
Algorithmica
https://doi.org/10.1007/s00453-023-01192-2

Complexity Issues on of Secondary Domination Number

Joanna Raczek1

Received: 30 April 2021 / Accepted: 5 November 2023
© The Author(s) 2023

Abstract
In this paperwe study the computational complexity issues of the problemof secondary
domination (known also as (1, 2)-domination) in several graph classes. We also study
the computational complexity of the problem of determining whether the domination
and secondary domination numbers are equal. In particular, we study the influence of
triangles and vertices of degree 1 on these numbers. Also, an optimal algorithm for
finding a minimum secondary dominating set in trees is presented.

Keywords Computational complexity · Algorithms · Domination number · Graph
classes · Applications

1 Introduction

In networks some resources (possibly limited in number) should be available immedi-
ately and directly. Thus some nodes can function as special nodes, for example servers,
e.g. licence servers, data sets or Internet providers. Then these special nodes form a
dominating set. The domination number is the number of the smallest possible number
of these special nodes. The review of the literature shows that domination parameters
can be used in many applications, ranging from sensors for environment, vehicular
ad hoc communications, road safety, health, home, peer-to-peer messaging, disaster
rescue operations, air/land/navy defence, weapons, and robots.

However in some networks a higher reliability is demanded, so in case of one
server’s failure, another one can take over necessary tasks. In this paper we focus on a
situationwhen a spare special nodedoes not need to be a direct neighbour of an ordinary
node, it might be at distance 1 or 2. If the spare special node is at distance 2, then
the communication might be performed at a lower speed or only the most demanding
tasks may be assured by the spare server. An analogous situation takes place when the
poor signal coverage makes it impossible to make standard connections via a mobile

B Joanna Raczek
joanna.raczek@pg.edu.pl

1 Gdansk University of Technology, ul. Narutowicza 11/12, Gdańsk, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01192-2&domain=pdf
http://orcid.org/0000-0002-1807-4978

Algorithmica

phone network. However in most situations we can call emergency numbers. To fulfill
these conditions the special nodes need to form a secondary dominating set, known
also as a (1, 2)-dominating set.

The secondary domination can be applied in case of the covid pandemic. Suppose
we want to ensure good medical care for the citizens. Let V be a set of towns with
at least n thousand of habitants and let two elements of V be adjacent if the distance
between them is at most k kilometers. Then the minimum (1, 2)-dominating set is the
optimum location of medical care points such that each town has a basic medical point
at distance at most k and in case of overflow of this, a spare medical point at distance
at most 2k.

The secondary domination in graphs was defined in 2008 by Hedetniemi et al. [2].
The authors of this paper mention a forthcoming paper on the algorithmic complexity
of this domination problem, however this paper has not been written [8]. Since then
many papers on this topic have appeared (for example see [3, 5–7]). Therefore we
decided to study the computational complexity of this domination problem.

The (1, 2)-domination in graphs is a special case of (1, k)-domination. In this paper
we only deal with the case when k = 2, that is with a secondary domination.

For a graph G a set D ⊆ V (G) is a dominating set if each vertex v of V − D
has a neighbour in D. The domination number, γ (G), is the cardinality of a smallest
dominating set of G.

A set D ⊆ V (G) is a (1, 2)-dominating set if each vertex v of V − D has a
neighbour in D as well as another vertex of D at a distance not greater than 2 from
v. The (1, 2)-domination number, denoted by γ1,2(G), is the cardinality of a smallest
(1, 2)-dominating set of G.

In what follows we assume G to be a connected graph with at least two vertices.
The case when G is not connected comes to considering the (1, 2)-dominating sets in
each connected component separately.

2 Complexity of (1, 2)-Domination Number

Similarly as in the case of other types of domination problems, the decision problem
of (1, 2)-dominating set is also NP-complete. Let us define this decision problem as
follows.
(1, 2)-DOMINATING SET
Instance: A graph G and a positive integer k.
Question: Does G have a (1, 2)-dominating set of size at most k?

A split graph is a graph in which the vertex set can be partitioned into a clique and
an independent set.

Theorem 1 (1, 2)-DOMINATING SET is NP-complete, even for split graphs and even
for bipartite graphs.

Proof (Outline). It is obvious that (1, 2)-DOMINATING SET is a member of NP,
since we can, in polynomial time, guess a set D and verify whether D has cardinality
at most k and is a (1, 2)-dominating set.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Algorithmica

The reduction is fromEXACTCOVERBY3-SETS (X3C).Weare given an instance
X = {x1, . . . , x3q} and C = {C1, . . . ,Cm} of X3C, where C j are subsets of X of size
|C j | = 3 for 1 ≤ j ≤ m. Assume that m ≥ 2, since otherwise the answer is trivial.
For this instance we construct a split graph G with vertices for each xi ∈ X , for each
c j ∈ C and with edges xiC j for all xi ∈ C j and edges so that the subgraph induced
by {C1, . . . ,Cm} is a complete graph Km . Let k = q.

