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cFaculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233
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Abstract

The effect of higher order continuity in the solution field by using NURBS basis function in isogeometric

analysis (IGA) is investigated for an efficient mixed finite element formulation for elastostatic beams. It

is based on the Hu-Washizu variational principle considering geometrical and material nonlinearities.

Here we present a reduced degree of basis functions for the additional fields of the stress resultants and

strains of the beam, which are allowed to be discontinuous across elements. This approach turns out

to significantly improve the computational efficiency and the accuracy of the results. We consider a

beam formulation with extensible directors, where cross-sectional strains are enriched to avoid Poisson

locking by an enhanced assumed strain method. In numerical examples, we show the superior per

degree-of-freedom accuracy of IGA over conventional finite element analysis, due to the higher order

continuity in the displacement field. We further verify the efficient rotational coupling between beams,

as well as the path-independence of the results.

Keywords: Beam structures, Mixed formulation, Isogeometric analysis, Nonlinearity, Rotational

continuity, Path-independence

1. Introduction

Beam models have been widely utilized for an efficient and accurate mechanical simulation of slender

rods, rod-like bodies, and their assemblies, across many application areas, see e.g., simulations of Brow-

nian dynamics of microstructures (Cyron and Wall, 2012), atomistic structures (Schmidt et al., 2015),

and entangled materials (Durville, 2005). Accordingly, many beam models have been developed, whose

applicability is, however, often limited by a certain range of geometrical characteristics of the beam,
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e.g., the slenderness ratio, and the cross-sectional shape. For an extensive classification of linear and

nonlinear beam theories, we refer readers to the recent review in Meier et al. (2019). In this paper,

we aim at expanding the applicability of our nonlinear beam formulation from the previous work (Choi

et al., 2021) to the thin beam limit, with much improved robustness and efficiency. In this paper, we

particularly investigate the effect of higher order continuity in the displacement fields of the center axis

and directors, in the framework of isogeometric analysis (IGA), using non-uniform rational B-splines

(NURBS) basis functions.

Isogeometric analysis was presented by Hughes et al. (2005) to incorporate the exact geometrical

description, inherent in computer-aided design (CAD) model, into analysis, by employing the same

spline basis functions utilized in CAD system. This approach enables not only the exact description of

the initial geometry, but also the higher order continuity in the solution field. In this study, we focus

on the superiority of the k-version of mesh refinement (smooth degree elevation) in IGA in terms of per

degree-of-freedom (DOF) accuracy in elastostatic nonlinear beam problems. We compare the results

with conventional FEA with Lagrange shape functions. For further extension to dynamic problems like

structural vibration and wave propagation, one may refer to Hughes et al. (2008). The smoothness

property in IGA enables us to use much less DOFs per element, compared with conventional FEA.

To simply illustrate this attractive property, we consider a mesh in a one-dimensional domain. For

C0-continuous finite elements, the number of nodes (or basis functions) is expressed by

nnd = p · nel + 1, (1)

where p and nel denote the degree of basis functions, and the number of elements, respectively. In

contrast, for Cp−1-continuous IGA, the number of control points (or basis functions) is

ncp = nel + p. (2)

That is, as we increase the number of elements (nel), the increase in the number of nodes in FEA is much

larger than that in IGA, and this gap increases as we choose higher p. This property simply extends to

multi-dimensional cases, see, e.g., Cottrell et al. (2006). However, it turns out that IGA also suffers from

numerical locking (Echter and Bischoff, 2010) in constrained problems like bending-dominated slender

beams. It was also shown that the higher order continuity in the displacement and rotation fields may

accentuate the locking (Adam et al., 2014).

Locking can be attributed to a field-inconsistency in the approximated strains in the conventional

displacement-based finite element formulation (Prathap, 2013). In order to alleviate locking, many

approaches have been developed, which include reduced integration methods, and mixed variational

formulations. In the framework of IGA, they can be divided into local (element-wise) and global (patch-

wise) approaches. An element-wise selective and reduced integration (SRI) method falls into the first

category. A SRI rule for quadratic NURBS basis functions was presented in Bouclier et al. (2012), and

it was generalized by Adam et al. (2014) in terms of the degree of basis functions and the inter-element

continuity. A key observation of the latter work is that additional constraints in the stiffness matrix may

arise due to higher inter-element continuity in the membrane and transverse shear strain fields, which
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can also lead to a significant spurious increase of the bending stiffness. Thus, for IGA, a local approach

always needs to be combined with an additional treatment, e.g., further reduction of the number of

quadrature points in the SRI, see Adam et al. (2014). A local approach can be also found in the context

of B̄ projection methods for IGA. For example, Hu et al. (2016) presented a reduction of the degree of

basis in the local (element-wise) projection space, which was extended to shell problems in Hu et al.

(2020). On the other hand, a patch-wise quadrature rule, which falls into the global approach, was

initiated by an observation that the conventional element-wise quadrature rule for FEA may not be

optimal for IGA (Hughes et al., 2010). Patch-wise reduced integration approaches to alleviate locking

were also developed, e.g., SRI in Adam et al. (2015), and a Greville quadrature rule in Zou et al. (2021).

A global approach in mixed formulations suffers from a significant increase of the computational cost due

to the inversion of the global Gram matrix, and the resulting dense global stiffness matrix, see, e.g., the

B̄ projection method in Bouclier et al. (2012). To overcome this, a local least square (LLSQ) method

(Govindjee et al., 2012) was employed in Bouclier et al. (2013). The LLSQ method converts the given

least square problem into an approximated one, which solves a set of independent element-wise equations.

