlier time 
points that indicate changes in predicted cell viabilities 
over time (day 15: adj R-squared = 0.730; P-value < .001 
day 11: adj R-squared = 0.590; P-value < .001; day 8: adj 
R-squared = 0.429; P-value < .001). Additional model 
validation was performed and results can be found in 
Supplementary Figures S9–S10.

In addition, when experimental matrices with different 
drug combinations and concentrations were used, the re-
sults showed a remarkable match to measured values. That 
matching evaluation was reasonable to assess only on day 
18, due to a lack of observed viabilities on other days of the 
experiment. Exemplary color-coded heatmaps for Lapatinib 
and Obatoclax Mesylate demonstrate a match between the 
predicted versus measured viabilities on day 18 stratified 
for the 3 different cell culture models (Figure 2C). Color in 
the heatmaps varies from blue to red, indicating the change 
in the viability, where red color shows low cell viability. 
Viability heatmaps on day 18 (and additionally on different 
days) for all drug combinations stratified by cell line are 
provided as Supplementary Figures S4–S8. These results 
indicate that it is possible to estimate the cell viability using 
machine learning on images, and in fact denote a proper 
setup to determine longitudinal synergy estimation.

Predicted Viabilities Enable Longitudinal Synergy 
Assessment

Using the viabilities as determined by machine learning 
for the longitudinal data, we can estimate the level of 
drug interaction for each combination in time. In our 
study, we used Combenefit software to calculate the level 
of LOEWE, BLISS, and HSA drug interactions for each 
drug combination on a specific day (drug combinations 
applied only on days 4 and 11). Our interaction assess-
ment is depicted in Figures 3A–3C, and 4. The first panel 
includes an example of how cell viabilities changed over 
time for the drug combination lapatinib and obatoclax 
mesylate in GBM8 to present how a synergistic drug ef-
fect would look like in the photos (Figure 3A). A summary 
of all photos used in the study can be found via data avail-
ability (github).

The concept of how to compare the calculated and 
measured levels of drug interactions is shown in Figure 
3B. This figure underlines the complexity of the experi-
ment since synergy is dependent on the expected effect 
of the curve-fitted monotherapies versus the effects of the 
drug combination. The downstream result of the viability 
predictions is ability to calculate synergies, and scatter 
plot with observed versus predicted LOEWE synergy on 
day 18 stratified by type of cell line is shown in Figure 
3C. A strong correlation between observed and pre-
dicted synergies can be observed (adj R-squared = 0.837; 
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Figure 3.  Synergy assessment based on predicted cell viabilities. A. Collected images of cell viabilities for lapatnib and obatoclax mesylate for 
GBM8 cell line, presented over time, along with the results from cell titer Glo-3D obtained on day 18. In the presented matrices, a top-left square 
always indicates the cells with no drugs applied. Bottom-right square indicates the cells with the maximal drug dose applied in the study. The first 
column and first row in each matrix represent the observed effect for monotherapies. B. Exemplary illustration of the complexity of the tasks per-
formed by Combenefit for synergy estimation. Synergy is estimated by calculating the volume between the experimental (lower surface) and the-
oretical (upper surface) effect based on an additive interaction. In our study, synergy estimations were performed for all image-based predictions 
and cell titer Glo-3D obtained cell viability matrices. C. Scatter plot of LOEWE predicted versus observed synergy values for each cell line and 
each drug combination obtained on day 18 (where both predicted and observed synergies occurred) indicate (as expected) strong association.
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P-value < .01). Results shown as Figure 3C are consistent 
across different synergy methods (see Supplementary 
Figure S1).

The level of estimated drug interaction calculated ac-
cording to Loewe at day 18 is shown in Figure 4. A linear 
trend in the synergy values over time across different 
cell lines can be observed for a majority of considered 
drug combinations with a few exceptions. Erlotinib and 
gemcitabine as well as lapatinib and gemcitabine drug 
combinations for GSC11 show strong synergy at day 8 that 
decreases over time. Lapatinib and tipifarnib, along with 
CGP-082996 and obatoclax mesylate, present an increase in 
the predicted synergy values for GSC11 and GBM8, respec-
tively, for both days 11 and 15, with a drop of the synergy 
at day 18. Lapatinib and obatoclax mesylate show a drop in 
predicted synergy values on days 11 and 15 for GSC11. All 
these nonlinear relationships are considered correct and 
were validated through manual image review to check for 
potential errors in the predicted model. Results shown in 
Figure 4 are consistent across different synergy methods 
(see Supplementary Figures S2 and S3). Observed CTG 3D 
synergies on day 18 were marked on the figures as black 
markers and show that predicted synergy values are con-
sistent for the majority of drug combinations. Since ob-
served CTG 3D synergies were obtained only at day 18, 
black markers are shown only at day 18.

Predicted cell viabilities in longitudinal setting allow us 
to estimate the synergy longitudinally. That results in a 

potential for more efficient drug combination assessment 
over time, which can directly improve the detecting most 
effective treatments for GBM patients. From the perspec-
tive of consistency among obtained predicted viabilities 
and synergy estimations, the following drug combinations 
were considered the most potent: A-77041 and bleomycin, 
CGP-082996 and obatoclax mesylate, and lapatinib and 
obatoclax mesylate.

