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Abstract 

This study presents an innovative hybrid Adaptive Support Vector Machine - Monte Carlo 

Simulation (ASVM-MCS) framework for reliability analysis in complex engineering structures. 

These structures often involve highly nonlinear implicit functions, making traditional gradient-

based first or second order reliability algorithms and Monte Carlo Simulation (MCS) time-

consuming. The application of surrogate models has proven effective in addressing 

computational challenges associated with a large number of simulations. Support Vector 

Machine (SVM), as an emerging machine learning method suitable for small-sample scenarios, 

offers a well-established theoretical foundation and presents an effective model substitution 

approach for reliability analysis in engineering structures. However, the existing literature lacks 

a comprehensive and thorough comparative analysis of SVM's hybrid adaptive modeling 
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approach, encompassing initial sampling methods and learning functions, with regards to both 

computational efficiency and accuracy. Additionally, there is a gap in adaptive modeling methods 

capable of accommodating diverse types of input uncertainty, the nonlinearity of limit state 

functions, and various application scenarios. In response to these gaps, this article introduces the 

ASVM-MCS framework, which addresses these challenges by considering different types of 

input variables and various failure modes. Moreover, this study provides a comprehensive 

evaluation of the ASVM-MCS framework's performance, including its initial sampling methods 

and learning functions, across a range of application scenarios, such as scenarios involving only 

random variables, mixed variables, and the reliability of series-parallel systems. 

Keywords Reliability analysis, Support vector machine, Monte Carlo simulation 

Nomenclature 

Symbols  

X  Input random variable 

1( )nf x xX  The joint Probability Density Function (PDF) 

( )G X  Limit State Function (LSF) 

  Coefficient vector 

b  The constant of the hyperplane 

i  Lagrange multiplier 

NSV The number of support vectors 

s  The category corresponding to the sample point X  

 ,i jK X X  Kernel function 

 g x  The predicted value at sample x  

 g x  The standard deviation of the predicted values 

d  Convergence threshold 

m  The threshold of its LSF 
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c
X  Test sample set 

*x  The updated sample selected by the learning function 

 x  The acceptable error of the distance to the boundary of the LSF 

    The cumulative distribution function of normal distribution 

    The probability density function of normal distribution 

g
 The allowable upper limits of LSF 

g
 The allowable lower limits of LSF 

r The number of times to build SVR model 

n  The number of LSF evaluations 

fP  Failure probability 

  
The deviation between the calculation results of  

the 9 combinations and the MCS calculation results 

xP  The lateral loads on the beam 

yP  The vertical loads on the beam 

E  Elastic Modulus 

0D  Allowable displacement value 

[ ]  The maximum deformation threshold 

max  The actual maximum equivalent total deformation 

[ ]  The yield strength of the structural steel 

max  The actual maximum equivalent stress 

Y  Interval variable vector 

max

fP  Maximum failure probability 

k  The total number of failure modes in the system 
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( )ig x  The LSF associated with the ith failure mode in the system 

1 Introduction 

When it comes to practical engineering applications, the process of reliability estimation 

involves computing the failure probability of for structure through the integral shown below: 

 1 1

( ) 0

[ ( ) 0] ( )d df n n

G

P P G f x x x x


     X

X

X  (1) 

where X   is the input random variable. 1( )nf x xX   is the joint Probability Density Function 

(PDF). ( )G X   is the Limit State Function (LSF). ( ) 0G X   indicates a failed state. Several 

methods have been developed to solve this integral, which can be broadly classified into three 

categories. The first category includes approximation methods like first-order reliability methods 

[1,2] and second-order reliability methods [3,4]. The second category consists of simulation-

based methods, including direct Monte Carlo Simulation (MCS) [5,6], importance sampling 

[7,8], directional simulation [9,10], line sampling [11,12], and subset simulation [13]. The third 

category includes simulation methods based on surrogate models, such as response surface 

method [14,15], Support Vector Machine (SVM) [17-22] and Kriging model [23-31]. 

Aiming at the implicit functional function, the surrogate model and machine learning theory 

continue to develop [32-36]. For example, SVM, as an emerging small-sample machine learning 

method, has attracted more and more attention and research. Rocco and Moreno [37] used SVM 

to establish the feasibility of empirical models for reliability assessment. This approach exploits 

the fast computation capability of SVM, which is highly advantageous for performing a large 

number of model calculations commonly required for Monte Carlo reliability evaluation. 

Essentially, the method involves developing an estimation algorithm that can produce reasonably 

accurate model output by training the model on a limited dataset and replacing system 

performance evaluation with simpler calculations. SVM can be used not only for classification, 

but also for regression. Support Vector Regression (SVR) based on structural risk minimization 

is known for its excellent small-sample learning and generalization abilities, and is considered 

superior to traditional regression methods. However, when it comes to the reliability analysis of 

large samples, SVR can be time-consuming and space-intensive. To address these issues, Guo 
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and Bai [38] proposed the use of Least Squares SVM for Regression (LSSVR) in reliability 

analysis. Numerical results have demonstrated that the reliability analysis method based on 

LSSVR is more accurate and computationally efficient compared to the method based on SVM. 

A novel reliability method was developed by Pan and Daniel Dias [39] that uses adaptive SVM 

(ASVM) in conjunction with MCS. To minimize the number of training samples required, a 

learning function was proposed that sequentially selects informative training samples. The 

failure probability of the SVM-based classifier was then calculated using MCS. The performance 

of the proposed Adaptive Support Vector Machine - Monte Carlo simulation (ASVM-MCS) 

method was evaluated through four representative examples, demonstrating its high 

computational accuracy and efficiency. The method was found to provide an accurate estimation 

of the failure probability at a relatively low computational cost. 

However, the above SVM-based reliability evaluation studies only consider the impact of 

random uncertainty. Due to a lack of samples, some parameters can only obtain variation 

intervals and cannot calculate accurate probability distributions, resulting in the final calculation 

of failure probability being also an interval. Therefore, studying probability interval mixed 

reliability analysis has very important engineering practical significance. Moreover, in practical 

engineering problems, there are often many failure modes, rather than just one. When conducting 

structural reliability analysis under multiple failure modes, it is necessary to consider the 

interaction between each failure mode. Therefore, studying system reliability analysis also has 

very important engineering practical significance. 

To date, no comprehensive comparative study has been conducted on the hybrid adaptive 

modeling scheme of SVM models, which includes initial sampling methods and learning 

functions, with regard to computational efficiency and accuracy. Additionally, there is no single 

adaptive modeling method that can fully account for the various types of input uncertainty, as 

well as the nonlinearity of LHSs and application scenarios. Therefore, a hybrid ASVM-MCS 

framework is proposed in this article. This framework is able to consider different input variable 

types, different failure modes to conduct reliability evaluation. Furthermore, the performance of 

hybrid ASVM-MCS framework, including initial sampling methods and learning functions, is 

comprehensively studied in different application scenarios.  
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In the remaining part of this article, the second section discusses the basic principle of SVM, 

sampling method and learning function in detail. Furthermore, a general ASVM-MCS 

framework is proposed in this section. The Section 4 conducts the comparative study on hybrid 

ASVM-MCS framework considering random uncertainties, mixed uncertainties, and system 

reliability analysis. Finally, conclude this study in Section 5. 

2 Review of theoretical knowledge 

This section reviews some theoretical knowledge about SVM, sampling methods (Latin 

Hypercube Sampling (LHS), Halton low deviation sequence sampling, Round-Off sampling) and 

learning functions (U-learning, Expected Feasible Function (EFF), H-learning).  