This is much more efficient than solving the original least square problem, since it inverts the element

Gram matrices, not the global one. However, the approximation error may increase, as degree of basis p

and the inter-element continuity increase. A similar concept was employed in the mixed formulation for

alleviating membrane locking in plane Kirchhoff rods by Greco et al. (2017). This approach was extended

to shell problems in Kikis and Klinkel (2022), based on the Hellinger-Reissner variational principle, where

the test functions are allowed to have inter-element discontinuities, so that the finite element equations

for the test functions of the additional solution fields can be treated element-wisely. This enables an

efficient element-wise static condensation. However, this selection of different function spaces for the test

functions and solution leads to unsymmetric stiffness matrix. A mixed formulation was also developed in

the context of isogeometric collocation method for nonlinear beams, e.g., Marino (2017) and Weeger et al.

(2017), where the control variables of the additional fields are not condensed out, which may significantly

increase the number of DOFs, but the stiffness matrix is still sparse. Isogeometric collocation methods

are extended to deal with elasto-visco-plasticity and visco-elasticity problems in Weeger et al. (2022) and

Ferri et al. (2023), respectively. A more intuitive way to achieve field-consistency, in geometrically linear

problems, is to utilize one degree lower bases for the rotation field, e.g., see Da Veiga et al. (2012) for

plate problems and Kikis et al. (2019) for plate and shell problems.

A beam can be regarded as a spatial curve with attached deformable director vectors (or directors).

This curve is then also called directed or Cosserat curve. In this paper, the mixed formulation is based

on the first order beam kinematics in Choi et al. (2021), where it was shown that the displacement-based

beam formulation suffers from transverse shear, membrane, and curvature-thickness locking. For an

illustration of the curvature-thickness locking, one may refer to Betsch and Stein (1995). It was also

observed that the tangent stiffness matrix becomes ill-conditioned in the thin beam limit, which leads

to instability in the Newton-Raphson solution process. In our present study, a Hu-Washizu variational

principle is employed, where we introduce additional solution fields for the stress resultants and strains

of the beam. This provides the following advantages:
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• Alleviation of transverse shear, membrane, and curvature-thickness locking,

• Improved convergence of the Newton-Raphson iteration for larger load increments (Klinkel et al.,

2006; Betsch and Janz, 2016), and in the thin beam limit,

• In contrast to the Hellinger-Reissner principle, the stress resultants and strain of the beam are

independent from each other, so that we can use nonlinear constitutive laws (Santos et al., 2010).

Our mixed formulation is basically a local approach, and we alleviate the additional artificial constraints

due to the higher order continuity, by reducing the degree of basis functions in the additional solution

fields, i.e., the beam’s stress resultants and strains. This approach has the following novelties over

previous local and global approaches:

• It enables an element-wise static condensation.

• It reduces the number of internal variables, and the size of relevant stiffness (sub-)matrices, which

also makes the matrix operations in the condensation process computationally more efficient.

• It uses the same function space for the test and solution functions of the additional fields, so that

the resulting stiffness matrix is always symmetric for conservative loads.2

The remainder of this paper is organized as follows. In Section 2, we briefly review the beam kine-

matics with extensible directors, and recall the expressions of the strains, and the stress resultants of

the beam. In Section 3, we present a mixed finite element formulation, based on the Hu-Washizu vari-

ational principle. In Section 4, we present the isogeometric finite element discretization. In Section 5,

we present a formulation for imposing the rotational continuity between beams. In Section 6, several

numerical examples are presented. Section 7 concludes the paper.

2. Beam kinematics

Two transverse directions of the beam are defined by the principal directions of the second moment

of inertia tensor in the initial (undeformed) cross-section. The origin of the transverse coordinates

ζα (α ∈ {1, 2}) is defined by the geometrical center of the initial cross-section, which coincides with

the mass center under the assumption of constant mass density in the initial configuration. The line

connecting these center points of the cross-sections is called a center axis, whose position is denoted by

φ(s, t). Here, s denotes the arc-length coordinate along the initial center axis, and t denotes time. In

this paper, the argument t is often omitted for brevity. The initial beam configuration is expressed by

x0(ζ
1, ζ2, s) = φ0(s) + ζγDγ(s), (3)

where φ0(s) denotes the position of the beam’s initial center axis, and the initial cross-sectional plane is

spanned by two initial directors Dγ(s) ∈ R3 (γ ∈ {1, 2}). Here and hereafter, unless stated otherwise,

repeated Greek indices like α, β, and γ imply summation over 1 to 2, and repeated Latin indices like

2Here we assume no rotational coupling conditions. The relevant discussion is given in Section 5.

4

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


i and j imply summation over 1 to 3. We define a covariant basis Gi := ∂x0/∂ζ
i (i ∈ {1, 2, 3}) with

ζ3 ≡ s, and a contravariant basis
{
G1,G2,G3

}
is defined by the orthogonality condition Gi ·Gj = δji ,

where δji denotes the Kronecker-delta. According to the first order beam kinematics (Rhim and Lee,

1998; Durville, 2012; Choi et al., 2021), the position vector is a linear function of the coordinates ζγ

along the transverse directions, i.e.,

x(ζ1, ζ2, s, t) = φ(s, t) + ζγdγ(s, t), (4)

where φ(s, t) denotes the current position of the center axis, and the current cross-sectional plane is

spanned by two current directors dγ(s, t) ∈ R3 (γ ∈ {1, 2}). Fig. 1 schematically illustrates this beam

kinematics. Fig. 2 shows a reference domain in the case of a rectangular cross-section, where {E1,E2,E3}

denotes the standard Cartesian basis in R3, with E3 along the axial direction, and E1 and E2 along two

transverse directions.

