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Abstract 

Background  Behavior consists of the interaction between an organism and its environment, and is controlled 
by the brain. Brain activity varies at sub-second time scales, but behavioral measures are usually coarse (often consist-
ing of only binary trial outcomes).

Results  To overcome this mismatch, we developed the Rat Interactive Foraging Facility (RIFF): a programmable inter-
active arena for freely moving rats with multiple feeding areas, multiple sound sources, high-resolution behavioral 
tracking, and simultaneous electrophysiological recordings. The paper provides detailed information about the con-
struction of the RIFF and the software used to control it. To illustrate the flexibility of the RIFF, we describe two 
complex tasks implemented in the RIFF, a foraging task and a sound localization task. Rats quickly learned to obtain 
rewards in both tasks. Neurons in the auditory cortex as well as neurons in the auditory field in the posterior insula 
had sound-driven activity during behavior. Remarkably, neurons in both structures also showed sensitivity to non-
auditory parameters such as location in the arena and head-to-body angle.

Conclusions  The RIFF provides insights into the cognitive capabilities and learning mechanisms of rats and opens 
the way to a better understanding of how brains control behavior. The ability to do so depends crucially on the com-
bination of wireless electrophysiology and detailed behavioral documentation available in the RIFF.

Keywords  Complex behavior, Automated environment, Brain, Insular cortex, Auditory cortex, Electrophysiology, 
Freely moving rat

Background
Behavior involves brain-controlled, complex interac-
tions between an organism and its environment. Natu-
ral behavior has many components. Much of what we 
understand about brains and their functions was shaped 
by examinations of single components of the interaction 
between organisms and their environments, including 
sensation and perception [1]; motor control [2]; decision 
making [3]; and memory [4]. However, these successes 
have been achieved at a price—animals are often studied 
using behavioral tasks that are much simpler than those 
they face in their natural habitats.

The main observable output of behavior is move-
ment—animals select and time their actions. Patterns of 
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movements may be rich: predictive movements may pre-
cede trial events when there is a temporal structure to 
the task; movements may differ between individuals; and 
movements may be used for solving cognitive tasks. For 
example, rats exert active control on selected motor vari-
ables in order to enable consistent perception of location 
when using their whiskers [5].

Evidently, even in simple tasks, animals perform much 
more than a single action at each trial. In complex, natu-
ralistic settings, the amount of movement (and number 
of decisions) performed by animals is substantial. Brain 
activity is expected to reflect and shape the full complex-
ity of the concomitant behavioral strategies [6]. During 
a trial, neural activity throughout the brain runs its fast 
course, before, during, and after relevant decision points. 
For example, movements that vary from trial to trial 
account for much of the inter-trial variability in wide-
field calcium imaging of mouse cortex [6].

We designed and constructed the Rat Interactive For-
aging Facility (RIFF) to allow high-resolution behavioral 
data acquisition in time and space combined with teth-
erless electrophysiology in freely moving animals. The 
RIFF is controlled by a real-time loop that tracks the rat, 
identifies its actions, and reacts to them. Because of the 
generic nature of this loop, it is flexible and can imple-
ment a rich set of behavioral scenarios.

We describe here the design principles of the RIFF and 
provide detailed information about its implementation. 
The control program and all essential post-processing 
programs are described and made available in the associ-
ated repository, together with exemplary data. We illus-
trate the use of the RIFF with two very different tasks. 
Rats learned these behavioral tasks efficiently, sometimes 
within a few hours. Different rats developed individual 
patterns of behavior, which can be detected early in the 

learning process and tracked over months. We show that 
neural activity recorded in primary and higher-order 
auditory fields tracks relevant behavioral parameters 
such as animal location and pose in addition to respond-
ing to auditory stimuli.

Results
Overview of the RIFF
The Rat Interactive Foraging Facility (RIFF) is designed to 
jointly study behavior and brain activity of freely moving 
animals interacting with a rich environment that is nev-
ertheless amenable to good experimental control.

The implementation of the RIFF requires integration 
of a large number of interacting systems and processes 
(Fig. 1), which we kept as separate and modular as pos-
sible in order to allow for modifications and extensions as 
experience is gained and new technology becomes avail-
able. While the logic used to operate the RIFF can be very 
flexible, we intended it to operate mostly as a Markov 
Decision Process (MDP) [7]. MDPs are “state machines.” 
They are defined by a set of states (defined, for example, 
by the location of the animal, the current stimulus that is 
presented, and the correct ports to poke in order to get a 
reward), a set of actions that an animal can take in each 
state, and a set of actions that can be taken by the envi-
ronment (typically providing rewards and punishments 
to the animal). The MDP is governed by two (potentially 
stochastic) rules. The first is the rule by which one state 
follows another. In an MDP, transitions depend only on 
the current state of the process and on the current action 
of the animal. The second rule prescribes whether and 
which actions the environment takes, depending only on 
animal action and the consequent state transition.

The behavioral environment is a large 18-sided polygon 
(Fig. 2a) with six interaction areas (IAs), each consisting 

Fig. 1  Workflow for the design, preparation, execution, and initial analysis of behavioral experiments as they pertain to the RIFF. The design 
of an auditory-guided task includes the development of task logic, the nature of rewards and punishments, as well as the selection of the auditory 
stimuli. The flexibility of the RIFF allows for substantial freedom in these choices. Rat preparation includes habituation to the RIFF and electrode 
implantation. While running the experiment, the RIFF is designed to keep a tight synchronization of all real-time events, and to ensure efficient 
data storage. The stored data allows for offline analysis that includes spike sorting and animal pose estimation, which are then precisely aligned 
with the rest of the information from the experiment
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of two loudspeakers, a water port, a food port, and air-
puff valves (Fig. 2b). The main sensor for animal location 
is a ceiling-mounted camera with a dedicated computer 
that performs real-time image processing. The camera 
tracks the location of the rat with a temporal resolu-
tion of 30 ms, and the location information is transmit-
ted to the main computer. Additional sensors include 
the nose-poke detectors at each feeding port that report 
their state in real time; the status of the food and water 
ports; and analog sensors carried by the animals such as 
a microphone, accelerometers, and gyroscopes [8]. The 
RIFF interacts with the freely moving animal through the 
actuators (Fig.  2b). In the present implementation, the 
response repertoire of the RIFF includes food or water 
delivery, airpuff delivery, and sound presentation by any 
combination of the 12 speakers. Neural responses are 
recorded using chronically implanted moveable silicon 
probes (Fig.  2c). More details about the design of the 
RIFF can be found in Additional files 1 (an overview of 
the RIFF and its control systems) and 2 (dimensions of 
the most important components of the arena).

The logic of the RIFF is implemented in a Matlab pro-
gram that runs on the main control computer (Fig.  3a; 
green in Additional file 1), collecting the data from sens-
ing hardware (Fig. 3b), and driving the actuators using a 
predefined logic (an example is described in Fig. 3c; see 
also “Methods” and Additional file  3). Five major data 

types are recorded during the experiment and stored 
for offline analysis (Fig.  3b): time stamps of behavioral 
events; time stamps of internal state transitions; neural 
activity; analog sensor data; and video images.

We implemented a post-processing data extraction and 
analysis pipeline that is almost completely automated. A 
convolutional neural network estimates the locations of 
the nose, neck, and the base of the tail of the rat from the 
video stream, inferring head and body directions (Fig. 3d 
(1), Additional files 4, 5 and 6). The neural recordings 
are denoised, and spike detection and sorting is per-
formed by a custom wrapper to Kilosort2 [9, 10] (Fig. 3d 
(2), Additional file 7). After extracting information from 
each data stream, all data are synchronized to a single 
time axis (Fig.  3e). The output is a single file that com-
bines all data types and additional extracted features. The 
post-processing steps are much faster than actual experi-
ment time. An interactive graphical interface (Fig.  3f, 
Additional file  8) is used to verify the experiment logic 
and data integrity, and to examine the fine details of the 
behavior and the data.

Further details on the design and performance of the 
RIFF are provided in the “Methods” section and in the 
software repository and its wiki section at [11]. The soft-
ware repository contains the main control loop for the 
two tasks described below, and the wiki has a guided 
example showing how to modify it for implementing 

Fig. 2  a An experimental arena for studying the neural basis of auditory-guided complex behavior. The RIFF is a large arena (160 cm in diameter), 
equipped with 12 loudspeakers, 6 food dispensers and 6 fluid dispensers, 12 airpuff outlets, and a ceiling mount camera. The wall panels can be 
removed, the ports can be closed by blinds, and the spatial arrangement of the environment can be adjusted for different experiments. b Close-up 
on one interaction area. An adult female rat with a chronic implant and a neural logger is shown for scale. Each interaction area consists of two 
ports, one for food rewards and the other for fluids. Each port has a nose-poke detector and airpuff outlet. Two speakers are mounted above each 
port. c An approach for chronic wireless recordings in rats. The neural logger and battery are in the protective plastic case. A multi-contact silicon 
probe is mounted on the microdrive. The device is inclined to the back to allow rats to move naturally with an undisturbed access to the ports 
of the interaction area. The picture shows a rat with a 32-channel moveable silicon probe implant and wireless data logger. The battery used here 
allows for 3 h of recordings
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different tasks. The repository also includes the full post-
processing pipeline and the visualizer together with two 
data sets that can be downloaded, processed through the 
offline processing pipeline, and displayed on the visualizer.

An important feature of the RIFF is the tight synchro-
nization between behavior and electrophysiology. There 
are two facets to this synchronization. First, every device 
(video camera, port sensors and actuators, and the sound 

Fig. 3  Operation of the RIFF. a Rats interact with the RIFF through movement and nose pokes. Their location is identified online using the video 
camera and a dedicated computer. The experimental environment reacts to rat actions by changing its state and providing different types 
of feedback—sounds, rewards, or punishments. b The RIFF collects multiple data types: behavioral events (e.g., nose pokes, rewards, punishments); 
task states; neuronal activity; analog sensor signals (microphone, motion sensors); and the animal location tracked by the ceiling mount camera. 
c An illustration of a sequence of interactions between a rat and the RIFF during the LD task. (1) The rat moved to the center of the arena 
in order to initialize the trial. (2) Once it crossed into the central area (a circle with a radius of 30 cm), the RIFF started sound presentation 
from both loudspeakers in a randomly selected interaction area. (3) Initially, in the example presented here, the rat approached a wrong port; 
a second sound presentation caused it to move towards the correct target port (4), and to receive the reward (5). d Data post-processing. Posture 
features are extracted using a custom-trained DNN. The Kilosort2 program used with a custom wrapper performs largely automatic spike detection 
and sorting. e All data types are synchronized on a single time axis and f can be visualized offline using a custom visualizer software. The visualizer 
can be used to browse through all synchronized data types up to the level of the raw neural signals
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card) is synchronized to the same time base by TTL 
pulses that are co-registered together with the electro-
physiological data (Additional file 1, blue arrows indicate 
these timing signals). Thus, the neural activity can be 
synchronized to any event at the precision at which the 
hardware systems register these events. In consequence, 
sound onsets are synchronized with the electrophysi-
ological activity to the sampling precision of the electro-
physiological data (30 or 40 kHz, depending on the data 
collection system). On the other hand, the synchroniza-
tion of the video frames is limited by the much slower 
frame rate of the camera.

Second, we aimed to achieve a short latency between 
behavioral events and the consequent response of the 
RIFF equipment. The most important delay for both tasks 
is the time from the moment a video frame is taken to 
the moment in which the main loop of the RIFF is noti-
fied about the position of the rat and can react to it. This 
latency was 39.5 ± 11.8 ms, with a unimodal, bounded 
distribution (mean ± std, min=11.3 ms, max=61.5 ms, 
n=186). A complete description of the latencies in the 
RIFF is provided in the “Methods” section.

Rats rapidly learned a complex task
To illustrate the flexibility of the RIFF, we implemented 
two different behavioral tasks: a multiple-strategy (St+) 
task and a localization/discrimination (L/D) task. Both 
tasks and their rationale are described in detail in the 
“Methods” section. For details and illustrative movies, 
see Additional files 3, 9 and 10.