It is not difficult to show that C contains an exact cover if and only if G has a
(1, 2)-dominating set of cardinality at most k.

Similarly, we construct a bipartite graph in the same way, but instead of adding
all the edges between vertices of C , we add two new vertices, y0, y1 and edges y0y1,
y0C j for all j . Set k = q + 1. ��

3 Domination and (1, 2)-Domination Numbers in Bipartite Graphs

This section is devoted to complexity issues of the domination and the (1, 2)-
domination numbers.

It is obvious from the definitions of the domination number and the (1, 2)-
domination number that for any graph G,

γ (G) ≤ γ1,2(G).

Theorem 2 If G is a graph with δ(G) > 1 and without a triangle, then

γ (G) = γ1,2(G).

Proof Let G be a graph with δ(G) > 1 and without a triangle. Suppose γ (G) <

γ1,2(G). Then there exists a minimum dominating set of G named D such that D is
not a (1, 2)-dominating set. Then there exists a vertex v ∈ V (G) − D such that v is
dominated by a vertex w ∈ D, but each vertex of D − {w} is at distance at least 3
from v.

Since δ(G) > 1, denote by s a neighbour of v in N (v) − {w}. Moreover, G is
without a triangle and each vertex of D − {w} is at distance at least 3 from v, so s is
not dominated by w nor by any other vertex of D. Hence D is not dominating, it is a
contradiction. ��

An easy conclusion from this theorem is that if a graph G is bipartite and without
a leaf, then γ (G) = γ1,2(G). In the next section we show that if a bipartite graph
has at least one leaf, then the problem of determining whether those two domination
parameters are equal is a co-NP-hard problem. We also obtain a similar result when a
graph has no leaf and only one triangle.

3.1 Complexity of Equality

In this section we consider the computation complexity of stating whether for a given
graph G there is γ (G) = γ1,2(G).

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Algorithmica

Theorem 3 It is co-NP-hard to determine if for a given graph G there is γ (G) =
γ1,2(G) even for bipartite graphs with only one leaf.

Proof We describe a reduction from 3SAT, which was proven to be NP-complete in
[1], to the considered problem. The formula in 3SAT is given in conjunctive normal
form, where each clause contains three literals. We assume that the formula contains
the instance of each literal u and its negation u′ (in the other case all clauses containing
the literal u are satisfied by the true assignment of u) and that the formula contains at
least two clauses (otherwise the answer is trivial).

Given an instance E , the set of literalsU = {u1, u2, . . . , un} and the set of clauses
C = {C1,C2, . . . ,Cm} of 3SAT, we construct a bipartite graph G whose order is
polynomially bounded in terms of n and m, and such that the formula is satisfiable if
and only if γ (G) < γ1,2(G).

For each literal ui construct a copy of the cycle C6, that is G(ui) =
(ui , a2i , u

′
i , a

4
i , a

5
i , a

6
i) for i = 1, 2, . . . , n. For each clause C j , j = 1, 2, . . . ,m

there is a clause vertex c j . Additionally, we add three vertices, z1, z2 and z3. For
every clause C j with literals x, y and z, we create the three edges c j x, c j y and c j z.
Moreover, add edges z1c j for j = 1, 2, . . . ,m and edges z1z2, z2z3. It is easy to
verify that the obtained graph is bipartite.

Each copy of C6 has four vertices of degree 2 and therefore at least two vertices
of each C6 belong to each γ (G)-set and to each γ1,2(G)-set. Because of z1, z2, z3,
there is at least one more vertex in γ (G)-set and two more vertices in γ1,2(G)-set.
Therefore, γ (G) ≥ 2n+1 and γ1,2(G) ≥ 2n+2. Since any set containing twoopposite
vertices from each C6 together with z1, z2 is a (1, 2)-dominating set, regardless the
satisfiability of E , γ1,2(G) is always equal to 2n + 2.

Assume first that E is satisfiable and consider a satisfying truth assignment. Then
the set consisting of the vertices corresponding to the true literal vertices, vertices at
distance 3 belonging to the sameC6 cycle and z2 form a dominating set of size 2n+1.
Hence in this case γ (G) = 2n + 1 and therefore γ (G) < γ1,2(G).