Figure 1: An illustration of the beam kinematics in the initial and current configurations, whose domains are

denoted by B0 and Bt, respectively. C0 and Ct indicate the initial and current center axes, respectively. A0 and

At indicate the initial and current cross-sections, respectively. {e1, e2, e3} denotes the standard Cartesian basis

in R3. This figure is redrawn with modifications from Choi et al. (2021).

Figure 2: An example of the reference domain B having a rectangular cross-section with dimension h1 × h2. A

denotes the reference domain of the cross-section. This figure is redrawn with modifications from Choi et al.

(2021).

The covariant components of the Green-Lagrange strain tensor E = EijG
i ⊗Gj can be expressed in

terms of the beam strains, as (Choi et al., 2021)

E =



0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 ζ1 ζ2 ζ1ζ1 ζ2ζ2 ζ1ζ2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 ζ1 ζ2 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 ζ1 ζ2 0 0 0





ε

ρ

κ

δ

γ

χ


=: Aε, (5)
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with E := [E11, E22, E33, 2E12, 2E13, 2E23]
T
, where we have defined the beam strain arrays

ρ :=

 ρ1

ρ2

 , κ :=


κ11

κ22

2κ12

 , δ :=

 δ1

δ2

 , γ :=



γ11

γ12

γ21

γ22


, and χ :=


χ11

χ22

2χ12

 ,

and

ε :=
1

2
(
∥∥φ,s∥∥2 − 1) (axial stretching strain), (6a)

ρα := φ,s ·dα,s −φ0,s ·Dα,s (bending strain), (6b)

δα := φ,s ·dα −φ0,s ·Dα (transverse shear strain), (6c)

γαβ := dα ·dβ,s −Dα ·Dβ,s (couple shear strain), (6d)

χαβ :=
1

2
(dα ·dβ −Dα ·Dβ) (cross-section stretching and in-plane shear strains), (6e)

καβ :=
1

2
(dα,s ·dβ,s −Dα,s ·Dβ,s) (high-order bending strain). (6f)

Remark 2.1. Constant in-plane cross-sectional strains in the beam kinematics. Two extensible directors can

represent constant in-plane cross-sectional strains according to Eq. (6e), and the work-conjugate stress resultants

may not vanish as well. That is, the conventional zero-stress condition is not imposed here. The inability to

represent linear in-plane (cross-sectional) strains may artificially increase the bending stiffness, which is so called

Poisson locking. In Section 3.1, we discuss the further enrichment of the cross-sectional strain, based on the

enhanced assumed strain (EAS) method.

3. Mixed finite element formulation

3.1. Variational formulation

We assume that the strain energy density (defined as the strain energy per unit undeformed volume)

is expressed in terms of the Green-Lagrange strain tensor E = E(u) with u := x− x0, as

Ψ = Ψ(E). (7)

Then the total strain energy of the beam is obtained from

U :=

∫
B0

ΨdB0 =

∫ L

0

∫
A
Ψ j0 dAds, (8)

where j0 = (G1 × G2) · G3 denotes the Jacobian of the mapping x0(ζ
1, ζ2, s) : B → B0, such that

dB0 = j0 dB (Choi et al., 2021). In the Hu-Washizu variational principle, the total strain energy is

expressed by

UHW :=

∫ L

0

∫
A
ΨHW j0 dAds, (9)

with the strain energy density,

ΨHW = ΨHW(E(u),Ep,Sp) = Ψ(Ep) + Sp : {E(u)−Ep} , (10)
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where we have three independent solution fields, the displacement vector u, the physical Green-Lagrange

strain tensor Ep, and the physical second Piola-Kirchhoff stress tensor Sp. E(u) denotes the geometrical

(or compatible) Green-Lagrange strain tensor. The physical Green-Lagrange strain can be decomposed

into the physical kinematic part, and the enhanced part, as (Simo and Rifai, 1990)

Ep = Ec
p︸︷︷︸

kinematic

+ Ẽ︸︷︷︸
enhanced

, (11)

where the additional strain part Ẽ is intended to enrich higher order cross-sectional strains. It is noted

that, in contrast to the beam formulation of Wackerfuß and Gruttmann (2009), which considers no

cross-sectional strains (rigid cross-section) in the kinematic assumption, the kinematic part in Eq. (11)

includes a constant in-plane strain field, see Remark 2.1. Here, we employ the following orthogonality

condition (Simo and Rifai, 1990; Bischoff and Ramm, 1997)∫
B0

Sp : Ẽ dB0 = 0. (12)

From Eq. (5), the physical kinematic part can be further decomposed into

Ec
p(ζ

1, ζ2, s) = A(ζ1, ζ2) εp(s), (13)

where εp(s) denotes the array of physical (kinematic) beam strains, i.e., εp :=
[
εp,ρ

T
p ,κ

T
p , δ

T
p ,γ

T
p ,χ

T
p

]T
.