The full St+ task has a number of components, of 
which we illustrate here only the central one—the set of 
predefined rules and contingencies that enable rats to 
adopt their own preferred policy for reward optimization 
in a complex appetitive situation. This was done in prepa-
ration for recordings in the insular auditory field, where 
hunger and satiety are expected to have an effect on the 
auditory responses. Furthermore, the full task included 
passive sessions that made it possible to compare neural 
activity before, during, and after the active session.

The L/D task is a standard auditory task. Here we 
describe the main condition, in which rats had to 

identify the location of the reward interaction area (IA) 
using both sound localization and sound identity cues. 
Sound localization cues were supplied by playing the 
sound from the loudspeakers of the reward IA; identity 
cues were supplied by using different sounds for each 
IA. Like the St+, the full task included additional con-
ditions, in which rats had to identify the rewarded IA 
using only location cues (using the same sound at all 
IAs) or using only sound identity cue (by playing the 
sound for the specific IA from all 12 loudspeakers).

Here we use the two tasks only as an illustration for 
the flexibility of the RIFF. Both tasks were run daily in 
the same setup with different subjects.

We illustrate rapid learning in the RIFF using the St+ 
task. Each behavioral episode of the St+ task started 
with an attention sound, followed by a period of 2.5 s 
during which the rat could control the selection of the 
IA for the next reward by moving to appropriate posi-
tions in the arena. Next, this reward location was com-
municated to the rat by a target sound emitted by the 
loudspeakers of the selected IA. The rat had to poke in 
one of the two ports of the target IA within 20 s of the 
presentation of the target sound. A poke or a timeout 
resulted in a feedback sound followed by an inter-trial 
interval (3 s) until the next attention event. Rats rapidly 
increased the amount of reward they received while 
performing the task despite its non-trivial structure 
(see Additional file  9). We analyze here in detail the 
first 2 days of task exposure.

Each rat trained in the RIFF for 70 min per day. Dur-
ing the first 2 days of training, rats quickly learned to 
move from one IA to the next. Figure 4a shows 1-min 
segments of a rat’s trajectory on day 1 and day 2. Erratic 
loops and hesitations were present on day 1 but disap-
peared on day 2. Figure 4b shows the angular position 
and angular speed from the same trajectories, along 
with a schematic illustration of the trial structure. 
Clearly, the stereotypic running pattern of day 2 was 
still absent at the beginning of day 1.

To analyze changes in behavior within and across ses-
sions, we subdivided each session into two halves, denot-
ing the four resulting observation periods by 1:1, 1:2, 2:1, 

(See figure on next page.)
Fig. 4  Rapid learning in the RIFF. a One-minute trajectory segments from 70-min training sessions on days 1 and 2 of learning. b Angular position 
and speed for the same trajectories. Trials (from attention to feedback) are marked in gray. Nose pokes, rewards, and missed targets are indicated 
by triangles. By day 2, rats have developed a stereotypic running pattern. c Success rate improved over time. Observation periods 1:1/1:2 denote 
the first/second half of the session on day 1; 2:1/2:2 denote session halves on day 2. Bars indicate average success rates from five rats; gray symbols 
mark individual rats. d Rats learned the temporal structure of the task. Shown are arrival times relative to the attention sound (black line; target 
sound, green line), calculated from all trials of five rats. e Different rats learned different strategies. Each trial was classified as either sitting, clockwise 
running, or counterclockwise running. Rat 4 preferred counterclockwise running, while Rat 5 avoided counterclockwise running. f Learning to move 
was the most important contribution to performance improvement. Each trial was classified as either “correct port,” “port of last reward,” “other port,” 
or “not at port.” Average proportions of each location across five rats are displayed as thick lines, individual rats are displayed as symbols and thin 
lines. The proportion of “correct” locations increased from one observation period to the next, and the proportion of “port of last reward” locations 
decreased over time
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Fig. 4  (See legend on previous page.)
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and 2:2. The percentage of rewarded trials—a simple 
measure of learning—increased from 32% in observation 
period 1:1 to 66% in observation period 2:2 (Fig. 4c). We 
modeled the percentage of rewarded trials as a function 
of the observation period using a linear mixed effects 
(LME) model with random intercepts for rats. The 
model had a significant main effect of observation period 
with a slope corresponding to an average improvement 
of 13% ± 2% (mean ± STE) additional rewarded trials 
from one observation period to the next (t(18) = 5.95; 
p = 1.2×10−5). As rats learned to position themselves to 
collect rewards, they adapted to the timing of the task: 
rats arrived in the IA of an upcoming reward 1 s earlier 
on day 2 compared to day 1 (Fig. 4d; median arrival time 
for successful trials on day 1, 0.4 s (interquartile range 
(IQR) 3.7 s) after attention sound; on day 2, 0.6 s (IQR 
2.4 s) before attention sound). This suggests that rats 
learned to correctly predict the upcoming reward time. 
We modeled the logarithm of arrival times as an LME 
with the observation period as a fixed factor and with 
random intercepts for rats (times were shifted to start 
5.5 s before the attention sound to turn all arrival times 
into positive numbers; the logarithmic transformation 
was selected in order to reduce the skewness of the dis-
tribution of arrival times). There was a significant effect 
of observation period (estimate −0.069 ± 0.008; t(1829) 
= −8.86; p = 1.8×10−18), so that the arrival time shifted 
to earlier times by a factor of exp(−0.069 ± 0.008) = 0.93 
± 0.007 from one observation period to the next. A com-
parison of the distributions of arrival times on day 1 and 
day 2, in each rat is shown in Additional file 11. Arrival 
before the attention sound was more likely on day 2 than 
on day 1 (red bars preceding black line in Additional 
file 11), and arrival after the target sound was less likely 
on day 2 than on day 1 (blue bars following green line 
in Additional file 11), showing that rats learned to time 
their actions according to the task structure and to pre-
dict the timing of the upcoming attention sound. Arrival 
time distributions significantly differed in each rat (two-
sample Kolmogorov-Smirnov test; p < 0.01 in each rat; 
p = 4.62 × 10−15 for all rats), and arrival times on day 2 
were significantly earlier in four out of the five rats (two-
sample t-test; p < 0.006 in rats 4, 6, 7, 8; p = 0.13 in rat 5; 
p = 1.13 × 10−26 for all rats).

The velocity trajectories in Fig.  4a suggest that the 
movement patterns of the rats quickly became stereotypi-
cal. We calculated the maximal angular speed in both the 
clockwise and counterclockwise directions during each 
trial (analysis time window, 0.5 to 9 s after the feedback 
sound of the previous trial). All rats used three clearly 
distinct behavioral motives: “not moving,” “clockwise 
running,” and “counterclockwise running” (Additional 
file 12 for cluster analysis). Each experimental session can 

thus be described as a sequence of these three motives, 
timed by the rat to harvest rewards from the RIFF.

We analyzed how the distribution of the three motives 
evolved during the four observation periods. There was 
a large decrease in the number of trials in which the rat 
did not move. We modeled the proportion of “not mov-
ing” trials as a linear function of the observation period 
using an LME with random intercepts for rats. Observa-
tion period had a significant main effect (estimate, −0.14 
± 0.02; t(18) = −5.89; p = 1.4×10−5). Thus, on average, the 
proportion of “not moving” trials decreased by 14% ± 2% 
from one observation period to the next: rats learned to 
move more often as training progressed.

Importantly, rats showed a clear, individual prefer-
ence for running in one direction or the other. Thus, we 
found that the proportion of “clockwise running” out of 
all running trials depended on the rat (two rats shown 
in Fig 4e; χ2-test for independence; χ2 (24) > 701 for the 
five rats together; p < 10−20). In both rats, the fraction 
of “not moving” trials (shown in gray in Fig.  4e) gener-
ally decreased over time. Rat 4 preferentially ran counter-
clockwise (blue), while rat 5 preferentially ran clockwise 
(red). The distribution of “clockwise”/“counterclockwise” 
significantly depended on rat identity (these two rats: 
χ2(21) > 77.6, p < 10−20 in each observation period).

Lastly, to better understand the nature of failed trials, 
we classified the rat location at the time of the feedback 
sound into four types: “correct port” (rewarded trials), 
“port of last reward,” “another port,” and “not at any port.” 
As training progressed, rats reached the correct port 
more often (green line in Fig.  4f ). The most common 
error type consisted of remaining in a reward location 
after a reward, thereby missing the next reward oppor-
tunity which was always at a different port (orange line in 
Fig.  4f ). This type of error decreased substantially from 
day 1 to day 2. Statistical analysis confirmed that the dis-
tribution of rat location types depended on the observa-
tion period (χ2 (245) = 617, p < 10−20 for all rats; χ2 (29) 
> 38.4, p < 1.5×10−5 in each individual rat). To quantify 
the interaction between the location types and observa-
tion periods, we modeled the probability of the location 
types as an LME model in which the probability for each 
location type was a linear function of the observation 
period with a slope that depended on the location type, 
with random intercepts for each location type in each 
rat. This model revealed a significant interaction between 
observation period and location type (F(3,72) = 44.1; p = 
2.8×10−16), confirming that over time, the rats changed 
their preferred location types. Indeed, the slope of the 
“correct port” location type was 0.13 ± 0.02 (t(72) = 8.36; 
p = 3.2×10−12), confirming the increase in correct trials 
over time. In contrast, the slope for “port of last reward” 
location type was −0.12 ± 0.02, showing a decrease in this 
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type of error. The difference between these two slopes 
was highly significant (t(72) = −11.5; p = 6.1×10−18).

Neural correlates of behaviors
Rats in the St+ task were implanted with electrodes tar-
geting the auditory field in the posterior insular cortex 
(Ins), which in rats is anatomically separate from other 
auditory cortical fields [12, 13]. Rats in the L/D task were 
implanted with electrodes which traversed the primary 
auditory field (AC) at least in part of their trajectory.

In addition to the behavioral data, the RIFF pipeline 
produced traces of firing rates of the sorted units. Behav-
ior and firing rates are synchronized with a precision of 
a few milliseconds. Figure 5 shows an example. These are 
the synchronized traces of the firing rate of one unit in 
Ins, together with the angle between head and body and 
the angular location of the rat in the RIFF. Stimulus pres-
entation onsets and reward times are presented as well. In 
this trace, the highly phasic firing pattern of the unit seem 
to be sensitive to the angle between the head and the body 
of the animal: when the animal looked to the right (nega-
tive angles), there were often bursts of firing (red arrows 
in Fig.  5). The unit does not seem to be responding to 
angular location, to sounds, or to rewards (see Fig. 6k for 
a summary and a statistical analysis of the dependence of 
the responses of this unit on head-to-body angle).

Units in both the AC and Ins showed responses to 
sounds. Figure  6a and b show responses of units in AC 
of two rats. The stimuli were word-like stimuli (200 ms 
word excerpts, with their spectral envelopes shifted and 
stretched to fit a 1–40 kHz range; see “Methods”). These 
stimuli were some of the target sounds in the L/D task 
(mean response of N = 96 and N = 143 sound presentations 
in Fig. 6a and b respectively; here and elsewhere in this par-
agraph a paired t-test was performed between spike counts 
in the response window and in a window of the same dura-
tion just preceding stimulus onset, t(190)=3.26, p = 0.0013 
and t(284)=2.63, p = 0.0090 respectively). Both units had 
short-latency (<20 ms) onset responses. Figure  6c and d 
show responses of units in Ins. The stimulus in Fig. 6c was 
the attention sound (a train of short broadband periodic 
sound bursts with a pitch of 2 kHz). The unit responded to 
the onset of the first sound burst in the train (mean of N = 
233 sound presentations, t(464) = 4.48, p = 9.6×10−6). Fig-
ure 6d shows a unit with a response that was loosely locked 
to a word-like stimulus (mean of N = 29 sound presenta-
tions, t(56) = 3.27, p = 0.0018).

Remarkably, in both areas, we found units whose activ-
ity was strongly modulated by non-auditory aspects of 
the task and the state of the rats. Two of these classes of 
responses are illustrated here.