2.1 Support vector machines 

The concept of SVM was initially proposed by Cortes and Vapnik [40] in 1995. This 

technique exhibits numerous advantages in areas such as small-sample, nonlinear, and high-

dimensional pattern recognition. Additionally, its mathematical form is simple, its geometric 

interpretation is intuitive, and it offers good generalization capabilities. Compared with artificial 

neural networks, SVM can better solve the problems of over-learning and under-learning. In 

addition, it has a strong nonlinear classification ability. It is suitable for tasks such as 

classification and regression. SVM is extensively used in the field of pattern recognition. This 

algorithm converts the classification problem into a quadratic optimization problem, securing a 

global optimal solution that is independent of the specific sample point distribution. 

In SVM theory, SVM classification mainly focuses on the binary classification solver. The 

purpose is to find a classification plane in the case of linearly separable samples:  

 0 X b  (2) 

This classification plane is called the optimal hyperplane, which aims to separate the two 

types of sample points correctly. Therefore, the core of the SVM classification algorithm is to 

try to find an optimal hyperplane as the classification boundary of the two groups of data and the 

minimum distance from the sample point closest to the hyperplane is the largest.  

As shown in Figure 1, the blue triangles and red squares represent two types of sample 

points respectively. These two parallel dotted lines are defined as supporting hyperplanes, which 
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require at least one sample point in the two types of samples and there are no sample points 

within the interval of two parallel lines. The goal of the SVM classification algorithm is to 

determine such two parallel support hyperplanes to maximize the margin and then use the parallel 

midline as the optimal classification hyperplane. The sample points that pass the support 

hyperplane are defined as support vectors. 

    

   Support vector

    

    Support hyperplane

Optimal separating

 hyperplane

Margin

 

Figure. 1. Optimal classification hyperplane 

The mathematical expression of the optimal hyperplane is: 

 0 X b  (3) 

The corresponding mathematical expression supporting the hyperplane is: 

 
1

1

   
 

   

X b

X b




 (4) 

where X  is the inner product of two vectors in n-dimensional vector space. X  is the vector 

of the sample point.    and b  are the coefficient vector and constant of the hyperplane 

respectively. In order to satisfy that there are no sample points between parallel hyperplanes, it 

needs to satisfy:  

 
1   1

   1,2, ,
1   1

i

i

y
i N

y

     
 

     

X b

X b




 (5) 

Simplify the expression to get:  

   1    1,2, ,iy i N     X b  (6) 
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And the distance between two parallel planes is 
2

ω
 . In order to realize the correct 

classification of samples, it is necessary to determine the corresponding   and b . For linearly 

separable data groups, the basic idea of SVM classification can be transformed into the following 

mathematical model:  

 

 

2

,

1
min      

2

. . :      1    1is t y i N    

b

X b






 (7) 

After solving by calculation tools such as MATLAB, the final classification calculation 

expression is obtained: 

 
1

sgn
N

i i i

i

s y


 
  

 
b X X  (8) 

where i  is the Lagrange multiplier. Among all sample points, only the support vector satisfies 

0i  , so only support vectors have an effect on the constructed SVM model. The Eq. (8) can 

be expressed as:  

 
1

sgn
NSV

i i i

i

s y


 
  

 
b X X  (9) 

where NSV is the number of support vectors. s is the category corresponding to the sample point

X . 

Due to the limited classification ability of linear SVM, the classification results are often 

unsatisfactory for non-linearly separable sample points. The issue of nonlinearity in the SVM is 

addressed through the introduction of a crucial concept called kernel function. This function 

maps the input variables to a high-dimensional feature space using nonlinear transformation, 

after which the hyperplane is calculated in the feature space and projected back to the original 

space. The kernel function solves the problem of dimensionality disaster in reliability analysis 

well. 

Nonlinear separable problems can be transformed into the following mathematical 

expressions: 
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      
1 1

sgn , sgn ,
NSV NSV

i i i j i i i j

i i

s y y K   
 

   
      

   
 b X X b X X  (10) 

where  ,i jK X X  is the kernel function. For accuracy requirements and easy calculation, all 

examples in this paper will choose the most commonly used Gaussian kernel function for 

calculation. 

2.2 Sampling method 

In order to train a SVM model, an initial sample set must be obtained. Therefore, a sampling 

method that satisfies both the probability distribution function and is sufficiently dispersed and 

uniform must be considered, as it has a significant impact on the accuracy of the results. However, 

traditional uniformly distributed sampling is often insufficient to meet the requirements of agent-

based model reliability analysis. Therefore, this section will introduce three sampling methods, 

such as LHS, Halton low deviation sequence sampling, and round-off sampling. These three 

sampling methods are more effective. 

2.2.1 Latin hypercube sampling 

LHS is a multidimensional random sampling method used to generate sample points in a 

multidimensional parameter space. The steps are as follows:  

(1) Determine the number of dimensions of the parameter space and the number of sample 

points and divide the parameter space of each dimension into equal intervals. 

(2) A Latin hypercube matrix of size n   m is generated, where n is the dimensionality of 

the parameter space and m is the number of sample points. Each row of the Latin 

hypercube matrix represents the interval in which a sample point is located in each 

parameter dimension. 

(3) A point in each interval is chosen at random as the value of the sample point. 

(4) Repeat step (3) until the values of all sample points are generated. Use all the resulting 

sample points as input for subsequent calculations or analysis. 

LHS can effectively avoid the aggregation phenomenon in the multidimensional parameter 

space, improving the efficiency and quality of sampling. 
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2.2.2 Halton low bias sequence sampling 

Halton low discrepancy sequence sampling is a multi-dimensional random sampling method 

used to generate sample points in a multi-dimensional parameter space [41]. The steps are as 

follows:  

(1) Select a different set of prime numbers as the base of the Halton sequence. Map the 

parameter space of each dimension onto the interval [0,1] and divide it into equal 

intervals. 

(2) Generate a Halton sequence of size n   m, where n is the dimensionality of the parameter 

space and m is the number of sample points. each row of the Halton sequence represents 

the value of a sample point in each parameter dimension, a fraction between 0 and 1. 

(3) Each score is mapped back to the original parameter space to obtain the actual value of 

each sample point in each parameter dimension. 

(4) Repeat step (3) until the fetch values for all sample points are generated. Use all the 

resulting sample points as input for subsequent calculations or analysis. 

Halton low bias sequential sampling is also effective in avoiding “aggregation” in multi-

dimensional parameter spaces, improving sampling efficiency and sampling quality. Halton 

sequences have lower bias and higher homogeneity than LHS, and are therefore more suitable in 

certain situations. 

2.2.3 Round-off sampling 

Round-Off Sampling (ROS) is a random sampling method used to generate a sample from 

a distribution with a complex probability density function. The steps are as follows: 

(1) Set a repeatable simple probability distribution (such as a uniform or normal distribution) 

whose support set must contain the support set of the target distribution. 

(2) Take a sample point under the simple probability distribution and calculate the ratio of 

the value of the probability density function for that point under the target distribution 

to the value of the probability density function under the simple probability distribution, 

denoted as r . 

(3) Generate a uniformly distributed random number u  in the interval [0,1] and accept the 

sample point if u  is less than or equal to r , otherwise reject the sample point. 
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(4) Repeat steps (2) and steps (3) until a sufficient number of sample points have been 

generated. Treat all accepted sample points as samples drawn from the target 

distribution. 

The advantages of ROS are that it is widely applicable, can be applied to a variety of target 

distributions and can be computed in parallel. The disadvantage is that a simple probability 

distribution needs to be found and the support set of that distribution must contain the support 

set of the target distribution, otherwise the sampling efficiency will be reduced. In addition, ROS 

may also suffer from low acceptance rates, resulting in the need to generate a large number of 

sample points to obtain a sufficient number of valid samples. 

2.2.4 Effect comparison 

In order to demonstrate the sampling effect, the above three methods and the common 

uniform sampling method are compared with sampling of 100 sample points each. The sampling 

results are shown in Figure 2: 

(a) MCS (b) LHS

(c) Hatlon (d) ROS
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Figure. 2.   Comparison of Sampling Methods (a) MCS, (b) LHS, (c) Halton, (d) ROS 

It can be seen from Figure 2 that the sampling effect of Halton low-bias sequence is more 

uniform than that of the other three. In this method, there are fewer overlapping sample points, 

indicating that it is a better method. 