Note that we use (•) to denote the Voigt notation of a symmetric second order tensor. The enhanced

part is decomposed into

Ẽ(ζ1, ζ2, s) = Γ(ζ1, ζ2)α(s). (14)

In order to alleviate Poisson locking, we enrich the linear and bilinear strains in the cross-section, using

the polynomial basis functions

Γ(ζ1, ζ2) :=



ζ1 ζ2 ζ1ζ2 0 0 0 0 0 0

0 0 0 ζ1 ζ2 ζ1ζ2 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ζ1 ζ2 ζ1ζ2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


, (15)

with nine coefficient functions αi(s), i ∈ {1, 2, ..., 9} (Choi et al., 2021). Here, we enrich only the in-

plane cross-sectional strains, i.e., Ẽ33 = Ẽ13 = Ẽ23 = 0. For further enrichment of higher order strains

including the out-of-plane ones, one may refer to Wackerfuß and Gruttmann (2009) and Wackerfuß and

Gruttmann (2011).

Remark 3.1. It was shown in Wriggers and Reese (1996) that the EAS method may suffer from numerical

instability under large compression, for example, for the bi-linear quadrilateral element in plane strain problems

with a constant stress field. However, the hour-glass mode may not appear in the present beam formulation, since

the deformation mode does not exist in the solution space of in-plane cross-sectional deformations, represented

by two extensible directors.
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Using Eqs. (13) and (14), Eq. (11) can be rewritten, as

Ep =
[
A(ζ1, ζ2) Γ(ζ1, ζ2)

]  εp(s)

α(s)

 . (16)

Then, from Eq. (9), we obtain the total strain energy for beams, as

ŨHW =

∫ L

0

{ψ(εp,α) + ε(y) · rp − εp · rp −���α · r̃p } ds, (17)

where we have defined the strain energy density per unit undeformed length (i.e., line energy density)

ψ(εp,α) :=

∫
A
Ψ(Ep(εp,α)) j0 dA, (18)

and the array of physical stress resultants

rp :=

∫
A
ATSp j0 dA =

[
ñp, m̃

1
p, m̃

2
p, h̃

11

p , h̃
22

p , h̃
12

p , q̃
1
p, q̃

2
p, m̃

11
p , m̃

12
p , m̃

21
p , m̃

22
p , ℓ̃

11

p , ℓ̃
22

p , ℓ̃
12

p

]T
, (19)

and

r̃p :=

∫
A
ΓTSp j0 dA. (20)

The stress resultant field r̃p is removed from Eq. (17) by the orthogonality condition in Eq. (12), as∫ L

0

α ·
(∫

A
ΓTSp j0 dA

)
ds =

∫ L

0

α · r̃p ds = 0. (21)

This condition should be satisfied, regardless of the beam’s initial geometry. Therefore, we finally have

the following five independent solution fields along the center axis:

• center axis position φ(s),

• directors dα(s) (α ∈ {1, 2}),

• physical stress resultant rp(s),

• physical (kinematic) strain εp(s),

• (physical) enhanced strain α(s).

Hereafter, for brevity, we use the notation y :=
[
φT,dT1 ,d

T
2

]T
. The first variation of the beam strains

can be expressed by (Choi et al., 2021, Section A.4.2)

δε(y) = Btotal δy. (22)

Taking the first variation of Eq. (17) and substituting Eq. (22) yields

GHW
int ≡ δŨHW =

∫ L

0



δy

δrp

δεp

δα


·



BT
totalrp

ε(y)− εp
∂εp

ψ(εp,α)− rp
∂αψ(εp,α)


ds, (23)

where we have defined the stress resultants, calculated from the strain energy density function, as

∂εp
ψ(εp,α) :=

∫
A
AT∂Ep

Ψ j0 dA, (24)
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∂αψ(εp,α) :=

∫
A
ΓT∂EpΨ j0 dA, (25)

with ∂Ep
Ψ := ∂Ψ/∂Ep. The external virtual work is given by (Choi et al., 2021)

Gext (δy) =

∫ L

0

δyTR̄ ds+
[
δyTR̄0

]
s∈ΓN

, (26)

with R̄ :=
[
n̄T, ¯̃m1T, ¯̃m2T

]T
and R̄0 :=

[
n̄0

T, ¯̃m1
0
T
, ¯̃m2

0
T
]T

, where n̄ and ¯̃mα (α ∈ {1, 2}) denote the

external stress resultants from the external load on the lateral surface of the beam. n̄0 and ¯̃mα
0 denote

the prescribed stress resultants at the boundary s ∈ ΓN. Here, ΓN ⊂∅ ∪ {0, L} denotes the Neumann

boundary, where ∅ denotes the empty set. Then, we obtain the following variational equation: Find

y ∈ V, rp, εp ∈ Vp, and α ∈ Va such that

GHW
int (y, rp, εp,α, δy, δrp, δεp, δα) = Gext (δy) , ∀ δy ∈ V̄, δrp, δεp ∈ Vp, and δα ∈ Va, (27)

with the solution space given by

V :=
{
y ∈

[
H1(0, L)

]d∣∣∣φ = φ̄0, d1 = d10, and d2 = d20 on s ∈ ΓD

}
, (28)

where ΓD denotes the Dirichlet boundary, such that ΓD ∪ ΓN = {0, L} and ΓD ∩ ΓN = ∅. d = 9 is the

number of independent components in y. φ̄0 and dα0 (α ∈ {1, 2}) denote the prescribed center axis

position and director vectors, respectively, and the variational space is given by

V̄ :=
{
δy ∈

[
H1(0, L)

]d∣∣∣ δφ = δd1 = δd2 = 0 on s ∈ ΓD

}
. (29)

It is chosen such that the physical stress resultants and physical strains belong to Vp :=
[
L2(0, L)

]dp
,

and the enhanced strains belong to Va :=
[
L2(0, L)

]da
, where the number of independent functions are

dp = 15, and da = 9. This means that no inter-element continuity is required for those additional fields,

so that we can locally (element-wisely) condense out those corresponding nodal degrees-of-freedom after

the finite element approximation. Those condensed coefficients are kept as internal variables, which

requires additional computer storage. It is noted that we simply follow the conventional treatment to

consider the physical stress and strain fields in the open domain (0, L) ∋ s, without any extra boundary

conditions, see, e.g., Wackerfuß and Gruttmann (2009). A further investigation on this aspect remains

future work.