In Ins, we found units that increased their firing rates selec-
tively at specific locations in the arena (Fig. 6e–h). Since the 
rats spent most of their time close to the walls of the RIFF 
in the St+ task, the data are summarized as polar plots. For 
example, the unit shown in Fig.  6e responded essentially 
only when the rat was at one specific sector (polar pie chart; 
1-way ANOVA, F(11,35050) = 908, p = 0). This sector was 
not preferred by the rat: it spent much more time in the 
two flanking sectors (line plot in Fig. 6e). Units in Fig. 6f–h 
also responded significantly stronger for one of the sectors 
(1-way ANOVA for each unit separately: F(11,305050) = 463,  
p = 0; F(11,41663) = 5.89, p = 1.21×10−9; F(11,34830) = 91.1,  
p = 9.10×10−205, respectively). To study the spatial resolution of 
the firing rates at a higher resolution, Additional file 13 shows 
the same data at a resolution of 1°. The firing rate of the loca-
tion-sensitive units sometimes changed twofold or more within 
5° of the arena (see Additional file 13), corresponding to an arc 
length of about 7 cm near the wall of the arena. With a running 
speed of up to 80 cm/s, the rats were able to go through such a 
section within less than 100 ms. Thus, our ability to document 
these apparent spatially sensitive units depended crucially on 

Fig. 5  Example of concurrent electrophysiology and behavioral 
measurements. The neuronal activity of a unit in Ins is shown 
at the bottom (black), together with a plot of the angle 
between head and body (blue, middle) and radial location 
in the arena (magenta, top). The trace shows the activity over 2 
min of recording, starting at 15 min after session beginning. This 
is the same unit whose responses are analyzed in Fig. 6k. Red 
arrows at the bottom indicate head turns to the right, which are 
accompanied by an increase in firing rate. Gray lines indicate 
sound presentation onsets and yellow lines are reward times. Note 
that the activity of the unit does not seem to be related to radial 
location, sound times, and rewards
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high temporal resolution and tight synchronization between 
the video stream and the electrophysiological data.

To control for potential confounds, we also tested the 
significance of the relationships between firing rates and 
location using a permutation test (see “Methods”). The 
four units displayed here passed this test with p<0.01. 
We then checked that the firing rate of these units was 
not determined by the time spent in each sector and 
that their location sensitivity was largely independent of 
their sensitivity to sound, velocity, and head-body angle. 
Indeed, responses in the presence and absence of audi-
tory stimulation showed no significant difference (paired 
t-test, n.s. for each unit separately, see Additional file 14). 
To check the independence of location sensitivity from 
velocity (or head-body angle), we computed the matrix 
of mean firing rates as a joint function of spatial position 
and velocity (or head-body angle). We then computed a 
rank 1 approximation of this matrix using nonnegative 
matrix factorization (see Additional file 15). A good rank 

1 approximation to the observed firing rates implies that 
the two parameters cause largely independent changes 
in the firing rate of the unit. We then verified that this 
rank 1 approximation explained an appreciable amount 
of the structure of the data (see “Methods” for details). 
In general, the rank 1 approximation to the observed fir-
ing rate accounted for a similar amount of variability as 
expected from surrogate data, verifying that for the units 
presented here, location sensitivity was indeed independ-
ent of velocity and of head-body angle.

The second type of units illustrated here (Fig.  6i–l) 
showed sensitivity to the angle between the head and 
the body of the rat, extracted from the video stream by 
the data analysis pipeline (see “Methods”). Such units 
were found both in AC and in Ins. We tested the signifi-
cance of the dependence of the firing rates on the head-
to-body angle units. The units in Fig. 6i and j responded 
strongly when the rat was looking to the sides com-
pared to the front (1-way ANOVA, F(11,54860)=221, 

Fig. 6  Neural responses during behavior. (a-d) Sound driven responses. Mean over one session of the sound driven responses (top) 
and the oscillograms of the corresponding auditory stimuli (bottom). Red line indicates sound onset. The dots in (a) show the spike times in the 
individual trials as a raster display. (e-h) Location sensitive units. Each panel shows the mean firing rate of a unit while the animal was in one of 12 
sectors of the arena (dark gray), and the time spent in each sector (light gray). (i-l) Units sensitive to angle between head and body of the animal. 
The normalized mean firing rate is plotted when the rat exhibited different angles between head and body (dark gray). The last bin on each side 
includes the data equal and more extreme than the indicated angles. Unit identifiers are marked above each panel
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p=0, and F(11,35050)=63.3, p=8.27×10−141 respec-
tively). The units in Fig.  6k and l responded strongly 
only when the rat was looking towards one side (1-way 
ANOVA, F(11,26372) = 33.3, p = 3.23×10−71, and 
F(11,34830) = 31.7, p = 7.99×10−68 respectively). To 
control for confounds, we checked that their sensi-
tivity to the relative head direction was not a conse-
quence of their sound responses (paired t-test between 
angle-dependent mean firing rate in the presence and 
absence of sound, n.s. for each unit separately, Addi-
tional file  16). The head-body angle sensitivity was 
independent of location in the RIFF, and of the absolute 
angles of the rat body and head in space (see Additional 
file 17 for full results). The unit presented in Fig. 6h is 
the same as that presented in Fig. 6l. It showed sensitiv-
ity to both rat location and head-body angle, but those 
sensitivities were independent of each other.

Discussion
Jointly studying brains and behavior requires compro-
mises. Virtual reality setups have been developed to flex-
ibly study neural activity during behavior [14–23]. Such 
systems allow for the stable acquisition of high-quality 
data in head-fixed animals [20] and can integrate imag-
ing techniques that are harder to apply in freely moving 
animals [24]. Still, virtual reality is an approximation, 
may provoke unnatural movement patterns [25, 26], and 
evoke neural responses that differ from those observed in 
real environments [18, 27].

Many high-throughput systems for studying freely 
moving animals have been developed to explore learn-
ing and plasticity [28], navigation [19, 29–32], explora-
tion [33], social interactions [33–42], and other behaviors 
[34, 35, 43]. Some can even track multiple individuals 
simultaneously.

Only a few behavioral environments include wireless 
recording of neural activity from freely moving animals 
[44–47]. The novelty of the RIFF in this emerging field 
lies in its integrated approach allowing a rich repertoire 
of behavioral tasks combined with wireless electrophysi-
ology. The arena is relatively simple due to its circular 
symmetric shape, while still allowing a large range of 
sophisticated experiments that provide extensive behav-
ioral freedom for the animals. The relative simplicity of 
the environment makes the interpretation and mod-
eling of animal behavior simpler than the interpretation 
of behavior in ethological environments, providing an 
intermediate level of experimental complexity between 
restricted and fully unconstrained behaviors.

The RIFF is a fully automatic, high-throughput, 
high-resolution environment for collecting detailed 
online behavioral information together with tightly 

synchronized neuronal recordings. The RIFF is designed 
to support decision-making tasks that involve a large set 
of possible actions and that take advantage of the rela-
tively large arena and its ability to run long-lasting auto-
matic tasks, reducing manual interventions.

The design of the RIFF was kept as modular as possible 
so that different choices for hardware and software can 
be easily accommodated. We concentrate here on the 
design principles and the logic implemented by the RIFF, 
including the integration of behavior and electrophysi-
ology into a complete environment for studying brain 
processes in freely moving animals, while providing sub-
stantial amount of information on the current implemen-
tation in the “Methods” and supplemental information. 
As an example, BPods (Sanworks, Rochester NY, USA) 
implement state machines that interface with external 
hardware. They can replace the Campden-Lafayette con-
trol equipment and software that we used to control the 
ports, interfacing directly with a Matlab main program. 
Similarly, Bonsai (https://​bonsai-​rx.​org/) is a visual pro-
gramming language for controlling real-time setups. It 
could be used to replace some of the proprietary control 
software we used, and potentially replace Matlab in the 
main loop of the RIFF.

Tasks for which the RIFF is less suitable are for exam-
ple tasks that involve simple behaviors for which the RIFF 
is too complex. These include classical paradigms such 
as fear conditioning which is often performed in small 
enclosures [48, 49]. Similarly, behaviors that require sub-
stantial amount of manual interventions would be less 
appropriate for the RIFF. Such are for example novel 
object recognition tasks, which is often performed 
through short trials [50].

The current implementation has a limited range of 
peripheral equipment, limiting again some applications. 
For example, we evaluate here a neural-network-based 
pose-estimation algorithm optimized for our hardware. 
Substantial progress has been made recently in the track-
ing of animals and body poses in real time [51–53]. 
Published algorithms require additional training to the 
specific setup at hand so that it is unclear whether they 
have any advantage for the RIFF in its current implemen-
tation, using a single camera. However, while high-level 
behavior identification [54–56] can be achieved in the 
RIFF, it would require an upgraded version of the video 
processing component (using multiple and/or faster cam-
eras). In the same vein, the use of the RIFF is limited in 
studies of fine motor performance, and it is currently not 
designed for somatosensory, olfactory, or visual tasks.

However, the modular design of the RIFF allows 
additional elements to be easily added—for example, 
while it can provide simple visual cues, in addition 
to auditory cues, for guiding behavior already in its 
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current implementation, more complex visual tasks 
may require the addition of video screens in appropri-
ate locations. Other sensors can be added as well, such 
as motion capture setups [57, 58] and a more power-
ful video processing component. The RIFF can be also 
easily reconfigured by physically moving ports around, 
changing the number and position of interactive 
ports. For example, it can be modified to the geom-
etry required in five choice serial reaction time task, 
5CSRTT, [59–61].

Finally, the RIFF can be used with high-density elec-
trodes that have hundreds of contacts [62] coupled 
with commercially available wireless loggers (e.g., 
SpikeGadgets Neuropixels headstage).

We demonstrated here the tracking of behavior and 
electrophysiology in a precise manner in time and 
space. Animals learned successful behavioral strate-
gies very quickly. This is surprising, as learning com-
plex tasks sometimes takes weeks or months [63–65]. 
Potentially, the large environment and the multiple 
possible actions available at each moment encouraged 
more extensive exploration [66, 67], leading to faster 
learning.

To the best of our knowledge, we provide here for the 
first time evidence for neurons in Ins whose responses 
depended on the location of the animal in space. Ins 
receives direct projections from the primary division 
of the auditory thalamus, the ventral medial genicu-
late body [68], and has neurons with frequency-tuned, 
short-latency responses [13], but in rats it is spatially 
separate from the primary auditory cortex [12]. The 
location-sensitive neurons described here are there-
fore intermixed with neurons with response proper-
ties similar to neurons in the primary auditory cortex. 
The evidence provided here adds to other recent stud-
ies that described location-sensitive neurons in many 
structures outside the hippocampal system [69, 70], 
including visual [71], somatosensory [72], retrosplenial 
[73], and premotor [74] cortices.

Several frameworks for the design of behavioral tasks 
in neuroscience exist [75–77]. In contrast to these sys-
tems, the RIFF is a complete, well-defined behavioral 
arena, not just a control framework. Moreover, the 
RIFF can be customized to uniformly address ques-
tions in behavioral neuroscience in different animal 
models. Elements of the arena directly interfacing with 
experimental animals can be down-sized to fit smaller 
animal models (in practice, by replacing the interactive 
ports and downsizing the rewards). At the same time, 
the logic of the RIFF as illustrated in Fig. 3a need not 
be modified at all, keeping the high temporal resolu-
tion and multiple data streams intact. Such an arena 

would fit mice and gerbils, a common animal model in 
comparative auditory studies [78–80].

Conclusions
The RIFF was designed for maximal flexibility in the 
investigated behaviors while keeping a tight synchro-
nization between behavior and electrophysiology, 
integrating information from many sensors to react to 
animal actions at latencies that are limited only by the 
efficiency of the “tight loop” of the control program. 
A number of results presented here show the poten-
tial and power of this approach. Rats learned rather 
complex behavioral contingencies very fast (1–2 days 
of training), and we identified unexpected connec-
tions between behavior and neural activity. We present 
examples of neurons in primary and high-order audi-
tory areas that show sensitivity to non-auditory fea-
tures of the tasks. The highly detailed data collected 
from each animal allowed us to control these findings 
for a large number of confounds, such as simultane-
ously presented sounds, head and body directions, and 
animal velocity.

Methods
Behavioral setup
The arena, 160 cm in diameter, is composed of 18 mod-
ular sections (28 cm width, 50 cm height—aluminum 
skeleton and 5 mm thick black matte Perspex sheets; one 
section is illustrated in Fig. 2b and Supp. Additional file 2 
illustrates many of the details described in this section). 
The floor is made of two sheets, tightly connected by 
screws. The arena is mounted on a 5-cm high supporting 
structure, of the same size and shape of the floor sheets 
with depressions for the connection between the two 
sheets as well as for the insertion of gridded floors (for 
possible foot shock punishment). The arena is electrically 
grounded with a cable running around the outer perim-
eter near its bottom.