2.3 Learning function 

The crux of modeling lies in utilizing available sample information to identify the sample 

that contributes most significantly to the learning scheme for constructing the model. In 

conventional modeling, the sample that has the most significant contribution is typically 

indicative of the highest level of uncertainty in the predicted value. When the prediction accuracy 

is high, the reliability estimation outcome based on the surrogate model is also expected to be 

more precise. To curtail the number of actual experiments or the simulated sample size, greater 

emphasis is placed on samples that have the most significant contribution to failure probability 

solution. Attention is particularly focused on whether the prediction point crosses the failure 

boundary, i.e., the accuracy of positive or negative judgment of the LSF value. In this section, 

three learning functions will be presented, namely U-learning, Expected Feasibility Function 

(EFF), and H-learning. The learning function will update specific sample points to optimize the 

SVM. 

2.3.1 U-learning 

U-learning was proposed by Echard et al. [42] based on the probability hypothesis testing 

theory, which can be expressed as a mathematical expression as follows: 

  
 

 
g

g

x m
U x

x






  (11) 

where  g x   is the predicted value at sample x  .  g x   is the standard deviation of the 

predicted values. m  is the threshold of its LSF. In this paper 0m  . Assume that the threshold

m  is within k times standard deviations of the predicted value. According to the characteristics 

of the PDF of the normal distribution, the smaller the value k  , the more likely it is to pass 

through the failure surface and lead to misjudgment of failure. Therefore, the learning scheme in 

U-learning is defined as: 
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   * argmin cx U X  (12) 

where c
X  is the test sample set. *x  is the updated sample selected by the learning function. The 

corresponding stopping criteria are: 

   min cU dX  (13) 

where d  represents the convergence threshold. 

2.3.2 EFF 

The fundamental idea of EFF [43] is to evaluate if a sample is probable to surpass the limit 

failure boundary, considering the weighted distance between the sample and the failure boundary. 

This can be mathematically represented as: 
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where m  is the threshold of the LSF.  x  represents the acceptable error of the distance to the 

boundary of the LSF.  x m g    is the distance between the specimen and the acceptable 

boundary of the LSF.  g m x     ,  g m x     and     is the cumulative distribution 

function of a standard normally distributed variable,      is the corresponding PDF. In this 

article, 0m   and    2 gx x  . The learning scheme in EFF is expressed as: 

   * argmax cx EFF X  (17) 

The mathematical expression for the stopping criterion is: 
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   max cEFF dX  (18) 

2.3.3 H-learning 

H-learning was proposed by Lv et al [44]. based on the principle of information entropy. 

The principle can be expressed as: 
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where g
 and g

 are the allowable upper and lower limits of LSF, respectively.  g m x    

and  g m x   . In this paper, 0m  ,    2 gx x  . The learning scheme for selecting and 

updating samples is expressed as: 

   * argmax cx H X  (21) 

This implies that every chosen sample has the highest level of uncertainty. Furthermore, the 

stopping criterion is expressed as: 

   max cH dX  (22) 

3 The proposed ASVM-MCS framework 

3.1 The ASVM-MCS framework considering random uncertainties 

The basic steps of the overall framework of the hybrid ASVM-MCS in this article are as 

follows, which can be represented by the following Figure 3: 

Step1: Generate initial training samples. Some sampling methods in Section 2.2 can be used 

to generating initial training sample. Then evaluate the actual response of these samples. 

Furthermore, set the number of times to build SVR model r=0. 

Step2: Build or rebuild SVM model. If r=0, build SVR model by initial training samples. 

Else, add updated sample to training samples rebuild SVR model by these new training samples.  
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Step3: Pick a new updated sample. Generate candidate test sample by some sampling 

methods in Section 2.2. Some learning function in Section 2.3 can be used to pick a new updated 

sample. Then calculate the actual response of the picked sample. It is worth noting that the 

kriging variance used in the learning function here is replaced by the jackknife variance [45]. 

Step4: SVM model accuracy judgment. Determine whether the model accuracy meets the 

requirements based on different learning function convergence conditions. If the requirements 

are met, go to Step 5. Otherwise, return to Step 2. 

Step5: Reliability evaluation. First, generate Monte Carlo samples. Then use the 

constructed SVM model to evaluate the response value of the sample. Finally, this response 

sample is used to estimate the probability of failure. 

Step 5: Reliability evaluation

Start

Step 1: Generate initial 

training samples

Step 2: Build or rebuild 

SVM model

Step 3: Pick a new 

updated sample

End

Yes

No Step 4:SVM model 

accuracy judgment

 

Figure. 3. Flowchart of the hybrid ASVM-MCS framework 

3.2 The ASVM-MCS framework considering mixed uncertainties 

In practical engineering, uncertainty is divided into random uncertainty and cognitive 

uncertainty. Probability and interval information are used to describe these two uncertainties, 

respectively. When the structure contains both probability variables and interval variables, the 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


related functional expression can be described as: 

 ( , )Z g X Y  (23) 

where 1 2( , ,..., )mX X XX  is a n dimensional interval vector: 

 { ( , ) 0}f rP P g X Y  (24) 

After the interval variable Y  is introduced, the limit state ( , ) 0g X Y  is no longer the only 

surface in the space, but a limit state zone composed of two boundary surfaces max ( , ) 0
Y

g X Y  

and min ( , ) 0
Y

g X Y  . Therefore, the failure probability 
fP   also has upper and lower bounds, 

expressed as: 

 

min

max

Pr{max ( , ) 0}

Pr{min ( , ) 0}

f
Y

f
Y

P g

P g

 

 

X Y

X Y
 (25) 

In practical engineering, the maximum failure probability of structures is typically the most 

important and highly-regarded index. Therefore, to evaluate the reliability of the mixed 

uncertainty structure in the subsequent analysis of this paper, the maximum failure probability 

max

fP  will be utilized. 

The proposed ASVM-MCS framework considering mixed uncertainties is similar to the 

method that only considers random uncertainties. The only difference is in the reliability 

assessment step. In a framework that considers mixed uncertainties, the hybrid reliability method 

based on projection outline proposed by Zhang et al. [46] is used to evaluate reliability. 

3.3 System reliability analysis based ASVM-MCS framework 

In the structural reliability problem with multiple failure modes, when the failure modes of 

the system are connected in parallel, the failure probability can be expressed as: 

  1
1

( ) 0 max ( ) 0
k k

f i i
i

i

P P g x P g x




 
    

 
 (26) 

where k denotes the total number of failure modes in the system. ( )ig x   represents the LSF 

associated with the ith failure mode in the system. It is worth noting that the entire system will 

only fail if all the failure modes in the parallel system fail simultaneously. Conversely, if there is 
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a failure mode in the system that remains functional, the system can still be considered safe. 

Thus, the failure mode with the highest value of the function in the system determines the failure 

probability of the entire parallel system. 

Similarly, when the failure modes in the system are connected in series, the failure 

probability is: 

  1
1

( ) 0 min ( ) 0
k k

f i i
i

i

P P g x P g x




 
    

 
 (27) 

It can be found that if one failure mode fails in the system, the whole system will fail. A 

system is in a safe state only when all failure modes are not failed. For a series system, the failure 

mode with the lowest value of the function determines the probability of failure of the system. 

On the basis of Section 3.1, the ASVM-MCS framework in system reliability requires 

separate optimization for each branch before MCS calculation due to the presence of multiple 

functional functions. Then conduct reliability analysis according to the classification of series 

and parallel connections. 

4 Results and discussion 

In this section, the proposed ASVM-MCS framework is comprehensively compared. Once 

a sufficient number of samples are available, the result of the MCS calculation will be almost 

identical to the actual failure probability. Therefore, MCS method is used to evaluate the 

accuracy of different combination in this study. Furthermore, the calculation results of the 

number of iterations and failure probability are the average of 10 calculation results to reduce 

the contingency of the experiment. 