Remark 3.2. From the stationarity condition GHW
int −GHW

ext = 0, we obtain the following Euler-Lagrange equa-

tions3, which states the strong form equations of the given problem: Find y ∈ Rd, satisfying

φ = φ̄0, d1 = d10, and d2 = d20 at s ∈ ΓD, (30)

and rp ∈ Rdp , εp ∈ Rdp , and α ∈ Rda , such that

np,s + n̄ = 0 (linear momentum balance), (31a)

m̃α
p,s − lαp + ¯̃m

α
= 0, α ∈ {1, 2} (director momentum balance), (31b)

ε(y)− εp = 0 (compatibility), (31c)

∂εpψ(εp,α)− rp = 0 (constitutive equation), (31d)

∂αψ(εp,α) = 0 (zero higher order stress resultants), (31e)

3We refer this procedure to Santos et al. (2010, Section 9.3).

9

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


at s ∈ (0, L), and the Neumann boundary conditions

np − n̄0 = 0, (32a)

m̃α
p − ¯̃m

α
0 = 0, α ∈ {1, 2} , (32b)

at s ∈ ΓN, where those physical stress resultant components in the array rp of Eq. (19) are related to

np ≡ ñpφ,s + m̃α
pdα,s + q̃αpdα (stress resultant), (33a)

m̃α
p ≡ m̃α

pφ,s + h̃αβ
p dβ,s + m̃βα

p dβ , α ∈ {1, 2} (director stress couple), (33b)

lαp ≡ ℓ̃αβ
p dβ + q̃αpφ,s + m̃αβ

p dβ,s, α ∈ {1, 2} (through-the-thickness stress resultant). (33c)

3.2. Linearization

The internal virtual work GHW
int of Eq. (23) contains geometrical or material nonlinearities. Therefore,

we employ a Newton-Raphson method to solve the variational equation of Eq. (27). An external load is

incrementally applied, and using the equilibrium configuration at the previous nth load step as an initial

guess, the solution at the next, (n + 1)th load step is found. The iterative scheme to find the solution

is stated as follows: For a given solution n+1η(i−1) :=
{
n+1y(i−1), n+1r

(i−1)
p , n+1ε

(i−1)
p , n+1α(i−1)

}
∈

V × Vp × Vp × Va at the (i − 1)th iteration in the (n + 1)th load step, find the solution increment

∆η := {∆y,∆rp,∆εp,∆α} ∈ V̄ × Vp × Vp × Va such that

∆GHW
int

(
n+1η(i−1), δη,∆η

)
= Gext (δy)−GHW

int

(
n+1η(i−1), δη

)
,

∀ δη := {δy, δrp, δεp, δα} ∈ V̄ × Vp × Vp × Va. (34)

The solution is then updated by

n+1y(i) = n+1y(i−1) + ∆y, n+1y(0) = ny,

n+1r
(i)
p = n+1r

(i−1)
p + ∆rp,

n+1r
(0)
p = nrp,

n+1ε
(i)
p = n+1ε

(i−1)
p + ∆εp,

n+1ε
(0)
p = nεp,

n+1α(i) = n+1α(i−1) + ∆α, n+1α(0) = nα,


(35)

where the initial guess is given by the converged solution in the previous (nth) load step. We obtain the

increment of the internal virtual work ∆GHW
int by taking the directional derivative of Eq. (23), as

∆GHW
int =

∫ L

0



δy

δrp

δεp

δα



T 
Y TkGY BT

total 0d×dp 0d×da

0dp×dp
−1dp×dp

0dp×da

Cεε
p CaεT

p

sym. Caa
p





∆y

∆rp

∆εp

∆α


ds, (36)

with the operator (Choi et al., 2021, Section A.4.4)

Y :=



(•),s13×3 03×3 03×3

03×3 (•),s13×3 03×3

03×3 03×3 (•),s13×3

03×3 13×3 03×3

03×3 03×3 13×3


15×9

, (37)
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where 0m×n and 1n×n denote the m × n null matrix, and n × n identity matrix, respectively. Here we

have defined the constitutive matrices

Cεε
p :=

∫
A
ATCpA j0 dA, (38)

Caa
p :=

∫
A
ΓTCpΓ j0 dA, (39)

Caε
p :=

∫
A
ΓTCpA j0 dA, (40)

where

Cp :=
∂2Ψ

∂Ep ∂Ep
, (41)

and (•) denotes the Voigt notation of a fourth-order tensor with both major and minor symmetries.