Each of the 18 sections contains three panels where 
additional equipment can be inserted. In the RIFF, the 
outer panels of every third section contain two nose-
poke ports (Fig 2; a total of 12 ports in 6 sections, 
SPECIAL.090-SE v1.0, LaFayette-Campden Instruments, 
Loughborough, UK). One of the two ports in each sec-
tion is connected to a liquid pump (Model 80204, LaFay-
ette-Campden Instruments) and the other to a pellet 
dispenser (Model 80209, LaFayette-Campden Instru-
ments). In addition, all 12 ports are connected to an air-
puff valve (Series 3 miniature inert liquid valve, Parker). 
At the top of each panel with a port, a free field speaker 
(MF1, Tucker Davis Technologies, Alachua, FL, USA) is 
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mounted in a custom-made holder with an adjustable 
angle. Such a section, with its two ports and two loud-
speakers, is termed an “Interaction area” (IA) in the 
paper.

Auditory stimulation
In both tasks described here (St+ task and L/D task, 
described below), a small set of sounds was used. These 
sounds were synthesized ahead of time and stored in 
computer files. Pure tone stimuli were synthesized in 
Matlab. Word-like stimuli were created using the fol-
lowing procedure. Words were selected from free 
online recordings (http://​shtoo​ka.​net). They were then 
processed using the STRAIGHT Vocoder [81] and 
Matlab. For sounds in the St+ task, the spectrotempo-
ral envelope was extracted by STRAIGHT and shifted 
above 1 kHz. For the sounds in the L/D task, the spec-
trotemporal envelope extracted by STRAIGHT [81] 
was shifted and stretched along the frequency scale, so 
that the envelope levels at frequencies 0.1 and 20 kHz 
of the original sound were shifted to frequencies 1 and 
40 kHz (with linear interpolation on a logarithmic scale 
in between). The resulting spectrotemporal envelope of 
each sound was used to resynthesize it using the origi-
nal pitch contour.

The acoustics of the arena were studied in detail [82]. 
In short, the arena produces two major reflections, one 
from the floor and the other from the wall behind the 
animal. The dominant reflection from the floor creates 
spectral modulation with a period of 5 kHz and depth 
of about 5 dB. Absolute sound levels at 0 dB attenua-
tion were about 100 dB SPL at 2 kHz, going down to 
about 85 dB SPL at 20 kHz. Sound levels were rather sta-
ble as a function of location in the arena (varying by <5 
dB between the center of the arena to the walls) and of 
loudspeaker (standard deviations across loudspeakers at 
the center <5 dB; at the wall <8 dB). No correction was 
applied for this variation.

The video imaging system
A custom video system tracked the trajectory of the ani-
mal in real time at 30 frames/s (Additional file  8). The 
localization jitter was less than 30 ms and a compact 
storage format resulted in data volume of 4.3 GB/h. The 
system robustly tracked rats of different sizes and was 
unaffected by the presence of a head implant.

Hardware
A monochrome camera (DMK 33G445 GigE, TheIm-
agingSource, Bremen, Germany) was mounted on the 
ceiling above the center of the arena. A wide-field lens 
(T3Z3510CS, Computar, North Carolina, US) covered the 

whole arena. A LED ring (50 cm in diameter, CN_R64, 
NanGuang, Chenghai, China) placed around the cam-
era provided a uniform diffuse illumination (Additional 
file 18a). The luminance of the ring was set to the minimal 
level that was sufficient for exposure time of 25 ms.

The camera was connected to a computer running the 
Windows operating system with a GigE cable that sup-
plied power and transmitted the grayscale 1280×960 
pixel images. The triggering pulses were sent from the 
camera by a Hirose cable to the digital input section of a 
multifunction device (RX8, Tucker-Davis Technologies). 
The RX8 subsampled the incoming trigger train from 30 
to a 1 Hz pulse train and output it to the main recording 
unit (AlphaLab SnR, AlphaOmega). These 1 Hz triggers 
also powered a LED that was placed outside the arena but 
inside the field of view of the camera (Additional file 18b). 
The LED state was used to synchronize the images with 
the rest of the recorded data during the experiment.

Real‑time image acquisition and rat localization
A custom graphical user interface (programmed in Matlab) 
was used to launch the tracking program and monitor its 
activity in real time (Additional file 18c; https://​github.​com/​
jnied​iek/​RIFF_​publi​cation/​tree/​main/​acqui​sition/​camera_​
track​er). A single background image of the empty arena was 
acquired during the initialization of the tracking program. 
The real-time tracking routine executed an acquisition-
localization tight loop: Every time a new image was acquired 
from the camera, the rat was located by subtracting an 
image of the empty arena from the current image of the 
arena with the rat inside. The difference image highlighted 
the area where the rat was located. The location of the rat 
was estimated by fitting an ellipse to the rat pixels and com-
puting its center of mass. The x and y coordinates of the 
estimated rat center of mass were sent to the computer that 
controlled the experiment over an Ethernet connection and 
were also stored as metadata.

To reduce data storage, the video stream was saved in 
a compact form. Each rat image was cropped around the 
rat center of mass, since only this area was expected to 
change from one frame to the next. The original image 
could be approximately reconstructed by placing the 
cropped rat image on top of the background image at 
the location indicated by the coordinates of the center 
of the rat, stored in the metadata file. In addition, one of 
the corners of the bounding box was replaced by a small 
rectangle that showed the LED (Additional file 18d). The 
images and the metadata were stored in a compact data-
base at the rate of 4.3 GB/h.

Integration and the main control program of the RIFF
The current implementation of the RIFF includes four com-
puters with separate roles, with the goal of providing a high 
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modularity to the system. The computers and their associ-
ated peripheral components are schematically illustrated in 
Additional file 1, each computer and its associated periph-
erals drawn in the same color. The four computers are the 
behavioral response computer (Additional file  1, item 8); 
the video processing computer (Additional file 1, item 14); 
the timing and electrophysiology computer (Additional 
file 1, item 17); and the master computer, running the main 
control program (Additional file 1, item 9).

The behavioral response computer, interfaces with the 
hardware (Additional file 1, items 2-7) that controls the 
ports through a combination of commercial software 
(ABET II, LaFayette-Campden Instruments, Loughbor-
ough, UK) and a custom-written Matlab program (The 
MathWorks, Inc., Natick, MA, USA) on the master com-
puter. A data file that includes all the events on all ports is 
produced and saved on this computer.

The video processing computer (Additional file 1, item 
14) was described above.

The timing and electrophysiology computer interfaces 
with the electrophysiological recording systems (both the 
wireless and the neurologger versions, Additional file  1 
items 15-18). In addition, the AlphaLab SnR (Additional 
file 1 item 15; Alpha Omega, Nazareth, Israel) that is used 
by the TBSI system for data collection has a set of digi-
tal inputs that are used to set a common time base for all 
equipment, as will be described below. We used the same 
digital inputs even when the electrophysiological data 
was collected on the neurologger.

The master computer controls the audio presentations. 
During the experiment, all sounds were loaded to mem-
ory. When a sound had to be presented, it was transduced 
to voltage signals by a sound card (M-16 and MADIface 
USB, RME Audio Interfaces, Munich, Germany), attenu-
ated (PA5, Tucker Davis Technologies, Alachua, FL, 
USA), and then played through stereo power amplifiers 
(SA1, TDT) (Additional file 1, items 19-21) connected to 
loudspeakers (TDT MF1, Additional file 1, item 1). Two 
dedicated outputs of the sound card were used for timing 
pulses at the precise time of sound onsets.

The master computer interfaced with the behavioral 
system through a digital I/O card and a connector block 
(NI PCI-DIO-96 and SCB-100, Additional file 1, item 10) 
that reads some of the information coming from the ports 
and outputs digital signals to other lines that cause the 
behavioral computer to provide reward. The master com-
puter is also controlling a muti I/O Processor (TDT RX8, 
Additional file 1, item 12) which is used to produce and 
shape timing signals for synchronizing the whole system.

The digital lines on the AlphaLab SnR are used to col-
lect some of the timing pulses that are generated by the 
rest of the system, producing a common time base on 
which all the events in the system can be synchronized. 

For synchronization with the behavioral control com-
puter, the Multi-I/O Processor produces a periodic tim-
ing pulse which is recorded on the behavioral response 
computer as well as on the AlphaLab SnR. For synchro-
nization with the video camera, the strobe signals from 
the camera that indicate frame captures were channeled 
to the Multi-I/O Processor, downsampled by a factor of 
30, and then channeled to the AlphaLab SnR and also to 
a LED captured by the camera. These LED signals were 
used to synchronize the video stream with the rest of the 
system. Finally, an audio channel carrying timing pulses 
was also channeled to the AlphaLab SnR, allowing the 
fine synchronization of sound onsets with the electro-
physiological data. These digital lines are sampled at 40 
kHz, and therefore all events can be synchronized to a 
precision better than 25 µs.

The heart of the RIFF is the main loop that imple-
ments the task logic by interacting with the surround-
ing hardware (video camera, ports, and the sound card). 
By modifying the contingencies controlled by this loop, 
a large variety of tasks can be implemented in the RIFF. 
The main loop for both tasks that are described below 
is provided (https://​github.​com/​jnied​iek/​RIFF_​publi​cat-
ion). Instructions on how to modify the main loop of the 
L/D task (described below in detail) in order to imple-
ment other contingencies is provided in the wiki section 
of the github repository (https://​github.​com/​jnied​iek/​
RIFF_​publi​cation/​wiki/​Your-​missi​on).

We tested the timing performance of the main loop. 
The running time of the main loop of the RIFF, when 
it did not have to wait for information from the cam-
era, was <8 ms (median 1.6 ms, but the distribution was 
double-peaked with a second peak at about 4.5 ms; range 
1–8ms, N=71,388; Additional file  19a). In consequence, 
the RIFF software in its current implementation can pro-
cess video frames at rates of up to about 120 Hz.

When interacting with surrounding software, some 
additional latencies incurred. For the real-time control of 
the RIFF, the most important latency was between image 
acquisition and the moment it became accessible to the 
main control program for further processing. All latency 
measurements were performed by a BPod system (San-
work LLC) which recorded hard triggers from the camera 
and other hardware components, as well as soft triggers 
at selected code locations.

All data is illustrated visually in Additional file  19. 
The delay from the moment a frame was available on 
the camera (not including exposure time and sen-
sor readout time, which are determined by the specific 
hardware) and the time it was read by the Matlab pro-
gram on the video processing computer was 6.2 ms with 
a very low jitter (std=1.1 ms, range 4.6–10 ms, N=164; 
Additional file 19b). The Matlab logic that extracted the 
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x and y coordinates of the center of the rat added about 
4 ms without increasing the jitter (median latency 10.3 
ms, std=1.1 ms, range 8.4–16.1 ms, N=164; Additional 
file  19c). The transfer of these coordinates to the main 
control program lengthened the latency to 39.5 ± 11.8 ms 
(as reported above, range 11.3–61.5 ms, N=186; Addi-
tional file  19d) Thus, the Ethernet connection between 
the video processing computer and the main control 
computer added almost 30 ms to the latency but also 
increased the jitter.

Once the information reached the control computer, 
the main control loop could react to it. For example, 
within the main loop, another 15 ms was needed to 
characterize the location of the rat and, when neces-
sary, select a sound to play. This additional latency had 
a low jitter, since the total jitter did not change appreci-
ably at this stage (total latency from frame acquisition: 
median=55 ms, std=12.8 ms, range 12.8–78 ms, n=94; 
Additional file  19e). Finally, the latency to sound pres-
entation was about 180 ms, largely because of the time 
required to update the attenuator but, with only a small 
increase in the jitter (total latency from frame acquisi-
tion: median 237 ms, std=16.9 ms, range 204–287 ms, 
n=94; Additional file 19f ).