4.1 Numerical examples for the comparative study on hybrid ASVM-MCS 

framework considering random uncertainties 

In order to further investigate the impact of the proposed framework considering random 

uncertainties on the performance of different structures, six examples are selected, including two 

benchmark numerical examples and two engineering examples. Estimate accuracy and efficiency 

through corresponding calculation results. 
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4.1.1 Nonlinear function 

Since linear classification is relatively simple for the SVM model, a nonlinear function is 

used to verify the performance of the model. The LHS can be taken as the following 

mathematical expression: 

   3

1 2 1 2, 3 0.1f x x x x    (28) 

where 1 2,x x  all obey the standard normal distribution and are independent of each other. The 

calculation results are shown in Table 1. The iteration diagram and boxplot of the failure 

probability are shown in Figure 4 and Figure 5 respectively: 

   LHS                                     Halton                                    ROS

fP fP
fP

n n n

 

Figure. 4. Failure probability iterative diagram in example 1 

fP

Method

 

Figure. 5. Failure probability boxplot in example 1 

Table 1 Calculation results of nonlinear function example considering random uncertainties 

Method n  fP  / %  Method n  fP  / %  
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MCS 62 10  0.003701 0 Halton-U 12+76 0.003681 0.54 

LHS-H 12+79 0.003716 0.40 Halton-EFF 12+73 0.003711 0.27 

LHS-U 12+77 0.003683 0.49 ROS-H 12+73 0.003675 0.70 

LHS-EFF 12+81 0.003690 0.30 ROS-U 12+78 0.003679 0.60 

Halton -H 12+71 0.003669 0.86 ROS-EFF 12+75 0.003693 0.22 

In the Table 1, n represents the number of LSF evaluations. fP   represents the failure 

probability.   represents the deviation between the calculation results of the 9 combinations and 

the MCS calculation results. It is worth noting that these symbols have the same meaning in the 

subsequent tables. 

It can be seen from Figure 4 that the failure probabilities calculated by all combinations 

gradually approach MCS with the iteration of the learning function, which shows that the 

learning function does optimize the SVM model and ASVM does have a good effect on reliability 

analysis. According to the comparison of the results in Table 1, if only the learning function is 

compared, it can be seen that the calculation accuracy corresponding to the EFF function is the 

highest and the number of iterations is the least. If only the sampling methods are compared, it 

can be seen that Halton's low deviation sequence sampling corresponds to the highest 

computational accuracy and the least number of iterations. Comprehensively comparing all the 

data, Halton-EFF is the combination with the best performance in this example. 

4.1.2 Highly nonlinear function 

The mathematical expression of a highly nonlinear function is as follows: 

 4

1 2 1 21 1/ 256( 10) 10 / ( )y x x x x       (29) 

where 1 (10,3)x N , and 2 (10,3)x N . The calculation results are shown in Table 2, and the 

iteration plot and box plot of the failure probability are shown in Figure 6 and Figure 7, 

respectively. 
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LHS Halton ROS

fP fP fP

n n n

fP

 

Figure. 6. Failure probability iterative diagram in example 2 

fP

Method

 

Figure. 7. Failure probability boxplot in example 2 

Table 2 Calculation results of highly nonlinear function example considering random uncertainties 

Method n  fP  / %  Method n  fP  / %  

MCS 62 10  0.006533 0 Halton-U 12+77 0.006437 1.49 

LHS-H 12+76 0.006619 1.30 Halton-EFF 12+66 0.006475 0.89 

LHS-U 12+78 0.006320 3.26 ROS-H 12+74 0.006720 2.86 

LHS-EFF 12+67 0.006433 1.53 ROS-U 12+75 0.006650 1.79 

Halton -H 12+71 0.006418 1.76 ROS-EFF 12+67 0.006590 0.87 

It can be seen from Figure 6 that the increase in the degree of nonlinearity does not affect 

ASVM, and the calculation results are still slowly approaching MCS. It can be seen from Table 

2 that the overall calculation error has a certain increase compared with Table 1, but the accuracy 

is still reliable. If only the sampling method is compared, the Halton low-bias sequence sampling 
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has the highest precision and the fastest efficiency; if only the learning function is compared, the 

EFF function has the highest precision and the fastest efficiency; comprehensive comparison 

shows that the Halton-EFF combination has the best performance. 

4.1.3 High-dimensional nonlinear functions 

Since SVM has certain advantages in high-dimensional function calculation examples, a 

high-dimensional calculation example is test in this study. The following formula is a twenty-

dimensional LSF: 

 
19

2 2 2

1

1

( ) 2( ) 0.5( 1) 700i i i

i

f x x x x



        (30) 

where 1 2 20, ,...,x x x  all obey the standard normal distribution and are independent of each other. 

The calculation results are shown in Table 3. The iteration diagram and box plot of the failure 

probability are shown in Figure 8 and Figure 9 respectively. 
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Figure. 8. Failure probability iterative diagram in example 3 

fP

Method

 

Figure. 9. Failure probability boxplot in example 3 

Table 3 Calculation results of high-dimensional nonlinear function example considering random 
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uncertainties 

Method n  fP  / %  Method n  fP  / %  

MCS 62 10  0.004500 0 Halton-U 20+177 0.004471 0.64 

LHS-H 20+175 0.004522 0.49 Halton -EFF 20+182 0.004486 0.31 

LHS-U 20+166 0.004478 0.49 ROS-H 20+181 0.004585 1.90 

LHS-EFF 20+174 0.004505 0.11 ROS-U 20+176 0.004445 1.20 

Halton -H 20+179 0.004548 1.10 ROS-EFF 20+180 0.004461 0.87 

As shown in Figure 8, Although the calculation results of the failure probability of each 

combination fluctuate significantly, they still converge slowly near the MCS in the end. It shows 

that the learning function still has a certain optimization effect, but the effect of optimization on 

high-dimensional calculation examples is not obvious. According to the comparison of the 

results in Table 2, If only the learning function is compared, it can be seen that the calculation 

accuracy of the corresponding combination of the EFF function is the highest and the number of 

iterations is the least; If only the sampling method is compared, it can be seen that the calculation 

accuracy of the combination corresponding to LHS is the highest and the number of iterations is 

the least; Comprehensively comparing all the data, LHS-EFF is the combination with the best 

performance in this high-dimensional example. 

4.1.4 Cantilever beam 

Figure 10 is a schematic structural diagram of a cantilever beam. The LSF ( )G  [18] is 

considered by a displacement of allowable value 0D  under both loads xP  and yP  in this example, 

which can be calculated by Eq. (31). Furthermore, xP  and yP  are applied to the free end of the 

beam in Figure 10. It is important to note that these external loads are applied to the free end of 

the cantilever beam. 