If E is not satisfiable, then γ (G) > 2n + 1 and therefore γ (G) = γ1,2(G). ��
Theorem 4 It is co-NP-hard to determine if for a given graph G is that γ (G) = γ1,2
even for graphs with δ(G) > 1 and with only one triangle.

Proof The proof is similar to the proof of Theorem 1, however we add a new vertex
x4 and edges x2x4, x3x4. The obtained graph G has exactly one triangle and γ (G) =
γ1,2(G) if and only if E is satisfiable. ��

3.2 Complexity in Graph Classes

In this part we consider computational complexity of domination and (1, 2)-
domination problems on the same graph classes.

Let G be any graph with vertex set V = {v1, v2, . . . , vn} and γ (G)-set D. Add to
each vertex vi of G a copy of a path Pi

2 = (xi , yi) and edge vi xi , and denote the new
graph by H1. Then X = {xi : 1 ≤ i ≤ n} is a minimum dominating set of H1. The
set Y = {yi : 1 ≤ i ≤ n} ∪ D is a minimum (1, 2)- dominating set of H1. Hence

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Algorithmica

computing the minimum dominating set of H1 can be done in polynomial time, but
computing γ1,2(H1) is NP-hard (because determining γ (G) is NP-hard).

On the other hand, let H2 be a graph obtained from G by adding to each vertex
a copy of Pi

3 = (xi , yi , zi) and edge vi xi . Then Y (defined as above) is a minimum
dominating set of H2, whereas {xi , zi : 1 ≤ i ≤ n} is a minimum (1, 2)-dominating
set of H2. In this case computing γ1,2(H2) is polynomial and computing γ (H2) is
NP-hard.

Letting G to be bipartite, both H1 and H2 are also bipartite. We state these
considerations as a theorem.

Theorem 5 There is a class of bipartite graphs for which determining the domination
number is NP-hard and determining the (1, 2)-domination number is polynomial and
there is a class of bipartite graphs for which determining the domination number is
polynomial and determining the (1, 2)-domination number is NP-hard.

Since γ1,2(H1) = γ (G), the operation of obtaining H1 from G is a poly-
nomial reduction from an NP-complete problem of DOMINATING SET to the
(1, 2)-DOMINATING SET. Therefore we state the following theorem.

Theorem 6 (1, 2)-DOMINATING SET is NP-complete for chordal bipartite graphs,
C4-free graphs, maximum degree 4 graphs, partial grid graphs and planar graphs.

Proof For all those graph classes the DOMINATING SET problem is NP-complete
and is NP-complete for maximum degree 3 graphs, (see [4]). Therefore the result
follows. ��

4 Optimal Algorithm for Trees

In this section we introduce an algorithm for finding a minimum (1, 2)-dominating set
in trees. In this algorithm each vertex v has an integer status sta(v). In the beginning,
each status is equal to 0.At the last phase this number is used to determine theminimum
(1, 2)-dominating set of T .

Let T be a rooted tree and v0 be the root vertex such that v0 is a leaf. Let S be a
permutation of V (T) such that if v is a father of u, then u is before v in S. Note that
the last element of S is the root vertex.

If v ∈ V (T), denote by CL(v) the set of children of v which are leaves, denote by
CNL(v) the set of children of v which are not leaves and denote by f (v) the father
of v. If v has only one child, denote this child by c(v).

During the algorithm execution a current vertex v is being assigned a code. The
code code(v) depends on the statuses of children of v and is an sequence ABCD
where

– A reflects the number of leaves among children of v. If v does not have such
children, then |CL(v)| = 0 and consequently, A = 0. If v has exactly one leaf
child, then A = 1. Otherwise A = 2.

– B,C and D stand for children of v with status greater than 10, equal to 10, and
smaller than 10, respectively. If v does not have this kind of children, then B =
0,C = 0 or D = 0, otherwise B = 1,C = 1 or D = 1.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Algorithmica

For example, if v two children of v have status 10 and three children have status greater
than 10, then code of v is 0110. Let X denote any number in code, e.g. 211X denotes
any code from among 2110 and 2111. During the execution of the algorithm the code
of a vertex may change whenever the status of its child changes. Note that each leaf,
except possibly for v0, has the code 0000.

The algorithm is divided into three parts. Thefirst part establishes statuses ofV (T)−
{v0}. The second part establishes the status for the root vertex. The last part determines
the minimum (1, 2)-dominating set based on the statuses of all the vertices.