Post‑experiment data processing
After the conclusion of each experimental session, data 
were processed by a custom, automated pipeline written 
in Matlab (tested with version 2020b). The full software 
of the analysis pipeline is available (https://​github.​com/​
jnied​iek/​RIFF_​publi​cation/) and instructions on how 
to run it on real data examples collected in the RIFF are 
provided in the wiki (https://​github.​com/​jnied​iek/​RIFF_​
publi​cation/​wiki/​The-​analy​sis-​pipel​ine) [11].

Data processing started with the extraction, align-
ment, and merging of the time stamps from all data 
acquisition devices. Time stamps were generated for 
changes in internal states, the acquisition of video 
images, behavioral events, sound presentations, and 
neural recordings. The digital lines of an AlphaLab SnR 
system (Alpha Omega) were used as the main synchro-
nization hub for aligning the triggers coming from all 
devices. Each device that generated timing triggers had 
at least one of those triggers also channeled in paral-
lel to a digital line on the main synchronization hub, 
and the timing events that were co-registered on both 
devices were used to align all other events from that 
device on a common timeline. Thus, the output files 
of the SnR system were used as the main timing files 
during post experimental data processing. All behavio-
ral events (nose pokes, food/water delivery, airpuffs) as 
well as the video images were parsed, and the extracted 

information stored in Matlab files. Finally, the neural 
recordings were processed, detecting and sorting spikes 
(see next section).

Spike sorting
We developed a pipeline that processes an experimen-
tal session of 3 h in about 10 min, based on the Kilo-
sort2 spike sorting program (https://​github.​com/​Mouse​
Land/​Kilos​ort2). The processing was predominantly 
autonomous, requiring only a few minutes of manual 
curation for every session.

Spike sorting began by removing common modes 
from the neural recordings—the mean activity of all 
spatially proximal recording channels, such as all chan-
nels on a single shank of a silicon probe (Additional 
file  7a.1-2). Large artifacts were identified by comput-
ing the standard deviation over electrodes at each point 
in time, and locating peaks in the resulting time series. 
Such artifacts were mostly generated by rat move-
ments. Signal sections around each of these peaks were 
zeroed by multiplication with a 10-ms window with 
2-ms rising and falling edges (Additional file 7a.3). The 
total recording duration that was zeroed during a typi-
cal experimental session was about 5%.

Spikes were detected and clustered by Kilosort2. In 
order to process large amounts of data, we developed a 
fast and almost automatic pipeline, which can be com-
plemented by detailed manual curation where neces-
sary. Kilosort2 was used to produce the initial set of 
candidate spike clusters. Automatic rejection of noise 
clusters was performed according to two criteria (Addi-
tional file 7b): The dominant channel of the cluster tem-
plate has exactly one minimum and one maximum in its 
voltage trace, and on each electrode the voltage at the 
template endpoints had to be close to 0 (in consequence, 
confining expected spike duration to <1.8 ms). For each 
unit that passed this test, an inter-spike-interval histo-
gram was computed alongside the amplitude and firing 
rate histograms, heat-map of raw spike waveforms, and 
smoothed time series of spike amplitude and firing rate 
(Additional file 7c). All those were printed to an image 
file that summarizes the quality of that unit.

Lastly, a manual labeling interface allowed the experi-
menter to sort the units into well isolated ones, multi-
unit clusters or noise (https://​github.​com/​jnied​iek/​
RIFF_​publi​cation/​wiki/​Manual-​taggi​ng). This interface 
displayed the images with the quality evaluation infor-
mation and stored the user-inserted labels with the data. 
A typical recording session of 1–2 h with 32 electrodes 
produced typically a few tens of non-noise units, so 
that the manual labeling could be completed in several 
minutes.
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Feature extraction from rat images
Pose information was extracted from the saved video 
stream, offline, in two steps: First, the nose, the base 
of the neck and the base of the tail were located on the 
image by a convolutional neural network (Additional 
files 4a and 5). Then, the relevant angles were computed 
by geometric calculations (Additional file 6, green arrow 
represents the body direction). The neural network was 
trained de novo, including data labeling, model training, 
and time optimizations of the inference process.

We used the CNN, without retraining, on eight rats (4 
rats in each in the St+and in the L/D tasks). Instructions 
on how to use and retrain the CNN are provided ath-
ttps://​github.​com/​jnied​iek/​RIFF_​publi​cation/​tree/​main/​
misc/​train_​direc​tion_​tagger.

Network architecture  The input to the model is a square 
grayscale image of the rat, as produced by the rat tracking 
module. The output consists of three pairs of Cartesian 
coordinates, representing the three points of nose, neck, 
and the base of the tail on the rat image. The model is 
thus a multivariate regressor that predicts 6 continuous 
variables.

We used a custom convolutional neural network archi-
tecture, following the recent advances in data-driven 
computer vision (Additional file  4b). Six convolutional 
layers are used, each followed by a batch-normalization 
layer and a rectifier non-linear activation function. A 
max-pool layer operates after every second convolutional 
layer. The last layer is a linear readout from the previous 
activation map stack. The network has 0.3 million train-
able parameters.

Database creation  We used a custom programmed 
graphical user interface (written in Matlab) to manually 
mark the locations of the nose, neck, and base of the tail 
on each image of the training set. The final training data-
base included 1500 labeled images of 4 rats of different 
ages, with and without a head implant.

Network training and inference enhancements  The 
training database was augmented to produce addi-
tional training examples and to emphasize the irrelevant 
degrees of freedom in the image space. The augmentation 
included rotation of images by multiples of 90°, horizon-
tal mirror flips, adding small amounts of noise to pixels 
or labels, and rigid translations of images by a few pixels 
along the horizontal and vertical axes. The labels were re-
adjusted for each augmentation type to correctly repre-
sent the updated body part location. This augmentation 
procedure increased the original dataset by a factor of 64, 
from 1500 to 96,000 training examples.

The network was initialized with the default Kaiming 
distribution [83], trained with the Adam optimizer [84] 
on 256 images in each batch. The input images were sub-
sampled to 50×50 pixels. The network was trained for 2 
h on a NVIDIA GTX 1080Ti GPU (NVIDIA, California, 
USA).

After the training was completed, the network could be 
used to predict the labels of previously unseen images. 
Prediction used image augmentations that resem-
ble those used during the training: An input image was 
processed 4 times, rotated by 0°, 90°, 180°, or 270°. The 
predicted 4 labels were corrected for the corresponding 
image rotation and averaged to obtain the final label for 
the original image. The high temporal correlations of the 
image stream were leveraged to increase the accuracy by 
smoothing the labels with a uniform window of 7 frames, 
removing large, biologically implausible jumps.

An hour of a typical experiment produced ~105 images, 
which were labeled by the trained model in ~20 s.

Computation of allo‑ and ego‑ centric directions  Once 
the locations of the nose, neck, and the base of the tail 
are predicted by the network, they are used to calculate 
the direction of various body parts. The main body direc-
tion is defined as the vector from the base of the tail to 
the base of the neck. The head direction is defined as the 
vector from neck to the nose point. The head turn angle 
is calculated as the difference between the head direction 
and the body direction, with 0 corresponding to the three 
points being along a single line. The range of head turn 
angles was typically between −30° and 30°.

Network performance  We evaluated the accuracy of the 
network on a set of manually tagged images that were 
excluded from the training set. The accuracy was defined 
by the mean distance of the predicted points from the 
manually tagged points on the rat body (Additional files 
20 and 21). The mean localization errors of the head, 
neck, and tail were 0.62, 0.66, and 0.62 cm, respectively 
(see Additional file 22).

Final database formats
The data processing pipeline parsed each experiment 
into a set of data files, metadata descriptors, and statisti-
cal visualizations. This format is uniform and allows an 
abstraction of the experiment parameters such as the 
type of neural recording system, the stimulus types, and 
so on. All behavioral and neural events are stored in a 
lossless manner, allowing maximal temporal resolution. 
The storage footprint of this format is about 12 GB/h. The 
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format is described in the repository (see information in 
https://​github.​com/​jnied​iek/​RIFF_​publi​cation/​wiki) [11].

For rapid analysis and visualization, a temporally 
coarse-grained version is generated by discretizing the 
timeline into a 10-Hz grid, and aggregating the separate 
data files into a single data table (stored in one file). This 
format uses about 1% of the storage of the raw storage 
(<0.1 GB/h). Each data row in the resulting data table has 
a time stamp that indicates its start time on the time axis 
of the original data. These time stamps can be used as 
indexing variables for tracing the data back to the high-
resolution files.

The experiment visualizer
All processed data from an experiment can be loaded into 
an interactive user interface that presents the recorded 
experiment as an interactive movie (at a rate of 10 Hz, 
see Fig. 3f ). The raw neural data is loaded along with the 
detailed time information of the sorted spikes, making 
it possible to view both the firing rate of each unit and 
the times of individual spikes with a 1-ms resolution. The 
full software of the visualizer is provided in the software 
repository (see https://​github.​com/​jnied​iek/​RIFF_​publi​
cation/​wiki for instructions) [11].

The visualizer was used for multiple purposes. During 
the development of the experiment, replay of the experi-
ment with 100 ms resolution made it possible to verify 
that the experimental logic was correctly implemented 
and executed by the hardware, and the rat indeed per-
formed the required sequence of actions. The visual-
izer was also used for verifying the collected data; the 
temporal resolution of the visualizer makes it possible 
to detect potential data collection malfunctions such as 
synchronization errors. During data analysis, the visual-
izer was used as a tool for understanding fine details of 
rat behavior and for observing the progress of the learn-
ing process. Lastly, the visualizer can plot the raw neural 
traces at any time point of the experiment, making it pos-
sible to observe the relationships between spiking activity 
and other events in the RIFF. Figure 3c and f show images 
produced by the visualizer. The visualizer was used to 
generate Additional file 21 and 23.

Animals
The experiments were carried out in accordance with 
the regulations of the ethics committee of The Hebrew 
University of Jerusalem. The Hebrew University of Jeru-
salem is an Association for Assessment and Accredita-
tion of Laboratory Animal Care (AAALAC) accredited 
institution.

Seven adult female Sabra and Sprague Dawley rats (N 
= 5 and N = 2, respectively, weight: at least 200 g) were 
used for the experiments described here (Envigo LTD, 

Israel). All efforts were taken to create a low-stress, 
rat-friendly living environment enabling experimental 
animals to freely express their innate behaviors. Upon 
arrival, animals were housed in groups (2–3) or individ-
ually (depending on experiment) in the same SPF room 
in which the RIFF is situated and where all experiments 
took place. The temperature (22 ± 1 °C) and humidity (50 
± 20%) were controlled and room was maintained on a 
12-h light/dark cycle (lights on from 07:00 to 19:00 h).

Behavioral training
For the first 7–10 days rats were habituated to the experi-
menter. During this period, rats were handled frequently 
and introduced to new types of foods and flavored water 
which were later used as rewards in the experimental 
arena. The procedure was aimed to decrease stress and 
prevent neophobia towards rewards given during behav-
ioral training. Rewards consisted of palatable  45 mg 
food tablets in six flavors: basic company flavor, banana, 
bacon, chocolate, peanut butter, and fruit punch (diet 
AIN-76A: RodTab45MG; RodTabBan45MG; RodTabBc-
n45MG; RodTabChoc45MG; RodTabPbtr45MG; Rod-
TabFrtP45MG5TUL, TestDiet, Richmond, IN, USA). 
Rats received also 4 types of fluids: mineral water, 4% 
sucrose in mineral water, 0.1% saccharine in mineral 
water, and 1:1 mixture of 4% sucrose, and 0.1% saccha-
rine solutions (sucrose and saccharin, Sigma-Aldrich, St. 
Louis, MO, USA).

In order to motivate animals to work for food, rats were 
food-restricted up to 85% of their ad libitum body weight. 
Rats were subjected also to mild water restriction before 
behavioral sessions (4–12h). Experiments were carried 
out 5 days a week. During the weekend, animals had free 
access to standard rodent food and unsweetened mineral 
water.