4. An isogeometric finite element discretization

4.1. NURBS curve: An exact representation of the initial geometry

The initial geometry of the beam’s center axis can be represented by a spline curve. In the framework

of IGA, we use the same spline basis functions utilized in the CAD model. Here we summarize the

construction of NURBS curves. More detailed explanation on the properties of NURBS, and algorithms

for the knot insertion and degree elevation can be found in Piegl and Tiller (1996). Those two operations

are not commutative. Degree elevation followed by knot insertion maintains the maximum continuity of

the original curve, which is so called k-refinement. The other way around, increasing the degree of each

curve segment after the knot insertion, corresponds to the classical p-refinement. For a specific example

of these mesh refinement processes, see Hughes et al. (2005). For a given patch of a NURBS curve, we

have the knot vector Ξ̃ =
{
ξ1, ξ2, ..., ξncp+p+1

}
, where ξi ∈ R is the ith knot, p is the degree of basis

functions, and ncp is the total number of basis functions (or control points). B-spline basis functions are

recursively defined (Piegl and Tiller, 1996). For p = 0, they are defined by

B0
I (ξ) =

1 if ξI ≤ ξ < ξI+1,

0 otherwise,

(42)

and for p = 1, 2, 3, ..., they are defined by

Bp
I (ξ) =

ξ − ξI
ξI+p − ξI

Bp−1
I (ξ) +

ξI+p+1 − ξ

ξI+p+1 − ξI+1
Bp−1

I+1(ξ), (43)

where ξ ∈ Ξ ⊂ R denotes the parametric coordinate, and Ξ :=
[
ξ1, ξncp+p+1

]
represents the parametric

domain. We employ NURBS to exactly represent the initial geometries from a conic section like circle

and ellipse. From the B-spline basis functions, the NURBS basis functions are defined by

Np
I (ξ) =

Bp
I (ξ)wI

ncp∑
J=1

Bp
J(ξ)wJ

, (44)

where wI denotes the given weight of the Ith control point. If the weights are equal, the NURBS becomes

a B-spline. The geometry of the beam’s initial center axis can be represented by a NURBS curve, as

X(ξ) =

ncp∑
I=1

Np
I (ξ)XI , (45)
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where XI are the control point positions. The arc-length parameter along the initial center axis can be

expressed by the mapping s(ξ) : Ξ → [0, L], defined by

s(ξ) :=

∫ η=ξ

ξ1

∥X,η(η)∥ dη. (46)

Then the Jacobian of the mapping is derived as

j̃ :=
ds

dξ
= ∥X,ξ(ξ)∥ . (47)

In the discretization of the variational form, we often use the notation Np
I,s for brevity, which is defined

by

Np
I,s := Np

I,ξ

dξ

ds
=

1

j̃
Np

I,ξ, (48)

where Np
I,ξ denotes the differentiation of the basis function Np

I (ξ) with respect to ξ.

4.2. Discretization of the variational form

We may choose different degrees of basis functions for the displacements of the center axis, and

directors, which are denoted by p and pd, respectively. In this paper, we propose to use pd = p − 1 for

the field consistency in the finite element approximation of the transverse shear strain of Eq. (6c). In the

entire domain of a curve patch, we have the approximated current center axis position

φh(s(ξ)) =

ncp∑
I=1

Np
I (ξ)φI , ξ ∈ Ξ, (49)

and total director displacement d̄α := dα −Dα (α ∈ {1, 2})

d̄
h
α (s(ξ)) =

nd
cp∑

J=1

Npd

J (ξ) d̄αJ , α ∈ {1, 2} , ξ ∈ Ξ, (50)

where ndcp denotes the total number of control coefficients for the director displacement field in the patch.

In IGA, we define an element by a half-open interval between two distinct knots, i.e., a non-zero knot

span. Let Ξe := [ξe1, ξ
e
2) ∋ ξ denote the eth element, such that Ξ = Ξ1∪Ξ2∪· · ·∪Ξnel

, where nel denotes

the total number of elements. For the last element of an open curve (i.e., e = nel), we consider a closed

interval Ξnel
:= [ξnel

1 , ξnel
2 ] to include the end point. We use the same mesh (non-zero knot spans) in the

parametric domain, for the displacement fields of the axis, and directors. Therefore, we have different

control net for those two fields, with ndcp = ncp − 1. We have ne = p+ 1, and nde = pd + 1 local support

basis functions in every element, for the axis and director displacement fields, respectively. Then, we can

rewrite Eqs. (49) and (50) in each element, as

φh(s(ξ)) =

ne∑
I=1

Np
I (ξ)φ

e
I , ξ ∈ Ξe, (51)

and

d̄
h
α (s(ξ)) =

nd
e∑

J=1

Npd

J (ξ) d̄
e
αJ , ξ ∈ Ξe. (52)
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Combining Eqs. (51) and (52), we obtain

yh =


φh

d̄
h
1

d̄
h
2

 = Ne(ξ)y
e, ξ ∈ Ξe, (53)

with

Ne :=

 Np
1 13×3 · · · Np

ne
13×3 03×6nd

e

06×3ne Npd

1 16×6 · · · Npd

nd
e
16×6

 , (54)

and ye :=
[
φeT

1 , · · · ,φeT
ne
, d̄

eT
1 , · · · , d̄eT

nd
e

]T
, where φe

I ∈ R3, and d̄
e
J :=

[
d̄
eT
1J , d̄

eT
2J

]T
∈ R6 denote

the control coefficient vectors for the current axis position, and the total displacement of directors,

respectively. Note that, due to ne ̸= nde , we need to separate the arrangement of control coefficients for

the center axis position and director displacement parts.