 
3

2 2

0 0 2 2

4
( , , , , , , ) ( ) ( )

yx
x y

PL P
G D L E w t P P D

Ewt w t
    (31) 

where the meanings and distribution of random variables are shown in Table 4. The calculation 

results are shown in Table 5. The iteration diagram and box plot of the failure probability are 

shown in Figure 11 and Figure 12, respectively. 
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Figure. 10. Schematic diagram of cantilever beam structure 

Table 4 Variable distribution of cantilever beam engineering example 

Variables Distribution Mean Standard deviation 

Allowable displacement value 0D  Lognormal  3 0.3 

Elastic Modulus E  Normal 73 10  61 10  

length of cantilever beam L Normal 100 10 

The width of the cantilever beam section w Normal 2 0.25 

The height of the cantilever beam section t Normal 4 0.4 

The lateral loads on the beam xP  Normal 100 20 

The vertical loads on the beam yP  Normal 200 20 

LHS Halton ROS

fP fP fP

n n n

 

Figure. 11. Failure probability iteration diagram of cantilever beam engineering example 
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Figure. 12. Boxplot of failure probability of cantilever beam engineering example 

Table 5 Calculation results of cantilever beam engineering example considering random uncertainties 
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Method n  fP  / %  Method n  fP  / %  

MCS 62 10  0.000467 0 Halton-U 12+80 0.000481 3.00 

LHS-H 12+84 0.000485 3.85 Halton-EFF 12+76 0.000472 1.07 

LHS-U 12+89 0.000455 2.60 ROS-H 12+81 0.000430 7.92 

LHS-EFF 12+88 0.000441 5.56 ROS-U 12+79 0.000445 4.71 

Halton -H 12+86 0.000502 7.49 ROS-EFF 12+83 0.000490 4.92 

As shown in Figure 11, the calculation results of the failure probabilities of each 

combination converge regularly around the MCS from small to large. It shows that the learning 

function also plays a certain role in engineering practice. According to the comparison of the 

results in Table 5, if only the learning function is compared, it can be seen that the calculation 

accuracy of the combination corresponding to the EFF function is the highest and the number of 

iterations is the least. If only the sampling methods are compared, it can be seen that the 

calculation accuracy of the combination corresponding to Halton low-difference sequence 

sampling is the highest and the number of iterations is the least. Comprehensively comparing all 

the data, it is considered that Halton -EFF has the best performance in this engineering example 

combination. 

4.1.5 Support bracket 

This example is a static simulation. As shown in Figure 13, it is a supporting bracket in an 

aircraft braking structure, which plays an important role in the braking system. The material is 

structural steel. The triangular ribs in the middle increase the strength of the structure. In order 

to simulate the actual engineering, a fixed support is applied to the square tube and a vertical 

force of 500N is applied to the edge of the steel plate below. The results obtained by finite 

element simulation analysis are shown in Figure 14. In this calculation example, the length L, 

width H and thickness D of the ribs are taken as three independent random variables and the 

distribution rules are shown in Table 6. The corresponding LHS is as follows: 

 max( , , ) [ ] ( , , )G L H D L H D    (32) 

where [ ]   is the maximum deformation threshold. max   represents the actual maximum 

equivalent total deformation, which is an implicit function of , ,L H D . The unit of max  is 610 m . 
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The calculation results are shown in Table 7. The iteration plot and box plot of the failure 

probability are shown in Figure 15 and Figure 16 respectively. 
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Figure. 13. Support bracket 

 

Figure. 14. ANSYS simulation results 

Table 6 Variable information of supporting bracket example 

Variable Distribution Mean Standard deviation 

Rib length L/mm Normal 30 1 

Rib width H/mm Normal 30 1 

Rib thickness D/mm Normal 2.5 0.1 
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Figure. 15. Failure probability iteration diagram of supporting bracket engineering example 
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Figure. 16. Boxplot of failure probability of support bracket engineering example 

Table 7 Calculation results of supporting bracket engineering example considering random uncertainties 

Method n  fP  / %  Method n  fP  / %  

MCS 62 10  0.004972 0 Halton-U 12+74 0.004940 0.6 

LHS-H 12+80 0.004907 1.3 Halton-EFF 12+66 0.004949 0.5 

LHS-U 12+79 0.004897 1.5 ROS-H 12+75 0.005014 0.8 

LHS-EFF 12+76 0.004928 0.9 ROS-U 12+82 0.005009 0.7 

Halton -H 12+72 0.004915 1.1 ROS-EFF 12+81 0.004925 0.9 

As shown in Figure 15, the calculation results of the failure probabilities of each 

combination converge regularly around the MCS from small to large. According to the 

comparison of the results in Table 7, if only the learning function is compared, it can be seen that 

the calculation accuracy of the combination corresponding to the EFF function is the highest and 

the number of iterations is the least. If only the sampling methods are compared, it can be seen 
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that the calculation accuracy of the combination corresponding to Halton low-difference 

sequence sampling is the highest and the number of iterations is the least. Comprehensively 

comparing all the data, it is considered that Halton-EFF has the best performance in this 

engineering example combination. 

4.1.6 Square tube 

This example is a thermal-mechanical coupling simulation example. As shown in Figure 17, 

it is a square tube for transporting certain materials in a food processing plant and the material is 

structural steel. The temperature on one side of the pipe is 30° and the fixed support is loaded. 

The temperature on the other side is T (T>30°) and the tensile force F is applied. The results 

obtained by finite element simulation analysis are shown in Figure 18. In this calculation 

example, the section outer width L and section inner width length D of the square tube section, 

the length H of the square tube, the temperature T and the tensile force F are five independent 

random variables. The distribution rules are shown in Table 8. The corresponding LSF are as 

follows: 

 max( , , , , ) [ ] ( , , , , )G L D H T F L D H T F    (33) 

where [ ]   is the yield strength of the structural steel. max  represents the actual maximum 

equivalent stress, which is an implicit function of , , , ,L H D T F  . The calculation results are 

shown in Table 9. The iteration plot and box plot of the failure probability are shown in Figure 

19 and Figure 20 respectively. 
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Figure. 17. Square tube modeling 
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Figure. 18. ANSYS simulation results 

Table 8 Variable information of square tube example 

Variable Distribution Mean Standard deviation 

Section outer width L/mm Normal 200 7 

Section inner width D/mm Normal 75 2.5 

Tube length H/mm Normal 400 13 

Temperature T /℃ Normal 50 2 

Force F/N Normal 50 2 

                             LHS                                              Halton                                               ROS

fP fP fP
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Figure. 19. Failure probability iteration diagram of square tube engineering example 
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Figure. 20. Failure probability boxplot of square tube engineering example 

Table 9 Calculation results of square tube engineering example considering random uncertainties 

Method n  fP  / %  Method n  fP  / %  

MCS 62 10  0.007184 0 Halton-U 12+49 0.007220 0.5 

LHS-H 12+64 0.007124 0.8 Halton-EFF 12+64 0.007129 0.7 

LHS-U 12+52 0.007140 0.6 ROS-H 12+67 0.007109 1.0 

LHS-EFF 12+65 0.007125 0.8 ROS-U 12+52 0.007135 0.7 

Halton -H 12+60 0.007130 0.7 ROS-EFF 12+65 0.007114 1.0 

As shown in Figure 19, the calculation results of the failure probabilities of each 

combination converge regularly around the MCS from small to large, which again shows that 

the learning function also has a certain effect on the reliability analysis of engineering practice. 

According to the comparison of the results in Table 9, the number of iterations of the overall 

learning function has been reduced. If only the learning function is compared, it can be seen that 

the calculation accuracy of the combination corresponding to the U function is the highest and 

the number of iterations is the least. If only the sampling is compared method, it can be seen that 

the calculation accuracy of the combination corresponding to Halton low-difference sequence 

sampling is the highest and the number of iterations is the least. Comprehensively comparing all 

the data, it is considered that Halton-U is the combination with the best performance in this 

engineering example. 
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4.1.7 Results and discussion 

ASVM-MCS has a very good effect in classical probabilistic reliability analysis, not only 

with higher accuracy, but also far more efficient than MCS; Among the three learning functions, 

the calculation accuracy of the results corresponding to the EFF function is higher and the 

number of iterations is less; In the three sampling methods, Halton low-bias sequence sampling 

corresponds to higher calculation accuracy and fewer iterations; Halton-EFF has the best 

performance in the nine ASVM classic probabilistic reliability analysis combination. 

4.2 Numerical examples for the comparative study on hybrid ASVM-MCS 

framework considering mixed uncertainties 

The problem of probability interval mixed reliability analysis has always been a concern in 

engineering practice due to the presence of interval variables [47-53]. This section also provides 

three numerical examples and three engineering examples to comparatively study the 

performance of the hybrid ASVM-MCS framework considering mixed uncertainties. 