Multiple‑strategy task (St+)
In this task, rats had to move to specific locations at 
defined times indicated by distinct sound sequences, in 
order to obtain rewards. The experiment consisted of a 
repeated iteration over three events: Attention (ATT) 
- Target (TGT) - Feedback (FDB). Each event was asso-
ciated with a specific sound that was played whenever 
the event occurred. The paradigm is described in detail 
in Additional file  3a. The ATT event consisted of the 
presentation of an ATT sound—a 50-ms broadband 2 
kHz periodic sound that was repeated 5 times at inter-
vals of 0.3 s. It was played from all 12 speakers simul-
taneously. The position of the rat was determined 2.5 s 
after the ATT event, and one of the IAs was selected as 
the target location. The selection was done according to 
the current and previous position of the rat (see below 
for details). Then a TGT sound was presented from the 
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target location. Each IA was associated with a specific 
TGT sound. The TGT sounds consisted of a sequence 
of six 50-ms-long narrowband sounds with inter-sound 
intervals of 250 ms covering a range of 1–16 kHz. Six dif-
ferent permutations of those sequences were assigned as 
target sounds to each IA for the whole experiment (target 
area 1: 1, 1.7, 3, 5.2, 9.2, 16 kHz; target area 2: 1.7, 16, 1, 
9.2, 5.2, 3 kHz; target area 3: 3, 1.7, 1, 16, 9.2, 5.2 kHz; 
target area 4: 5.2, 3, 1.7, 1, 16, 9.2 kHz; target area 5: 9.2, 
16, 5.2, 1, 3, 1.7 kHz; target area 6: 16, 9.2, 5.2, 3, 1.7, 1 
kHz). After the TGT event, the rat had to nose-poke into 
one of the two ports at the target IA. Nose-poking within 
20 s after the TGT event was rewarded by food pellets 
or water, depending on which of the two ports of the IA 
were poked. Reward was provided only if the first nose 
poke was in the correct IA, and only to that first nose 
poke. The first nose poke (in a correct or wrong loca-
tion) elicited the FDB event at the target IA, consisting 
of a sound indicating whether the location was correct 
or not (word-like stimuli derived from the word “correct” 
or “mistake”, respectively). A timeout (20 s without pok-
ing after a TGT event) was also followed by an error FDB 
sound. After each FDB event, an inter-trial period of 3 s 
led to the next ATT event.

The target locations were selected in the following 
way. The arena was subdivided (Additional file  3a) into 
A zones, in the immediate vicinity of the IAs; B zones, 
adjacent to the A zones but 17 cm towards the center; 
C zones, separating the A/B zones of nearby IAs; and 
a large D zone in the center of the arena. The A and B 
zones were slightly wider (33 degrees) than C zones (27 
degrees). When the rat was in the D zone, nothing hap-
pened. If the rat was in one of the A/B/C zones, an ATT 
sound was presented (3 s following the last FDB event). 
The rat had to make a choice where to go within the 
next 2.5 s. “A” choices consisted of the rat remaining in 
the same A zone in which it received the last reward, 
in which case the target was presented from the next A 
zone in the clockwise direction, or by a move to another 
A zone, which was then selected as the target. In these 
cases, the rat got 1 reward (pellet or liquid). “B” choices 
consisted of a move to a B zone, in which case the next 
target consisted of the adjacent IA and the reward was 
3 times larger than when making “A” choices. The rat 
could therefore cycle between a B zone and the adjacent 
IA ports, harvesting rewards from the same port. Finally, 
the rat could move to a C zone, in which case a random 
target was selected and the reward was randomly chosen 
at 1–4 times the reward of the “A” choices. In the data 
shown here, rats learned an “A” strategy—moving around 
the arena from one IA to its neighbor, circling the arena. 
In fact, the rats rapidly learned the timing structure of 

the task, and often moved to the next A zone before the 
ATT sound was presented (Fig. 4d).

The rats were trained in three phases. During phase 1, 
rats were trained to poke for reward. Multiple food and 
water restricted rats were placed together in the arena for 
about 12 h for five consecutive days. The sounds were not 
presented at this point. The rewards were delivered in a 
fixed ratio (FR) schedule. The number of pokes needed to 
get reward was increased every day as follows: FR2, FR7, 
FR10, FR12, and FR15.

In phase 2, rats established instrumental and Pavlovian 
associations with relevant sounds and their sequences. 
Rats were trained individually, each during a 70-min-long 
session performed once a day. The training was carried 
out for 30 days. The sound level was increased gradu-
ally to avoid suppression of behavioral responses and to 
introduce animals gradually to the relatively high SPL of 
the sounds during the main experiment. Each day, only 1 
IA was accessible for a rat during the session. Interactive 
ports in all other 5 areas were closed by custom blinds. 
Consecutive sessions were carried out in areas 1 to 6 and 
such a cycle was repeated 5 times. There were 3 types of 
sounds presented in this phase. The rat started the trial 
by poking into the accessible port. Each poke (photo 
beam break) evoked the 50-ms broadband 2 kHz periodic 
sound. After five successful pokes with sound, the sixth 
poke triggered reward delivery (1 unit) and immediately 
the target sound (TGT) was played from the two speakers 
above the accessible IA. The TGT sound was followed by 
1 s of silence and the word-like stimulus derived from the 
word “correct” played from two speakers above the acces-
sible IA. An obligatory 2-s interval followed before the 
RIFF reacted again to nose pokes of the rat. Thus, during 
that stage, while sounds were associated with reward, it 
was the nose poke that triggered the sounds rather than 
the reverse (as in the main task).

Phase 3 was the main experiment as described above. 
Rats performed a 70-min-long experimental session once 
every day.

The behavioral data in Fig. 4 was collected during the 
first 2 days of Phase 3 of the task. However, the electro-
physiological data shown in Fig. 5 was collected after one 
additional refinement of the task (phase 4, Additional 
file 9). In randomly selected 10% of the trials, a warning 
sound was presented (the phrase, composed of word-like 
stimuli: “do not go,” played from all speakers). The rats 
had to avoid accessing the ports in order to avoid air-
puff, starting 1.5 s after the warning sound (to let the rat 
retract its nose from the port within in case it was poking 
when the warning sound was presented). An airpuff was 
triggered by a nose poke for pokes that occurred dur-
ing the next 3.5 s. If the rat successfully avoided poking 
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any of the ports, a safety sound (the phrase, composed 
of word-like stimuli: “it’s safe”) was presented from all 
speakers. Otherwise, an airpuff was delivered and the 
phrase “you failed” (composed of word-like stimuli) was 
presented from all speakers. After safety or punishment 
sounds, a new trial was initiated with ATT sound.

Localization/discrimination task (L/D)
In this task, each of the IAs was associated with a sound. 
The sounds were 200-ms excerpts of 6 different words 
(the word “here” in 6 languages: English, French, German, 
Italian, Polish, and Russian) in a female voice, processed as 
in the “ Auditory stimulation” section. The rats had to go 
to a central circular area to initiate a new trial (Additional 
files 3b and 10). When a crossing into the central area was 
detected, one of the 6 IAs was randomly selected by the 
program and its associated sound was played once every 
2 s from both speakers for up to 10 times (20 s in total), or 
until the rat poked in any port. A poke in one of the two 
ports of the IA from which the sound was played resulted 
in a reward (food or water, according to the poked port). 
A wrong poke or a timeout (20 s without a poke) resulted 
in the termination of the trial.

The rats were habituated to the RIFF during 2 nights 
(24 h in total). During habituation, the RIFF was divided 
into 6 equal sectors centered on the IAs (Additional 
file  3b). Rats were placed in the RIFF and were able to 
explore freely. Whenever the rat entered an active sector, 
the associated sound was played from the speakers of the 
IA in the sector. The sound repeated every 2 s until the 
rat poked in one of the ports of the IA and got a reward, 
with a timeout after 2 min. After a nose poke, the cur-
rent sector and its two neighbors became inactive and 
the three other sectors became active, so that the rat had 
to cross to one of the three sectors on the opposite side of 
the RIFF in order to initiate a new interaction.

Following the habituation, the rats were exposed to 
increasingly stricter versions of the main task in 12-h over-
night daily sessions. For the first 6 training sessions, the 
rats were allowed to poke in more than one port before 
trial termination (10 pokes in the first and second sessions, 
decreased to 6 and 4 for one session each, 2 pokes for 2 
sessions, then down to 1 for the rest of the experiment). 
In addition, the requirements for initiating a trial became 
stricter: on the first training session, the central area had 
a radius of 50 cm, on the 2nd session of 40 cm, and from 
the 3rd session on the central area had a radius of 30 cm. 
Before electrode implantation rats were switched from 
12-h overnight sessions to 3-h morning sessions.

Electrodes
Rats were chronically implanted with 32-channel sili-
con probes (ASSY-116_E-2, Cambridge Neurotech, 

UK). Prior to implantation, thin flexible ground wire 
was soldered to the electrode’s PCB ground contacts. 
The electrodes were aligned and glued to the micro-
drive shuttle with epoxy (Nano Drive, Cambridge Neu-
rotech, UK). The microdrive with the electrodes and 
connector were held by a custom holder attached later 
to a stereotaxic apparatus for implantation. The move-
able parts of the microdrive were covered with paraffin 
oil to prevent possible leak of dental cement between 
them. Before implantation, the electrodes were cleaned 
by washing them with a 4% tergazyme solution in 
purified DDW water (Alconox, Jersey City, NJ, USA) 
and afterwards carefully washed in purified DDW to 
remove all residues of tergazyme. Before implantation, 
the electrodes and the holder were disinfected in a UV 
sterilizer.

Surgery
The implantation of the silicon probes was performed in 
two stages: (1) preparation of the base for the implant 
and (2) implantation of microelectrodes into the brain 
tissue.

Preparation of the base
Rats were initially anesthetized in an induction cham-
ber with sevoflurane (8% in oxygen, Piramal Critical 
Care Inc., Bethlehem, PA, USA). The head was shaved 
and they were placed in a stereotaxic instrument with a 
mask for gas anesthesia (David Kopf Instruments, CA, 
USA). Sevoflurane concentration was slowly adjusted to 
a level of 2–2.5% and maintained at this level throughout 
the surgery. A surgical level of anesthesia was verified 
by the lack of a pedal-withdrawal reflex and slow, regu-
lar breathing rate. Body temperature was controlled by a 
closed loop heating system with a rectal probe (Homeo-
thermic Monitoring System, Harvard Apparatus, MA, 
USA). The eyes were protected with sterile eye drops for 
dry eyes (Viscotears Liquid Gel, Carbomer: polyacrylic 
acid 2 mg/g, Berlin, Germany), and the skin on the head 
was disinfected with a povidone-iodine solution (10%, 
equivalent to 1% iodine, Rekah Pharm. Ind. Ltd., Holon, 
Israel). To prevent postoperative pain, rats received dur-
ing the surgery subcutaneous injection of Carprofen 50 
mg/ml (5% W/V) in a dose of about 12 mg/kg (Noro-
carp, Norbrook Laboratories Limited, Newry, Co. Down, 
Northern Ireland).

A 1.5–2-cm longitudinal cut of the skin on the head 
was made and the dorsal surface of the skull was exposed. 
The opened skin was stretched and the eyes were closed. 
The left temporal muscle was pulled away to expose 
also the lateral surface of parietal and temporal bones. 
The connective tissue covering the bones was removed 
and bones were treated with a 15% hydrogen peroxide 
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solution (Sigma-Aldrich Inc., St. Louis, MO, USA) which 
was washed off with sterile saline after approximately 
10–20 s. When the surface of the skull was clean and 
dry, a reference point for the entry point of the recording 
electrodes was marked (insular cortex (Ins): AP = −1.0 
mm, ML = −6.1 mm; primary auditory cortex (AC): AP 
= −5.1 mm, ML = guided by landmarks on the lateral 
surface of parietal and temporal bones). Subsequently, 7 
small holes for supporting screws were drilled and screws 
were tightly screwed into the frontal, parietal, and inter-
parietal bones. Ground wire, soldered previously to one 
of the screws, was placed in the left frontal bone. The 
screws were fixed together and to the bone first with 
resin and then acrylic dental cements (Super-bond C&B, 
Sun Medical, Moriyama, Shiga, Japan; Coral-fix, Tel Aviv, 
Israel) forming a base of the implant. At the selected elec-
trode implantation site, a thin polyimide tube was placed 
on the skull vertically and cemented with the rest of the 
implant base. The tube served as a guide to the implanta-
tion site for the next surgery. The free end of the ground 
wire was twisted and covered with a polyethylene cap 
cemented to the rest of the implant.