Remark 4.1. An exact construction of the initial director field. It is noted that, in Eq. (52), we approximate the

total displacement of the directors, i.e., the difference vector between the current and initial directors. This is to

avoid the approximation error in representing the initial geometry, since the NURBS-based approximation may

not preserve the orthonormality of the initial directors. In Section 6.2, we consider a numerical example of an

initially curved beam, where we employ the smallest rotation method (see Choi and Cho (2019) and references

therein) to construct the initial orthonormal director field.

Remark 4.2. Minimum required degree pd to exactly represent rigid body rotations. The degree elevation of a

NURBS curve does not alter the curve either geometrically or parametrically (Piegl and Tiller, 1996). If the

center axis is initially modeled by a NURBS curve of the minimum required degree pg to represent the exact

geometry, and p, pd ≥ pg, the parameterization of the displacement fields of the center axis, and directors, with

basis functions of degrees p and pd, respectively, is consistent with that of the initial geometry. In order to

represent the rigid body rotations exactly for initially curved beams, it is required to use pd ≥ pg, see Section

6.2.1 for a relevant example.

In the approximation of physical stress resultants, and strains, we allow for inter-element discontinuity

for an element-wise static condensation process, and use Lagrange interpolation functions. We first define

a mapping from a parametric domain [−1, 1] ∋ ξ̄, where the Lagrange functions are defined, to the closed

interval Ξ̄e := [ξe1, ξ
e
2] ∋ ξ, as

ξ̄ = 1− 2

(
ξe2 − ξ

ξe2 − ξe1

)
. (55)

The physical stress resultants are approximated, using the Lagrange polynomial functions of degree pp,

as

rhp(s(ξ)) =
[
L
pp

1 (ξ̄)115×15 · · · L
pp

np
e
(ξ̄)115×15

]
re1
...

re
np
e

 =: Le(ξ̄) r
e, ξ̄ ∈ [−1, 1] , (56)

where reI ∈ R15 denotes the coefficient array for the physical stress resultants. L
pp

I denotes the Ith

Lagrange polynomial function of degree pp in each element, and npe = pp+1 denotes the number of basis
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functions in eth element. Similarly, the physical strains are approximated by

εhp(s(ξ)) = Le(ξ̄) e
e, with ee :=


ee1
...

ee
np
e

, ξ̄ ∈ [−1, 1] , (57)

where eeI ∈ R15 denotes the coefficient vector for the physical (kinematic) strains, I ∈ {1, 2, ..., np
e}. The

physical enhanced strain parameters are approximated by

αh(s(ξ)) =
[
Lpa

1 (ξ̄)19×9 · · · Lpa
na
e
(ξ̄)19×9

]
αe

1

...

αe
na
e

 =: L̃e(ξ̄)α
e, (58)

where αe is the array of nodal coefficients of the enhanced strain parameters, and nae = pa + 1 denotes

the number of basis functions in eth element. In this paper, we use pa = 1, as in Choi et al. (2021).

Substituting Eqs. (56) and (57) into Eq. (23), the internal virtual work is approximated by

GHW
int ≈

nel∑
e=1

∫
Ξe



δye

δre

δee

δαe


· Fe

int j̃ dξ = δy∗T

(
nel

A
e=1

Fe
int

)
, (59)

with the elemental internal load vector, Fe
int :=

[
feTy , feTr , feTε , feTa

]T
, defined by

[
fey
]
me×1

:=

∫
Ξe

BeT
total r

h
p j̃ dξ, (60a)

[fer ]mp
e×1 :=

∫
Ξe

LT
e

{
ε(yh)− εhp

}
j̃ dξ, (60b)

[feε ]mp
e×1 :=

∫
Ξe

LT
e

{
∂εp

ψ(εhp,α
h)− rhp

}
j̃ dξ, (60c)

[fea ]ma
e×1 :=

∫
Ξe

L̃
T

e ∂αψ(ε
h
p,α

h) j̃ dξ. (60d)

In Eq. (59), A denotes the finite element assembly operator, and y∗ denotes the global array of the

coefficients in the center axis position, director displacement, and additional stress and strain fields. In

Eq. (60), me = 3ne+6nde denotes the DOF number of the approximated center axis position, and director

displacement fields in each element, and mp
e = dp · npe denotes the DOF number of the approximated

physical stress resultants or (kinematic) strain field in each element, and ma
e = da · nae denotes the

DOF number of the approximated enhanced strain field in each element. The detailed expression of

matrix Be
total in Eq. (60a) can be found in Section A.1.1. The increment of internal virtual work is also

approximated by

∆GHW
int ≈

nel∑
e=1



δye

δre

δee

δαe


·Ke

int



∆ye

∆re

∆ee

∆αe


= δy∗T

(
nel

A
e=1

Ke
int

)
∆y∗, (61)
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and the element tangent stiffness matrix

Ke
int :=



ke
yy keT

ry 0me×mp
e

0me×ma
e

0mp
e×mp

e
ke
rε 0mp

e×ma
e

ke
εε keT

aε

sym. ke
aa


, (62)

with

ke
yy :=

∫
Ξe

YT
e kGYe j̃ dξ, (63a)

ke
ry :=

∫
Ξe

LT
e Be

total j̃ dξ, (63b)

ke
rε := −

∫
Ξe

LT
e Le j̃ dξ, (63c)

ke
εε :=

∫
Ξe

LT
e Cεε

p Le j̃ dξ, (63d)

ke
aε :=

∫
Ξe

L̃
T

e Caε
p Le j̃ dξ, (63e)

ke
aa :=

∫
Ξe

L̃
T

e Caa
p L̃e j̃ dξ. (63f)