4.2.1 Nonlinear function 

Similar to the nonlinear function calculation example in Section 4.1.1, an interval variable 

is added on the basis of it. The LHS can be expressed as: 

 3 2

1 2 3( ) 11 0.1f x x x x     (34) 

where 1x   and 2x   are independent probability variables, both of which obey (0,1)N  . 3x   is an 

independent interval variable. Its range is [ 3,3] . The calculation results of each combination 

are shown in Table 10. The iteration diagram and box diagram of the failure probability are 

shown in Figure 21 and Figure 22 respectively: 

fP fP fP

n n n

                   LHS                                      Halton                                     ROS  

Figure. 21. Iteration diagram of maximum failure probability for nonlinear function example  
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Figure. 22. Boxplot of maximum failure probability for nonlinear function example 

Table 10 Calculation results of nonlinear function example considering mixed uncertainties 

Method n  fP  / %  Method n  fP  / %  

MCS 6200 10  0.004722 0 Halton-U 12+55 0.004754 0.7 

LHS-H 12+59 0.004713 0.2 Halton-EFF 12+45 0.004735 0.3 

LHS-U 12+62 0.004736 0.3 ROS-H 12+80 0.004856 2.8 

LHS-EFF 12+82 0.004651 1.5 ROS-U 12+56 0.004734 0.3 

Halton-H 12+74 0.004609 2.4 ROS-EFF 12+58 0.004700 0.5 

Among them, for MCS, the n means that the interval variable takes 200 sample points and 

the probability variable takes 610  sample points for nested simulation calculation. For various 

combinations, it means the initial sample point 12 plus the number of iterations of the learning 

function. 

It can be seen from Figure 21 that the failure probabilities of most combinations gradually 

converge to near the MCS with the optimization iteration of the learning function from small to 

large, while the LHS-U combination exceeds the MCS in most cases. However, the results 

ultimately converged to MCS. It can be seen that in the probability-interval mixed reliability 

analysis, the adaptive support vector machine can still have a good effect. It can be seen from 

Table 10 that the calculation results of each combination are still within the error range. If only 

the learning function is compared, it can be seen that the calculation accuracy corresponding to 

the U function is relatively high and the number of iterations is also small. If only the sampling 
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methods are compared, it can be seen that the calculation accuracy corresponding to the Halton 

low-bias sequence sampling is relatively high and the number of iterations is also small. 

Comprehensively comparing all the results, the performance of the Halton-U combination is the 

best in this mixed reliability mathematical example. 

4.2.2 Highly nonlinear function 

Similar to the highly nonlinear function calculation example in Section 4.1.2, an interval 

variable is added on the basis of it. The LHS can be expressed as: 

 4

1 2 1 2 31 1/ 256( 10) 10 / ( ) 0.1y x x x x x        (35) 

where 1 2(10,3), (10,3)x N x N  , and 3 [2,8]x  .The calculation results of each combination are 

shown in Table 11. The iteration diagram and box diagram of the failure probability are shown 

in Figure 23 and Figure 24 respectively: 
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Figure. 23. Iteration diagram of maximum failure probability for highly nonlinear function example 

fP

Method

 

Figure. 24. Boxplot of maximum failure probability for highly nonlinear function example 

Table 11 Calculation results of highly nonlinear function example considering mixed uncertainties 

Method n  fP  / %  Method n  fP  / %  
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MCS 6200 10  0.003011 0 Halton-U 12+73 0.003047 1.20 

LHS-H 12+75 0.002927 2.79 Halton-EFF 12+80 0.002884 4.22 

LHS-U 12+77 0.003125 3.79 ROS-H 12+67 0.003175 5.44 

LHS-EFF 12+79 0.002905 3.52 ROS-U 12+71 0.002920 3.02 

Halton-H 12+76 0.003129 3.92 ROS-EFF 12+74 0.003090 2.62 

It can be seen from Figure 23 that the increase in the degree of nonlinearity does not affect 

ASVM, and the calculation results are still slowly approaching MCS. It can be seen from Table 

11 that the calculation error is slightly increased compared with Table 2, but the effect is still 

objective. If only the sampling method is compared, the Halton low-bias sequence sampling has 

the highest precision and the fastest efficiency. if only the learning function is compared, the U 

function has the highest precision and the fastest efficiency. Comprehensive comparison shows 

that the Halton-U combination has the best performance. 

4.2.3 High-dimensional nonlinear functions 

By modifying the high-dimensional functional function in Section 4.1.3, two of the random 

variables are changed from probability variables to interval variables. The modified LHS can be 

expressed as: 

 
19

2 2 2

1

1

( ) 2( ) 0.5( 1) 600i i i

i

f x x x x



        (36) 

where 1 2 18, ,...,x x x  are independent probability variables and they all obey (0,1)N . 19 20,x x  are 

mutually independent interval variables. Their range are [ 3,3]  . The calculation results are 

shown in Table 12. The iteration diagram and boxplot are shown in Figure 25 and Figure 26 

respectively: 
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Figure. 25. Iteration diagram of maximum failure probability for high-dimensional nonlinear function 

example 
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Figure. 26. Boxplot of maximum failure probability for high-dimensional nonlinear function example 

Table 12 Calculation results of high-dimensional function example considering mixed uncertainties 

Method n  fP  / %  Method n  fP  / %  

MCS 6200 10  0.005028 0 Halton-U 20+168 0.005312 5.6 

LHS-H 20+176 0.005197 3.4 Halton-EFF 20+171 0.004720 6.1 

LHS-U 20+174 0.004865 3.2 ROS-H 20+179 0.005278 4.8 

LHS-EFF 20+177 0.005364 6.7 ROS-U 20+172 0.005228 4.0 

Halton-H 20+170 0.005320 6.0 ROS-EFF 20+175 0.005330 6.0 

As shown in Figure 25, which is similar to Figure 8, the calculation results of the failure 

probability of each combination fluctuated significantly, but eventually gradually converged near 

MCS. According to the comparison of the results in Table 12, the calculation accuracy of the 

results has increased to a certain extent compared with Table 3. If only the learning function is 

compared, it can be seen that the calculation accuracy of the corresponding combination of the 

U function is the highest and the number of iterations is the least. If only the sampling methods 

are compared, it can be seen that the calculation accuracy of the combination corresponding to 

Halton low-bias sequence sampling is the highest and the number of iterations is the least. 

Comprehensively comparing all the data, Halton-U is the combination with the best performance 
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in this high-dimensional example. 

4.2.4 Cantilever Beam 

This calculation example is modified on the basis of Section 4.1.4, changing L to an interval 

variable and [40,160]L .The corresponding LSF is as follows: 

 
3

2 2

0 2 2

2
( ) ( )

yx
PPL

Z D
E t t 

    (37) 

The calculation results of each combination are shown in Table 13. The iteration diagram and 

box plot of the failure probability are shown in Figure 27 and Figure 28 respectively. 
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Figure. 27. Iterative diagram of maximum failure probability for cantilever beam engineering example 
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Figure. 28. Boxplot of maximum failure probability for cantilever beam engineering example 

Table 13 Calculation result of cantilever beam engineering example considering mixed uncertainties 

Method n  fP  / %  Method n  fP  / %  

MCS 6200 10  0.007348 0 Halton-U 12+77 0.007429 1.10 

LHS-H 12+91 0.007481 1.81 Halton-EFF 12+79 0.007610 3.56 
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LHS-U 12+86 0.007248 1.36 ROS-H 12+88 0.007546 2.69 

LHS-EFF 12+89 0.007273 1.02 ROS-U 12+82 0.007170 2.42 

Halton-H 12+86 0.007568 2.99 ROS-EFF 12+82 0.007516 2.29 

As shown in Figure 27, the calculation results of the failure probability of each combination 

fluctuated significantly, but eventually gradually converged near MCS. From the comparison of 

the results in Table 13, it can be seen that the calculation efficiency of the results is lower than 

that in Table 5, but the calculation accuracy is improved to a certain extent. If only the learning 

function is compared, it can be seen that the calculation accuracy of the corresponding 

combination of the U function is the highest and the number of iterations is the least. If only the 

sampling methods are compared, it can be seen that the calculation accuracy of the combination 

corresponding to Halton low-bias sequence sampling is the highest and the number of iterations 

is the least. Comprehensively comparing all the data, Halton-U is the combination with the best 

performance in this high-dimensional example. 