The wounds were cleaned and treated in  situ with 
antibiotic ointment (synthomycine, chloramphenicol 
3%, Rekah Pharm. Ind. Ltd., Holon, Israel). The skin was 
sutured in the anterior part of the implant with one or 
two sutures (Nylon, Assut sutures, Corgémont, Switzer-
land) to stretch the skin around the base of the implant. 
The skin around the wound was cleaned and covered 
with a povidone-iodine solution (10%). The rats received 
intraperitoneal injection of the antibiotic enrofloxacin 
50mg/ml (5% W/V) in a dose of 15 mg/kg diluted with 
saline to 1 ml (Baytril, Bayer Animal Health GmbH, Lev-
erkusen, Germany). After surgery, animals were housed 
individually to prevent them from chewing the implants. 
Carprofen or other similar NSAID dissolved in palatable 
wet food was provided at the home cage for the first few 
days after surgery. The rats were allowed at least 1 week 
of recovery post-surgery before restarting behavioral 
training.

Implantation of silicon probes
When the wounds were completely healed following the 
first surgery (14–28 days), the recording electrodes were 
implanted. To minimize tissue damage, a small crani-
otomy was made, drilling solely through the base of the 
implant, and thus leaving the healed skin intact to accel-
erate recovery and reduce the pain.

As previously, rats were initially anesthetized in an 
induction chamber with sevoflurane (8% in oxygen). 
After induction, rats were transferred to a stereotaxic 
instrument with a mask for gas anesthesia. Sevoflurane 
concentration was slowly adjusted to the level of 2–2.5% 

and maintained at this level throughout the procedure. 
The eyes were protected with sterile eye drops for dry 
eyes (Viscotears Liquid Gel, Carbomer: polyacrylic acid 
2 mg/g, Berlin, Germany) and body temperature was 
controlled by a closed loop heating system with a rectal 
probe.

The dental cement above the implantation site marked 
by polyimide tube was removed gradually using a den-
tal drill until the skull was exposed. The craniotomy 
was performed by drilling, and a 0.4–0.8-mm-long slit 
in the dura was gently resected. The electrodes were 
slowly inserted into the brain tissue using a single axis 
micromanipulator (MO-10, Narishige, Tokyo, Japan). 
The craniotomy was sealed with paraffin oil and elastic 
silicone polymer (Duragel, Cambridge Neurotech, UK). 
The microdrive and connector were fixed to the base of 
the implant with acrylic dental cement (see Additional 
file 24 for details). A ground wire was soldered between 
the base and the electrodes connector and covered with 
acrylic dental cement. To mechanically stabilize the con-
nection between the implant and the recording device, 
an additional supporting connector was cemented to the 
implant (6 pins of 853 Interconnect Socket, MILL-MAX 
MFG. CORP., New York, USA). A custom plastic enclo-
sure with a screw cap was cemented for implant pro-
tection. The robust design of the implant protected the 
microdrive and the electrodes against mechanical stress 
while the rats were moving, improving recording stability 
(Additional file 24d-f ). The weight of the whole construct 
did not exceed 11.5 g.

At the end of the surgery, to prevent postoperative 
pain, rats received a subcutaneous injection of Carprofen 
50mg/ml (12 mg/kg). Rats received intraperitoneal injec-
tion of enrofloxacin 50mg/ml (15 mg/kg) diluted with 
saline to 1 ml. Rats were allowed at least 3 days of recov-
ery post-implantation before recordings.

Wireless electrophysiology
Two wireless recording systems were used: (1) modular 
64 channel neural logger (RatLog-64, Deuteron Tech-
nologies, Jerusalem, Israel) and (2) 64-channel wireless 
transmission system (TBSI W64, Triangle BioSystems 
International, Durham, NC, USA).

Neural logger
For the experiments described here, we used a single 
processor board and a single amplifier board to record 
from 32-channel silicon probes at a sampling rate of 32 
kHz. The data were saved on a 64-GB microSD card, and 
copied to a computer after each session. The logger was 
equipped with an audio microphone and 9-axis motion 
sensor. An electrically insulated, compact enclosure for 
the logger, with a separate compartment for a battery, 
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protected the logger from mechanical shocks (Addi-
tional file  24). The enclosure included an interconnec-
tor, to protect the board connector against mechanical 
damage caused by attaching and releasing over hundreds 
of recording sessions (Additional file  24a). The inter-
connector was also used to rotate the device about 34° 
backwards from the vertical axis, to allow the rats free 
movement and free access to the ports in the IAs (Addi-
tional file 24b). The enclosure of the logger had a support-
ing connector (6 pins of 852 + 853 Interconnect Socket, 
MILL-MAX MFG. CORP., New York, USA) that matched 
the supporting connector attached to the implant, in 
addition to a 36-pin Omnetics connector (A79029-001, 
Omnetics Connector Corporation, Minneapolis, MN, 
USA) for the electrical signals from the electrodes. The 
total weight of all elements was approximately 16 g. The 
load was balanced, to avoid pulling the rat head in any 
direction. Before every recording session, the device was 
additionally secured with autoclave sticky tape (Sigma-
Aldrich, St. Louis, MO, USA) to prevent loosening of the 
connectors during the 2–3 h duration of the recording 
sessions. Maximal recording time using a 300-mAh bat-
tery was about 3 h (LiPo battery 582030).

Wireless analog transmission system
The system consisted of an analog transmitter and 
receiver (TBSI W64, Triangle BioSystems, Durham, NC, 
USA). The output signal of the receiver was routed to a 
data acquisition system (AlphaLab SnR, Alpha Omega, 
Additional file  1, item 15) and digitized at a sampling 
rate of 44 kHz. The recordings were made from 32-chan-
nel silicon probes as above. A small interconnector with 
a battery holder was prepared in the lab. The head-
stage was placed horizontally with a battery holder on 
its left side enabling animals to freely access to all loca-
tions in the experimental arena, and in particular to the 
IAs. The total weight of all elements was approximately 
13.5 g of well-balanced load. Before each recording ses-
sion, the device was additionally secured with autoclave 
sticky tape (Sigma-Aldrich, St. Louis, MO, USA) to pre-
vent loosening of connectors contact during long active 
behavioral sessions (up to 12 h). Maximal recording time 
using a 260 mAh battery was about 11.5 h (LiPo battery 
601240).

Recordings
Neural signals were recorded in reference to a ground 
placed in the frontal bone. For the logger, the analog 
bandpass filter was set to 10–7000 Hz or 300–7000 
Hz depending on the experiment. For the wireless sys-
tem, the low frequency of the bandpass filter was set to 
0.07 Hz. Recording sessions took place 5 days a week 
and implants were checked daily. Spiking activity was 

screened immediately after each recording session was 
finished. The electrodes were kept in the same posi-
tion as long as spiking activity was detected on many 
contacts. When signals deteriorated, the animals were 
briefly sedated with sevoflurane and the electrodes 
were lowered in steps 25, 50, or 100 µm into the brain 
tissue. Electrodes were moved typically every 1–7 days. 
Electrodes were never moved up.

Statistical analysis
Exploratory analysis of the dependence of spike trains 
on any of the measured parameters was conducted using 
linear mixed effects models (Matlab function fitlme). 
Explanatory variables included location and kinematic 
parameters, body and head direction parameters, and 
sound presentations. The models were fitted to the firing 
rates of the individual units collected in all experimental 
sessions of each rat. To check the effect of any of these 
parameters on the neuronal responses, it was used as 
a fixed effect (in order to account for a non-zero mean 
across the neuronal population) as well as a random fac-
tor depending on each recorded unit. These random fac-
tors are highly regularized (they are estimated under the 
assumption that they are instances of a Gaussian variable 
with a data-dependent covariance matrix [85]) and are 
therefore conservative estimates of the dependence of 
the firing rate of each specific unit on the parameter of 
interest.

We selected for further study units with prominent 
random effects. Prominent random effects were defined 
as effects whose magnitude was greater than the stand-
ard deviation of the corresponding fixed effect. The logic 
behind this choice is based on the observation that for a 
unit that has a prominent random effect, the dependence 
of its firing rate on the parameter of interest is different 
from that of the population mean. This method identified 
sound-sensitive neurons, but in addition it identified rat 
location, velocity, and head-body angle as variables that 
affected the activity of many units in all rats.

We highlight in this paper specifically location-sen-
sitive units and head-body angle-sensitive units. We 
selected for display in the paper exemplary units that 
had prominent random effects, and then used 1-way 
ANOVA to confirm the significance of the dependences 
of firing rates on the variable of interest for these spe-
cific units. These tests are reported in the “Results” sec-
tion. To increase our confidence in these results, we also 
performed permutation tests, for the units that showed 
location-dependent firing rates. Just permuting locations 
between time bins would have destroyed the depend-
encies between successive angles that are present in 
the data, and therefore we used the following approach 
for generating surrogate data for the permutation tests. 
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First, we unwrapped the angles (matlab routine unwrap). 
We then performed phase randomization in the Fou-
rier domain. The result was a surrogate time series of 
angles that kept the correlations of the original angles, 
but had a Gaussian distribution. We transformed that 
Gaussian distribution back to the original distribution 
of angles by using the empirical distribution functions: 
if we denote by F the empirical distribution function of 
the original angles (after unwrapping) and by G that of 
the Gaussian phase-randomized data x(t), then final sur-
rogate data used was F(G-1(x(t))). This time series had the 
same distribution as the original time series of angles as 
well as the same second-order correlation structure. We 
repeated this procedure 100 times. For all location-sensi-
tive neurons, the F of the ANOVA test for the surrogate 
data was smaller than that of the original data in all 100 
repeats, so that p<0.01 in all cases.

While units could show sensitivity to multiple vari-
ables, we verified the independence of the effects of 
the variable of interest from all other variables. Thus, 
all examples shown here were not the result of a spuri-
ous correlation due to another primary dependence. We 
illustrate such tests with an example of location sensitiv-
ity. For each unit, the average firing rate as a joint func-
tion of location and one additional variable (for example, 
velocity) was computed, usually using a 10-by-10 grid of 
bins, and represented as a matrix. In order to check the 
independence of the tuning to the two variables, a rank 1 
approximation was computed for this matrix using non-
negative matrix factorization (Matlab function nnmf, see 
Additional file  15). We then compared the matrix con-
taining the average firing rates with its rank 1 approxi-
mation. To measure this, we divided the L2 norm of the 
residual by that of the original matrix. Small numbers 
represented good approximations and therefore a high 
level of independence. To follow standard usage, we sub-
tracted this number from 1 and used that as the analog 
of the fraction of data variability explained by the rank 1 
approximation.

Since the original matrix was estimated from a finite 
sample, it is expected to have a high rank even if its 
ideal structure has rank 1. Therefore, two methods were 
used to estimate the expected fraction of data variabil-
ity explained by a rank 1 approximation to a noisy data 
matrix whose underlying structure is also of rank 1. In 
the first method the original data was used for boot-
strapping: the firing rates observed within each location 
bin were resampled, and assigned to random velocity 
bins according to their observed probability. The mean 
for each one of the matrix entries was calculated. The 
resulting 10-by-10 matrix was processed in the same way 
as the original data. This process was repeated for 100 
times, the fraction of explained variability averaged and 

compared to that of the original matrix. In the second 
method, the rank 1 approximation was used to generate 
surrogate data with Poisson distribution, using the same 
number of counts in each bin of the original matrix. This 
matrix was processed in the same way as the original 
data, and the fraction of explained data variability from 
this process was compared to that of the original data.

All the units were also tested for the effects of stimu-
lus-driven responses (Additional files 14 and 16). The 
mean responses with and without sound presentations 
were computed as a function of the relevant parameter 
(in each location bin for the location-sensitive units, for 
each head-body angle bin for the head-body sensitive 
units). The mean firing rates in the presence and absence 
of sound were then compared using a paired t-test.

In all statistical analyses, significance was defined as 
p<0.05. Exact data are reported within the “Results” sec-
tion and include the model, the statistic tested, and the 
p-value.

Abbreviations
AC	� Primary auditory field
IA	� Interaction area
Ins	� Posterior insular cortex
IQR	� Interquartile range
L/D	� Localization/discrimination task
LME	� Linear mixed effects
MDP	� Markov Decision Process
RIFF	� Rat Interactive Foraging Facility
St+	� Multiple-strategy task
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org/​10.​1186/​s12915-​023-​01660-9.