Algorithm 1: Part I: Statuses of V (T) − {v0}
Data: A rooted tree T with vertex ordering S
Result: Statuses for vertices belonging to V (T) − {v0}

1 Set sta(v) = 0 for each v ∈ V (T);
2 for v ∈ S do
3 designate code(v);
4 if v is not a leaf nor a root vertex then
5 if code(v) ∈ {2X11, 1X11} then
6 Set sta(u) = 21 for each u ∈ CNL(v) with sta(u) = 10;
7 if code(v) = 0X1X and sta(v) > 10 then
8 Set sta(u) = 21 for each u ∈ CNL(v) with sta(u) = 10;
9 if code(v) = 0X1X and sta(v) < 10 then

10 Set sta(c(u)) = 21 for each u ∈ CNL(v) and sta(u) = 10;
11 Set sta(u) = 0 for each u ∈ CNL(v) and sta(u) = 10;
12 update code(v);
13 if code(v) ∈ {2101, 1101} then
14 Set sta(v) = 22;
15 if code(v) = 2001 then
16 Set sta(v) = 21;
17 Set sta(f (v)) = 22;
18 if code(v) = 1001 and sta(v) < 10 then
19 Set sta(v) = 10;
20 if code(v) = 000X and sta(v) < 10 then
21 Set sta(f (v)) = 21;

Before we present the algorithm that determines the status of the root vertex, we
note that since the degree of v0 is one, the code of v0 has the form 1001 when T is a
tree on two vertices. Other possible codes for the root vertex are 0100, 0010 or 0001.

Algorithm 2: Part II: Status of the root vertex
Data: A rooted tree T with statuses of each vertex of V (T)

Result: A status for the root vertex v0
1 if code(v0) ∈ {1001, 0010} then
2 Set sta(v0) = sta(c(v0)) = 22;
3 if code(v0) = 0100 then
4 if sta(c(v0)) = 21 then
5 Set sta(v0) = 22;
6 if code(v0) = 0001 then
7 Set sta(v0) = 21;

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Algorithmica

At this point note that after the first and second part all the vertices have statuses
smaller than 10 or greater than 10. No vertex has status 10. Moreover, the algorithm
distinguishes between statuses 21 and 22: a vertex has status 22 if it is in a minimum
(1, 2)-dominating set and one of its children has status greater than 10,while a status 21
is for vertex that belongs to a minimum (1, 2)-dominating set but none of its children
has status greater than 10. This distinction is used only by the algorithm for the root
vertex.

Algorithm 3: Part III: A minimum (1, 2)-dominating set
Data: A rooted tree T with statuses of each vertex of V (T)

Result: A minimum (1, 2)-dominating set of T
1 Set D = ∅;
2 for v ∈ S do
3 if sta(v) > 10 then
4 Set D = D ∪ {v};

The following two examples show results of the algorithm implemented in language
R using package igraph. See Figs. 1 and 2.

In what follows we prove that the algorithm finds the minimum (1, 2)-dominating
set of a tree T . Denote by Si , where 1 ≤ i ≤ |S|, the subsequence of the first i elements
of S and denote by Tv the subgraph of T induced by v and all of its descendants.

Theorem 7 Let Tv be a tree in the forest T [Si]. Then
1. the vertices of status greater than 10 in V (Tv) ∪ { f (v)} (1, 2)-dominate vertices

that are at distance 2 and more from the root v;
2. the number of vertices with status greater than 10 is not greater than γ1,2(Tv).

Proof We proceed by induction on the height of a tree Tv . Assume first that the height
of a tree Tv in the forest T [Si] is equal to 2. If there is a support vertex adjacent to at
least two leaves, then both this support vertex and the root vertex have statuses greater
than 10. If it is not the case, then either a leaf x or the support vertex adjacent to x
and the root v have statuses greater than 10. In both cases the number of vertices with
status greater than 10 is not greater than γ1,2(Tv).

Assume now that the height h(Tv) of a tree Tv in the forest T [Si] is greater than 2
and the result is true for each tree T ′ with h(T ′) < h(Tv) and assume that vertex v is
processed by the Algorithm part I.

If code(v) ∈ {2X11, 1X11}, then each child of v with status 10 gets status 21.
Therefore each leaf adjacent to a vertex of status 10 has a neighbour with status
greater than 10. The code(v) is updated and v is further proceeded.

If code(v) ∈ {2101, 1101}, then v is a support vertex and has a child of status
greater than 10. Thus, v gets status 22. If code(v) is 2001, both v and its father get
statuses greater than 10. In both cases after processing vertex v by the algorithm, all
vertices of Tv are (1, 2) dominated by vertices with status greater than 10 (together
with the father of v). Since v is a support vertex, and by the induction hypothesis, we
conclude that the number of vertices of status greater than 10 in Tv is not greater than
γ1,2(Tv).