Discussion

GBM is a highly therapy-resistant tumor type, which might 
be caused by its intratumoral heterogeneity. Hence, drug 
combinations might affect heterogeneous cellular popula-
tions to increase therapy efficiency.35 For these drug com-
binations to be successful, they should provide a lasting 
effect to avoid therapy resistance. However, as most drug-
interaction assessments are performed after 72 h of drug 
exposure, it is mostly unknown how drug interactions 
change over time beyond that time frame. Due to the pow-
erful learning abilities of neural networks to recognize 
patterns, it becomes increasingly feasible to quantify bi-
ological phenotypes from image information, sometimes 
even minimizing human error.36 The growing increase in 
data availability and computing power has allowed CNNs 
to become commonly applied for image analysis.36 In our 
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Figure 4.  Longitudinal drug interaction assessment. Scatter plot of predicted (shown in colored symbols and lines) and observed LOEWE 
synergies (shown in black symbols at day 18) presented over study period stratified by cell line type and drug combination, showing mostly con-
stant drug combinations effect over time.
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study, we proposed to use a CNN image-based machine 
learning model for a massive parallel longitudinal assess-
ment of drug interactions in a label-free fashion.

We show here that GBM cell viabilities can be estimated 
using CNN image-based machine learning model in a 
consistent fashion over multiple laboratory cell culture 
models. Besides one-time point prediction, our model can 
be applied for longitudinal cell viability estimation. For nu-
merous considered drug combinations (and especially for 
the ones with synergistic effect), changes in our predicted 
cell viabilities over time were found which translated to 
the level of synergy. For instance, some drug combin-
ations have increased levels of synergy (eg, lapatinib and 
tipifarnib or CGP-082996 and obatoclax mesylate at days 
11 and 15) and others decrease in time (eg, erlotinib or 
lapatinib in combination with gemcitabine).

Of the selected combinations identified in our study, a 
number have been identified before for different tumor 
types. CGP-082996 and obatoclax inhibiting CDK4 and 
BCL2, among other targets, have been shown to synergis-
tically interact in mantle cell and follicular lymphoma.37,38 
Furthermore MCL1 interacts with cyclin-dependent kinase 
4 inhibitor C (P18INK4C), facilitating CDK4/6 mediated 
s-phase entry.39 Inhibiting EGFR and BCL family members 
similar to lapatinib and obatoclax, commonly shows pos-
itive interactions, also seen for glioblastoma, through dif-
ferent mechanisms including induction of endoplasmic 
reticulum stress, autophagy as well as increased MCL1 
protein expression after EGFR inhibition.40–43 Application 
of erlotinib and gemcitabine has shown synergy in breast 
cancer models44 and in lung and pancreatic cells, syner-
gistic interactions are mediated through nucleoside trans-
port.45 However, for pancreatic cancer, this combination 
does not provide a significant improvement in patient 
survival.46 Lapatinib and gemcitabine application against 
breast cancer in a clinical setting provides a patient ben-
efit47 where interactions might be depending on the sched-
uling. Lapatinib and tipifarnib both interact in the receptor 
tyrosine kinase and RAS/MEK/ERK pathway which could 
potentially lead to synergy through maximal pathway inhi-
bition.48 Bleomycin A-770041 A-770041 acts through a cell-
extrinsic mechanism in bleomycin-induced fibrosis.49

In view of the fact that drug effectiveness is understood 
to be different on day 8 of the experiment when the first 
drug combination doses stopped being distributed, versus 
at the end of the study period (day 18, after 2 rounds of the 
drug combination application). Predicted cell viabilities in 
our study were further used to assess the effectiveness of 
drug interactions over time, and obtained synergy curves 
were plotted showing a relatively progressively constant 
pattern (Figure 4). The predicted viability value for the ref-
erence data available on day 18 might have not only lim-
ited the viability assessment at earlier time points but 
might have affected the predicted level of drug interaction 
in our study. Therefore, drug interactions were calculated 
based on aggregated values for 36 wells thereby possibly 
averaging out individual viability estimation errors.

As we have collected numerous images, each matched 
to viability measurements, we could apply a machine 
learning algorithm for cell viability prediction in a lon-
gitudinal setting. Despite the large set of available im-
ages, the protocol for capturing photos was not fully 

standardized (different lighting conditions) and per-
formed automatically by a microscope. That complicated 
the image preprocessing and potentially led to an under-
estimation of the model performance. Reduction of the 
3-dimensional cultures to 2 dimensions (photos) is also 
expected to deteriorate the model’s ability to fully capture 
all the occurred changes in the cell size. While building a 
predictive model to estimate cell viabilities of GBM cells, 
we also accept that the lack of observed solvent-treated 
reference cell viabilities on days 8, 11, and 15, as well as 
the use of cell viabilities from day 18 as a reference, is a 
notable constraint. To compensate for the reduced sphe-
roid sizes at these time points, the image window was 
adjusted such that it resembled the day 18 image. This 
normalization approach to handle differences in the size 
of cell cultures on different days and missing data in pre-
dicted viability matrices might have affected the perfor-
mance of the model. Moreover, further research is needed 
to validate drug combinations effectiveness with in vivo 
experiments.

In summary, results from our study indicate that longi-
tudinal drug interaction assessment utilizing automated 
imaging analysis is achievable. This non-invasive predic-
tion, based on image data, has several advantages. It al-
lows for continuous measurement of the approximate cell 
viability of the cultures during the experiment, without in-
terfering with the later time points. The cost of taking ad-
ditional measurements is low and primarily limited to the 
labor involved in preparing the additional set of images. 
It also provides the potential to investigate differences be-
tween various chromosomal alterations of GBM models, 
as well as recurrent GBM models. In conclusion, we have 
proposed a novel method for estimating cell viability to be 
used for synergy calculations for cancer cell lines. Overall, 
our method is intended to be shown as a proof of concept, 
adding to inspiring new insights into the discovery of syn-
ergistic drug combinations.

Supplementary material

Supplementary material is available online at Neuro-
Oncology (https://academic.oup.com/neuro-oncology).
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