4.2.5 Support bracket 

The engineering calculation example of the supporting bracket in Section 4.1.5 is slightly 

modified. The thickness of the rib plate is changed from a probability variable to an interval 

variable. The variable distribution is shown in Table 14. The corresponding LHS is as follows:  

 max( , , ) [ ] ( , , )G L H D L H D    (38) 

where [ ]   is the artificial maximum deformation limit value. max   represents the actual 

maximum equivalent total deformation, which is an implicit function of , ,L H D  and the unit is 

610 m . The calculation results of each combination are shown in Table 15. The iteration diagram 

and box plot of the failure probability are shown in Figure 29 and Figure 30 respectively. 

Table 14 Variable information of support bracket example 

Variable Distribution Parameter one Parameter two 

Rib length L/mm Normal 30 1 

Rib width H/mm Normal 30 1 
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Rib thickness D/mm Interval 2.2 2.8 

For probability variables, parameter 1 and parameter 2 represent the mean and standard 

deviation respectively. for interval variables, parameter 1 and parameter 2 represent the lower 

bound and upper bound of the interval respectively. The following example also expresses this. 

No repeated explanation will be given later. 
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Figure. 29. Iterative diagram of maximum failure probability for support bracket engineering example 
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Figure. 30. Boxplot of maximum failure probability for support bracket engineering example 

Table 15 Calculation result of support bracket engineering example 

Method n  fP  / %  Method n  fP  / %  

MCS 6200 10  0.002955 0 Halton-U 12+71 0.002990 1.2 

LHS-H 12+79 0.002900 1.9 Halton-EFF 12+60 0.002982 1.0 

LHS-U 12+76 0.002869 2.9 ROS-H 12+87 0.003021 2.2 

LHS-EFF 12+67 0.002911 1.5 ROS-U 12+73 0.003058 3.5 
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Halton-H 12+78 0.002908 1.6 ROS-EFF 12+70 0.002927 1.0 

It can be seen from Figure 29 that the failure probability of most combinations gradually 

converges near the MCS with the optimization iteration of the learning function, while the result 

of the ROS-U combination exceeds the MCS early. But in the end, it still converges to MCS. 

The result of ROS-H combination starts to be far away from MCS, and then quickly starts to 

converge. It can also be seen from the mean values of failure probabilities in the convergence 

process of each combination in Figure 30 that the mean value of ROS-U far exceeds that of other 

combinations. It can be seen from Table 15 that each calculation error has increased to a certain 

extent compared with Table 7, but it is still within the error range. If only the learning function 

is compared, it can be seen that the calculation accuracy corresponding to the EFF function is 

higher and the number of iterations is less. Only by comparing the sampling method, it can be 

seen that the calculation accuracy corresponding to the Halton low-deviation sequence sampling 

is higher and the number of iterations is also less. Comparing all the results comprehensively, 

the performance of the Halton-EFF combination is the best in this mixed reliability engineering 

example. 

4.2.6 Square tube 

By slightly modifying the engineering calculation example of the square tube in Section 

4.1.6, the tensile force F is changed from a probability variable to an interval variable. The 

variable distribution is shown in Table 16. Each variable is independent of each other. Through 

the finite element simulation again, the following LHS is obtained: 

 max( , , , , ) [ ] ( , , , , )G L D H T F L D H T F    (39) 

where [ ]   is the yield strength of the structural steel max   represents the actual maximum 

equivalent stress. max   is an implicit function of , , , ,L H D T F   and its unit is 810 Pa  . The 

calculation results of each combination are shown in Table 17. The iteration diagram and box 

plot of the maximum failure probability are shown in Figure 31 and Figure 32 respectively: 

 Table 16 Variables information of square pipe engineering example 

Variable Distribution Parameter one Parameter two 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Cross section length L/mm Normal 200 7 

Section inner width D/mm Normal 75 2.5 

Tube chief H/mm Normal 400 13 

Temperature T/℃ Normal 50 2 

Force F/N Interval 44 56 
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Figure. 31. The iterative diagram of the maximum failure probability for square tube engineering example 
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Figure. 32. Boxplot of maximum failure probability for cantilever beam engineering example square 

tube engineering example 

Table 17 Calculation result of square tube engineering example 

Method n  fP  / %  Method n  fP  / %  

MCS 6200 10  0.008263 0 Halton-U 12+50 0.008260 0.1 

LHS-H 12+75 0.008139 1.5 Halton-EFF 12+72 0.008148 1.4 
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LHS-U 12+83 0.008129 1.6 ROS-H 12+73 0.008149 1.4 

LHS-EFF 12+70 0.008153 1.3 ROS-U 12+60 0.008208 0.7 

Halton-H 12+63 0.008205 0.7 ROS-EFF 12+81 0.008145 1.4 

It can be seen from Figure 31 that the failure probabilities of all combinations gradually 

converge near the MCS with the optimization iteration of the learning function from small to 

large. It can be seen from Table 17 that each calculation error has increased to a certain extent 

compared with Table 9, but it is still within the error range. If only the learning function is 

compared, it can be seen that the U function has higher calculation accuracy and fewer iterations. 

If only the sampling methods are compared, it can be seen that Halton low-bias sequence 

sampling corresponds to higher calculation accuracy and fewer iterations. Comparing all the 

results comprehensively, the Halton-U combination performance is the best in this mixed 

reliability engineering example. 

4.3 Numerical examples for the comparative study on system reliability 

based on hybrid adaptive framework 

As structural systems are present in engineering practice, the study of reliability analysis 

for multiple failure modes is also a crucial research focus [54-58]. This section presents four 

engineering examples of series parallel systems and introduces interval variables for further 

comparative research. 

4.3.1 System reliability analysis of probability variables based on ASVM-

MCS 

By modifying the engineering calculation example of the supporting bracket in Section 

4.1.5, adding an equivalent stress as a dependent variable, and re-passing the finite element 

simulation to obtain the LSF as shown in Eq. (40), the two branches form a double failure mode 

system. 

 
1 max

2 max

( , , ) [ ] ( , , )

( , , ) [ ] ( , , )

G L H D L H D

G L H D L H D

 

 

 


 
 (40) 

where [ ]   is the artificial maximum deformation limit value. [ ]   is the yield strength of 
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structural steel. max  represents the maximum total deformation. max  represents the maximum 

equivalent stress. Both max  and max  are implicit functions on , ,L H D . 

4.3.1.1 Series system analysis 

This engineering calculation example is constructed as a series failure mode system for 

calculation. The calculation results of each combination are shown in Table 18. The iteration 

diagram and box diagram of the failure probability are shown in Figure 33 and Figure 34 

respectively: 
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Figure. 33. Iteration diagram of failure probability of the series system for the support bracket engineering 

example 
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Figure. 34. Boxplot of failure probability of series system for support bracket engineering example 

Table 18 Calculation results of series system of support bracket engineering example 

Method n  fP  / %  Method n  fP  / %  

MCS 62 10  0.005277 0 Halton-U 12+73 0.005195 1.6 

LHS-H 12+66 0.005328 1.0 Halton-EFF 12+80 0.005205 1.4 
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LHS-U 12+82 0.005201 1.4 ROS-H 12+76 0.005219 1.1 

LHS-EFF 12+76 0.005212 1.2 ROS-U 12+81 0.005184 1.8 

Halton-H 12+70 0.005245 0.6 ROS-EFF 12+80 0.005170 2.0 

As shown in Figure 33, the calculation results of the failure probabilities of each 

combination converge regularly around the MCS, indicating that ASVM still has a good effect 

on the probabilistic reliability analysis of series systems. According to the comparison of the 

results in Table 18, if only the learning function is compared, it can be seen that the calculation 

accuracy of the combination corresponding to the H function is the highest and the number of 

iterations is the least. If only the sampling methods are compared, it can be seen that the 

calculation accuracy of the combination corresponding to the Halton low-difference sequence 

sampling is the highest and the number of iterations is the least. Comparing all the data 

comprehensively, it is considered that Halton-H is the combination with the best performance in 

this parallel system engineering example. 