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Algorithmica

Fig. 1 A tree. Dark vertices form a minimum (1, 2)-dominating set

If code(v) = 2001, then v is a strong support vertex and every other child of v

(if exists) has status smaller than 10. For this reason both v and its father get statuses
greater than 10. After processing vertex v by the algorithm,we obtain that the inductive
step is true in this case.

If code(v) = 1001 and sta(v) < 10, then v is a neighbour of exactly one leaf and
every other child (if exists) has status smaller than 10. Each such child is adjacent to
a vertex with status greater than 10, since otherwise v would have status greater that
10. In this case v gets status 10 and by the induction, the inductive step is true.

If code(v) = 0X1X and sta(v) > 10, then v got status 21 or 22 while processing
one of its children. Then each child of v with status 10 gets status 21 to (1, 2) dominate
the leaf adjacent to it. The code(v) is updated and the inductive step is true.

If code(v) = 0X1X and sta(v) < 10, then every leaf adjacent to a vertex of
status 10 gets status 21 and by the induction, the inductive step is true. The code(v)

is updated.
If code(v) = 000X and sta(v) < 10, then the father of v gets status 21 and again

by the induction, the inductive step is true. ��
Theorem 8 The algorithm for trees is valid and returns a minimum (1, 2) dominating
set of a tree in time O(�n).

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Algorithmica

Fig. 2 A tree. Dark vertices form a minimum (1, 2)-dominating set

Proof At first we prove that after processing part II of the Algorithm, the vertices of
status greater than 10 in T form a (1, 2)-dominating set of V (T) and the number of
vertices with status greater than 10 is not greater than γ1,2(T).

By Theorem 7, all vertices at distance at least 3 from the root v0 are (1, 2) dominated
by vertices of status greater than 10. Not all codes for v0 are possible, however in all
cases v0 gets status greater than 10, except for the case when the child of v0 has status
22. Therefore, after processing v0 all of status greater than 10 in T form a (1, 2)-
dominating set of V (T) and the number of vertices with status greater than 10 is not
greater than γ1,2(T).

Part III of the Algorithm creates a set D, which consists of vertices having status
at least 20.

To determine the status of a vertex v, the algorithm analyses its children and grand-
children. However, a grandchild is processed only if it is a leaf adjacent to a weak
support vertex. Hence, the number of such grandchildren is smaller than δ(v) and
therefore the algorithm works in time O(�n). ��

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Algorithmica

Funding No funding was received to assist with the preparation of this manuscript.

Declarations

Conflict of interest The author declares that she has no conflicts of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco (1979)

2. Hedetniemi, S.M., Hedetniemi, S.T., Kinsley, J., Rall, D.F.: Secondary domination in graphs. AKCE J.
Graph. Combin. 5, 103–115 (2008)

3. Factor, K.A.S., Langley, L.J.: An introduction to (1, 2)-domination graphs. Congr. Numer. 199, 33–38
(2009)

4. Information System on Graph Classes and their Inclusions. https://www.graphclasses.org/classes/
problem_Domination.html

5. Kayathri, K., Vallirani, S.: (1, 2)-Domination in Graphs. In: Arumugam S., Bagga J., Beineke L., Panda
B. (eds) Theoretical Computer Science and Discrete Mathematics. ICTCSDM 2016. Lecture Notes in
Computer Science, vol 10398. Springer, Cham. https://doi.org/10.1007/978-3-319-64419-6_17 (2017)

6. Michalski, A., Włoch, I.: On the existence and the number of independent (1,2)-dominating sets in
the G-join of graphs. Appl. Math. Comput. 377, 125155 (2020). https://doi.org/10.1016/j.amc.2020.
125155

7. Michalski, A., Włoch, I., Dettlaff, M., Lemańska, M.: On proper (1,2)-dominating sets in graphs. Math.
Methods Appl. Sci. 45, 7050–7057 (2022). https://doi.org/10.1002/mma.8223

8. Rall, D.F.: Personal communication, December 2000

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://creativecommons.org/licenses/by/4.0/
https://www.graphclasses.org/classes/problem_Domination.html
https://www.graphclasses.org/classes/problem_Domination.html
https://doi.org/10.1007/978-3-319-64419-6_17
https://doi.org/10.1016/j.amc.2020.125155
https://doi.org/10.1016/j.amc.2020.125155
https://doi.org/10.1002/mma.8223
http://mostwiedzy.pl

	Complexity Issues on of Secondary Domination Number
	Abstract
	1 Introduction
	2 Complexity of (1,2)-Domination Number
	3 Domination and (1,2)-Domination Numbers in Bipartite Graphs
	3.1 Complexity of Equality
	3.2 Complexity in Graph Classes

	4 Optimal Algorithm for Trees
	References