Additional file 1: Figure S1. Scheme of hardware connections of Rat 
Interactive Foraging Facility (RIFF).

Additional file 2: Figure S2. Important dimensions in the RIFF. (A) Wall 
component dimensions, including those for walls with and without speak-
ers, covers hiding foot shock grids, and vertical aluminum skeleton parts 
of the arena with grooves for wall placement. (B) Detailed dimensions of 
the speaker holder, an essential component of the experimental arena for 
providing well-controlled auditory stimuli.

Additional file 3: Figure S3. Structure of the two tasks described in 
the paper. (a) The multiple strategies task (St+). On the left, a flowchart 
of the experiment is displayed as a real-time loop. At the check position 
stage, three strategies were available to the rat, marked as A, B and C. 
These strategies are illustrated in the diagram of the arena on the right, 
using the same color code. The A strategy consisted of moving from 
one interaction area to another (usually a neighboring area), which was 
then selected as the next target. The B strategy consisted of cycling from 
an A area to the associated B area, which led to the selection of the same 
A area as the next target. The C strategy consisted of moving to a C area, 
in which case a random port was selected as the next target. (b) Diagram 
of the localization/discrimination task (L/D). Flowchart of the experiment 
real-time loop (left) and the corresponding events in a diagram of the 
arena (right), plotted with the same color code.

Additional file 4: Figure S4. Feature extraction from the video images. 
(a) A feed-forward convolutional neural network estimates the locations 
of the head, the base of the neck and the base of the tail for each input 
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image. These three markers are then used for the calculation of the 
body and head angles (bottom right image). (b) The table details the 
custom architecture of the neural network, which is optimized for the 
grayscale rectangular input, reducing the number of parameters of 
the trained model and decreasing the inference times.

Additional file 5: Video S1. Automatic detection of 3 rat body points. 
An artificial neural network automatically marks the locations of the 
nose, base of the neck and the tail on a rat image (yellow, red and 
blue dots, respectively).

Additional file 6: Video S2. Calculation of the body direction of 
therat. Green arrow indicates the calculated body direction from the 
base of the tail towards the base of the neck (blue and yellow points 
from Additional file 5).

Additional file 7: Figure S5. Neural data processing and spike 
sorting. (a) Extracellular neural recordings in freely behaving rats (32 
simultaneously recorded channels) include periods of high noise 
(left panel). Noise components that are common to all channels can 
be largely removed by subtracting the average waveform (mid-
dle panel). The remaining noise segments are identified by their 
amplitude and by their high variance across channels, and are zeroed 
(right panel). The resulting neural data is then processed by Kilosort2. 
(b) Implausible spike shapes in the clusters detected by Kilosort2 are 
automatically detected. The top example was automatically identified 
as a spike, while the bottom two examples were identified as noise. (c) 
Statistics of the neural activity are produced for each cluster and used 
for manual classification.

Additional file 8: Video S3. Rat tracking module. The location of the 
rat is determined in each video frame, at 30 FPS, as it freely moves 
inside the arena (green asterisk marks the center of mass of the rat). 
The location information is transmitted to the main control computer, 
while the video frames are stored and used to extract additional 
behavioral features during the post-processing.

Additional file 9: Video S4. Exemplary behavior of an expert rat in 
the St+ task at its full complexity. Rat successfully switches between 
zones A1 and B6, avoids the air puff in response to the warning sound, 
and after the safe sound, it continues to use A and B zones while miss-
ing an opportunity coming from the C zone (see Additional file 3a). 
The St+ task provides substantial freedom to the rats, allowing them 
to optimize their behavior with respect to their individual preferences 
for size and type of rewards while effectively avoiding the punish-
ment. Red circles mark active speakers; yellow circle indicates 
detected nose-poke; green circle indicates dispensed reward. White 
arrows indicate automatically extracted head and body directions. 
Dots behind the rat indicate previous location, color indicates speed 
(blue - slowest, red - fastest). The legend in the top right corner indi-
cates the area where the rat is located. The name of the target sound 
appears while it plays.

Additional file 10: Video S5. Exemplary behavior of an expert rat in 
the L/D task. Rat goes to the center zone of the arena to initiate a trial 
with a sound presentation (see Additional file 3b and “Methods” for a 
full description of the task). All markers are the same as in Additional 
file 9.

Additional file 11: Figure S6. Changes in target arrival time distribu-
tions from Day 1 to Day 2. Shown are log likelihoods of target arrival 
time in 1 second bins, for Day 2 compared to Day 1. Only rewarded 
trials are included. Each bar depicts log10 of the probability to arrive 
at the target in this time bin on Day 2, relative to Day 1. The attention 
sound is denoted by a black line, and the target sound is denoted by 
a green line. The number of rewarded trials on each day is denoted in 
the figure (N1, N2). In each rat, late target arrivals are less likely on Day 
2 than on Day 1, and in each rat except rat 5, target arrivals before the 
attention sound are more likely on Day 2 than on Day 1. The distribu-
tions were significantly different in each rat (two-sample Kolmogorov-
Smirnov test; P < 0.01 in each rat; P = 4.62 × 10-15 for all rats). In all rats 
except rat 5, target arrival times on Day 2 were significantly earlier than 
on Day 1 (two-sample t-test; P < 0.006 in rats 4, 6, 7, 8; P = 0.13 in rat 5; 

P = 1.13 × 10-26 for all rats). These data indicate that four out of five rats 
were more likely to arrive in the target area earlier on Day  2 compared 
to Day 1 while one rat (rat 5) increased the probability to arrive at the 
target area between the attention and target sounds relative to earlier 
and later times. Thus, all rats modified their behavioral strategies in day 
2 relative to day 1 in order to better conform to the contingencies of 
the task. Compare also Fig. 4d in the main text.

Additional file 12: Figure S7. Classification of trials into three types. (a) 
Angular running speed for all trials performed by rat 4 on day 1. For each 
trial, the maximal angular speed in the clockwise and counterclockwise 
direction was extracted in a time window lasting from 0.5 s to 9 s follow-
ing the feedback sound of the previous trial. A trial was classified as "Sit" 
(gray lines) if the absolute value of the angular speed never exceeded 
0.25 radians/s (14.3 degrees/s), otherwise as "Run clockwise" (blue lines) 
or "Run counterclockwise" (red lines), according to the direction with the 
higher maximal speed. (b) Trial clusters were clearly separated in all rats. 
Scatter plots show each trial of each rat and each day according to the 
maximal angular speed in the clockwise and counterclockwise directions. 
Colors as in (a). The number of trials of each trial cluster are indicated.

Additional file 13: Figure S8. High-resolution responses of the units 
in Figs. 5e-h. Response of the units is depicted as probability of firing 
as a function of the radial location. Each point reflects the weighted 
average of the firing rates in nearby radial locations. The weights 
were calculated using a Gaussian window with a standard deviation 
of 1o. The gray area is standard deviation. In each plot, the maxi-
mal response was shifted to 0o.

Additional file 14: Figure S9. Joint sensitivity of the units in Figs.5e-h 
to location and sound. (a) Mean responses in the presence (blue) and 
absence (red) of sound. Error barsare s.e.m. (b) Scatter plots of the data 
as in (a). Horizontal error bar indicates s.e.m during sound presenta-
tion, vertical error bar indicates s.e.m during silence. The number of 
instances from which the mean and s.e.m were derived are indicated 
on the right of each point (during sound presentation), and on top 
(during silence). In case no sound presentations occurred in a location 
bin, the data is plotted on the y axis.

Additional file 15: Figure S10. Joint sensitivity of the units in Figs.5e-
h to location and head-body angle or velocity. (a) Mean firing rates 
for location (abscissa) and relative head-body angle (ordinate). (b) 
Non-negative rank 1 matrix approximation of the matrices in (a). Top 
right corner: the fraction of the data variability explained by the rank 1 
approximation for the original data / bootstrapping method / Poisson 
distribution approximation (see "Methods" for details). (c) Mean firing 
rates for location (abscissa) and velocity (ordinate). (d) Same as (b) for 
the matrices in (c).

Additional file 16: Figure S11. Joint sensitivity of the units in Figs.5i-l 
to location and sound. Same format as Additional file 14.

Additional file 17: Figure S12. Joint sensitivity of the units in Figs.5i-l 
to head-body angle and absolute head angle, absolute body angle, 
or location. Same representations as in Additional file 15. The abscissa 
represents head-body angles, while the ordinate represents absolute 
head angle ((a) and (b)), absolute body angle ((c)and (d)), and location 
((e) and (f )).

Additional file 18: Figure S13. The real-time imaging module. (a) 
Diagram of the camera (DMK 33G445 GigE, TheImagingSource) and 
the light ring, mounted on the ceiling above the arena’s center. (b) 
Synchronization diagram of the image stream. Triggers that indi-
cate frame acquisition were sent to a digital processor that sub-sampled 
them from 30 Hz to 1 Hz. The 1 Hz triggers were then simultaneously 
recorded on the common synchronization hardware, and also powered 
a LED in the field of view of the camera. (c) Graphical user interface of 
the real-time imaging module. The LED is marked by a small red square 
on the right side of the arena. The rat center of mass is marked by a 
green asterisk. (d) For efficient data storage, rat images were cropped 
around its center of mass and stored in a multi-page .tif file. A cropped 
image of the LED was stored in the upper left corner of each image, 
allowing for time synchronization during the post-processing steps.
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Additional file 19: Figure S14. Analysis of the timing behavior of the 
main control loop. A. Histogram of running times of the main loop on the 
master control computer, when no delays were imposed by waiting to 
external hardware. B-f. Histogram of latencies between image acquisition 
by the camera and various events on the video processing computer (b 
and c) and the master control computer (d-f ).

Additional file 20: Figure S15. Exemplary frames of the pose estima-
tion algorithm. The CNN model was trained in a supervised manner to 
predict the nose, neck and the tail of the rat (blue, orange and green cir-
cles, respectively) in 1500 images that were manually tagged (red crosses).

Additional file 21: Video S6. Distance of the estimated pose features 
from the manual tags. The model estimates the pose features (head, 
neck and tail) with precision of ~0.65cm (see Additional file 22). This allows 
for exact calculation of the body and the head directions (right plot).

Additional file 22: Figure S16. Accuracy of the pose estimation model. 
The precision of the model was estimated by calculating the euclidean 
distance from the predicted points to the manualtags. The mean error for 
the head, the neck and the tail points was 0.62 cm, 0.66 cm and 0.62 cm, 
respectively.

Additional file 23: Video S7. Experiment visualizer. We provide a custom 
visualizer for recorded experiments that can be used to show the rat 
trajectory and nose-pokes, sounds played, and neural activity. The experi-
ment is replayed at 30 frames per second. The video shows how to load 
an experiment into the visualizer, and how to use many of its functions.

Additional file 24: Figure S17. An approach for chronic wireless record-
ings in rats. (a) The neural logger and battery are in the protective plastic 
case that can be attached to the electrode’s connector. The 300 mAh bat-
tery is placed in a separate compartment, connects to the logger through 
a micro-JST connector, and can be easily changed during the experi-
ment. Anti-static foam pads are placed on the sides of the logger com-
ponents (amplifier and processor boards) to protect the logger against 
mechanical shocks. The protective case has a 36-pin omnetics connector 
matching that on the 32-channel silicon probe, as well as a small Mill-Max 
connector which mechanically stabilizes the case during recording ses-
sions. The silicon probe is mounted on the Microdrive. (b and c) Side and 
front views of the recording set. The device is inclined to the back in order 
to allow rats natural movements and undisturbed access to ports. (d) The 
silicon probe is mounted on the Microdrive cemented to the skull. The 
moveable parts of the implant are covered with paraffin oil. The flex cable 
of the probe is bent to provide a long travel distance for the electrodes. (e) 
Finished implant with protective enclosure. (f ) Female rats with a 32-chan-
nel moveable silicon probe implant and the wireless data logger in the 
case with a battery. The recording set enables natural movements, is easily 
carried by the rats, and is well protected against mechanical shocks. The 
enclosure can be closed with a plastic cap (orange) to protect the implant 
in the home cage.
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