4.3.1.2 Parallel system analysis 

This engineering calculation example is constructed as a parallel failure mode system for 

calculation. The calculation results of each combination are shown in Table 19. The iteration 

diagram and box diagram of the failure probability are shown in Figure 35 and Figure 36 

respectively: 
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Figure. 35. Iteration diagram of failure probability of the series system for support bracket engineering 

example 
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Figure. 36. Boxplot of failure probability of parallel system for support bracket engineering example 

Table 19 Calculation results of parallel system of support bracket engineering example 

Method n  fP  / %  Method n  fP  / %  

MCS 62 10  0.006118 0 Halton-U 12+79 0.006070 0.78 

LHS-H 12+80 0.006158 0.65 Halton-EFF 12+74 0.006140 0.36 

LHS-U 12+81 0.006005 1.85 ROS-H 12+76 0.006042 1.24 

LHS-EFF 12+86 0.006033 1.39 ROS-U 12+83 0.006026 1.50 

Halton-H 12+70 0.006059 0.96 ROS-EFF 12+77 0.006106 0.20 

As shown in Figure 35, the calculation results of the failure probabilities of each 

combination converge regularly around the MCS, indicating that ASVM also has a good effect 

on the probabilistic reliability analysis of parallel systems. According to the comparison of the 

results in Table 19, if only the learning function is compared, it can be seen that the calculation 

accuracy of the combination corresponding to the EFF function is the highest and the number of 

iterations is the least. If only the sampling methods are compared, it can be seen that the 

calculation accuracy of the combination corresponding to the Halton low-difference sequence 

sampling is the highest and the number of iterations is the least. Comparing all the data 

comprehensively, it is considered that Halton-EFF is the combination with the best performance 

in this parallel system engineering example. 
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4.3.2 System reliability analysis of mixed variables based on ASVM-MCS 

By modifying the engineering calculation example of the supporting bracket in Section 

4.2.5, an equivalent stress is added as a dependent variable. The LSF of Eq. (41) is obtained 

through finite element simulation again. The two branches form a dual failure mode system. 

 
1 max

2 max

( , , ) [ ] ( , , )

( , , ) [ ] ( , , )

G L H D L H D

G L H D L H D

 

 

 


 
 (41) 

4.3.2.1 Series system analysis 

This engineering calculation example is constructed as a series failure mode system for 

calculation. The calculation results of each combination are shown in Table 20, and the iteration 

diagram and box diagram of the failure probability are shown in Figure 37 and Figure 38 

respectively:  
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Figure. 37. Iteration diagram of the maximum failure probability of series system for support bracket 

engineering example 
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Figure. 38. Boxplot of maximum failure probability of series system for the support bracket engineering 

example 
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Table 20 Calculation results of series system of support bracket engineering example considering mixed 

uncertainties 

Method n  fP  / %  Method n  fP  / %  

MCS 6200 10  0.004592 0 Halton-U 12+73 0.004501 2.0 

LHS-H 12+76 0.004525 1.5 Halton-EFF 12+85 0.004511 1.8 

LHS-U 12+89 0.004495 2.1 ROS-H 12+78 0.004520 1.6 

LHS-EFF 12+79 0.004470 2.7 ROS-U 12+76 0.004650 1.3 

Halton-H 12+71 0.004539 1.2 ROS-EFF 12+85 0.004662 1.5 

As shown in Figure 37, the calculation results of the failure probabilities of each 

combination converge regularly around the MCS, indicating that ASVM still has a good effect 

on the probabilistic reliability analysis of series systems. According to the comparison of the 

results in Table 20, if only the learning function is compared, it can be seen that the calculation 

accuracy of the combination corresponding to the H function is the highest and the number of 

iterations is the least. If only the sampling methods are compared, it can be seen that the 

calculation accuracy of the combination corresponding to the Halton low-difference sequence 

sampling is the highest and the number of iterations is the least. Comparing all the data 

comprehensively, it is considered that Halton-H is the combination with the best performance in 

this series system hybrid reliability engineering example. 

4.3.2.2 Parallel system analysis 

This engineering calculation example is constructed as a parallel failure mode system for 

calculation. The calculation results of each combination are shown in Table 21. The iteration 

diagram and box diagram of the failure probability are shown in Figure 39 and Figure 40 

respectively: 
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Figure. 39. Iteration diagram of the maximum failure probability of parallel system for support bracket 

engineering example 

fP

Method

 

Figure. 40. Boxplot of maximum failure probability of parallel system for the support bracket engineering 

example 

Table 21. Calculation results of parallel system of support bracket engineering example considering mixed 

uncertainties 

Method n  fP  / %  Method n  fP  / %  

MCS 6200 10  0.005211 0 Halton-U 12+80 0.005098 2.2 

LHS-H 12+69 0.005156 1.1 Halton-EFF 12+83 0.005117 1.8 

LHS-U 12+77 0.005223 0.2 ROS-H 12+74 0.005181 0.6 

LHS-EFF 12+63 0.005241 0.6 ROS-U 12+87 0.005079 2.5 

Halton-H 12+72 0.005126 1.6 ROS-EFF 12+84 0.005290 1.5 

As shown in Figure 39, the calculation results of the failure probabilities of each 

combination converge regularly around the MCS, indicating that ASVM also has a good effect 
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on the probability-interval hybrid reliability analysis of parallel systems. According to the 

comparison of the results in Table 21, if only the learning function is compared, it can be seen 

that the calculation accuracy of the combination corresponding to the H function is the highest 

and the number of iterations is the least. If only the sampling method is compared, it can be seen 

that the calculation accuracy of the combination corresponding to LHS is the highest and the 

number of iterations is the least. Comparing all the data comprehensively, it is considered that 

LHS-H is the combination with the best performance in this parallel system engineering example. 

Comparing the results of four examples comprehensively, the Halton-H combination has 

the best performance in terms of system reliability. 

5 Conclusion 

Aiming at the problems and challenges in the structural reliability theory based on the 

surrogate model, this paper explores the reliability analysis method based on SVM. The main 

contents are as follows: 

(1) Proposed the hybrid ASVM-MCS framework 

Sampling techniques (LHS, Halton low-bias sequence sampling, ROS) are introduced to 

obtain a better initial sample set for SVM through more uniform sampling. By introducing 

intelligent optimization learning functions (U function, EFF, H function), selecting and updating 

sample points through specific formulas for iterative optimization, the prediction accuracy of the 

SVM model is increased. A variety of ASVM are constructed by combining them with each other. 

(2) A comparative study: The proposed ASVM-MCS framework considering random 

uncertainties  

Combining ASVM and MCS, and comparing the performance of multiple combinations 

through mathematical examples and engineering examples, this paper finally believes that 

Halton-EFF is the optimal combination for this type of problem 

(3) A comparative study: The proposed ASVM-MCS framework considering mixed 

uncertainties 

Combining ASVM with MCS, and comparing the performance of multiple combinations 

through mathematical examples and engineering examples, this paper finally believes that 
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Halton-U is the optimal combination for this type of problem. 

(4) A comparative study: The proposed ASVM-MCS system reliability framework 

Combining ASVM with MCS, and comparing the performance of multiple combinations 

through series-parallel probability and hybrid system engineering examples, this paper finally 

believes that Halton-H is the optimal combination for this type of problem. 
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