Detailed expressions of kG and Ye in Eq. (63a) can be found in Appendix A.1.2. The external virtual

work of Eq. (26) is also approximated by

Gext(δy) ≈ δyTFext, with Fext :=
nel

A
e=1

Fe
ext +A

[
R̄0

]
s∈ΓN

, (64)

where y denotes the global array of the control coefficients for the center axis position, and director

displacement fields. We have also defined

Fe
ext :=

∫
Ξe

NT
e R̄ j̃ dξ. (65)

Substituting Eqs. (59), (61), and (64) into Eq. (34) gives

δy∗T

(
nel

A
e=1

Ke
int

)
∆y∗ = δyT Fext − δy∗T

(
nel

A
e=1

Fe
int

)
. (66)

4.2.1. Element-wise static condensation

Since the physical strain and stress resultants may have discontinuities between adjacent elements,

Eq. (66) can be rewritten as

nel∑
e=1

δyeT
(
ke
yy∆ye + keT

ry ∆re
)
= δyT Fext −

nel∑
e=1

δyeTfey , (67a)

ke
ry∆ye + ke

rε∆ee = −fer , e ∈ {1, · · · , nel} , (67b)

keT
rε ∆re + ke

εε∆ee + keT
aε ∆αe= −feε , e ∈ {1, · · · , nel} , (67c)

ke
aε∆ee + ke

aa∆α
e = −fea , e ∈ {1, · · · , nel} . (67d)
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Since the matrices ke
rε and ke

aa are invertible, we obtain from Eqs. (67b)-(67d)

∆ee = −ke −1
rε

(
fer + ke

ry∆ye
)
, (68a)

∆re = −ke −T
rε

(
feε + ke

εε∆ee + keT
aε ∆αe

)
, (68b)

∆αe = −ke −1
aa (fea + ke

aε∆ee) . (68c)

Then, Eq. (67a) can be rewritten as

δyTK̄∆y = δyTF̄, (69)

where we define

K̄ :=
nel

A
e=1

K̄
e
int, (70)

and

F̄ :=
nel

A
e=1

(
Fe

ext − F̄
e
int

)
+A

[
R̄0

]
s∈ΓN

, (71)

with

K̄
e
int := ke

yy + keT
ry ke −T

rε

(
ke
εε − keT

aε ke−1
aa ke

aε

)︸ ︷︷ ︸
=:k̄

e
εε

ke−1
rε ke

ry, (72)

and

F̄
e
int := fey − keT

ry ke−T
rε

{
feε − ke

εεk
e−1
rε fer − keT

aε ke−1
aa

(
fea − ke

aεk
e−1
rε fer

)}
. (73)

The only matrices which need to be inverted are ke
rε and ke

aa. By applying the displacement boundary

conditions, we finally have the following reduced system of linear equations at ith iteration in the (n+1)th

load step

n+1K̄
(i−1)
r ∆yr =

n+1F̄
(i−1)
r , (74)

where (•)r denotes the reduced vector or matrix.

Remark 4.3. Since we use different control nets for the spatial discretization of the center axis displacement,

and the director displacement fields (i.e., ncp ̸= nd
cp), the arrangement of control coefficients for those two fields

should be separated in δy, and ∆y, as well as in ∆ye and δye. This eventually makes the tangent stiffness matrix

K̄ banded locally, not globally, see the examples of sparsity patterns in Figs. 14c and 14d.

Remark 4.4. Global and local approaches to approximate the physical stress resultant and (kinematic) strain

fields. We consider the following two approaches, combined with the proposed mixed formulation within the

framework of IGA:

• A global approach (“glo”) using NURBS basis functions of degree pp = p− 1 for the physical stress

resultant and strain fields having Cpp−1 inter-element continuity, which is combined with a patch-wise

static condensation,

• A local approach allowing inter-element discontinuity of the physical stress resultant and strain fields,

which is combined with an element-wise static condensation. For IGA, depending on the selection of

degree pp, the local approach is subdivided into

– “loc”: pp = p− 1,

– “loc-ur”: Uniformly reduced degree pp = 1,

– “loc-sr”: Selectively reduced degree pp, given by Table A.1.
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The further reduction of pp in “loc-ur” and “loc-sr” aims at the alleviation of locking due to the higher order

inter-element continuity in the displacement field of IGA. In FEA, we use only the local approach, “loc”. In

all the approaches, the physical enhanced strain field is allowed to be discontinuous across the elements, which

allows an element-wise static condensation, and we always use pa = 1.

Remark 4.5. Counting operations in the static condensation process. Here we discuss the time complexity of

the element-wise static condensation process in the calculation of the element tangent stiffness matrix K̄
e
int in

Eq. (72). The inversion of a n× n matrix using the Gauss elimination process requires O(n3) operations (Moin,

2010). For a slightly more efficient algorithm, one may refer to the relevant comments in Kikis and Klinkel (2022)

and references therein. The static condensation in Eq. (72) is performed in two steps. In the first step, we condense

out the DOFs of the enhanced strains. The calculation of k̄
e
εε consists of the matrix inversion ke−1

aa , which requires

O(ma 3
e ) operations, where ma

e := na
e · da = (pa + 1) · da denotes the DOF number of the approximated enhanced

strain field in each element, i.e., the dimension of the square matrix ke
aa. The subsequent two matrix–matrix

multiplications, and the addition of the resulting matrix to ke
εε require O(ma 2

e ·mp
e +ma

e ·mp 2
e ), and O(mp 2

e )

operations, respectively, where mp
e := np

e · dp = (pp + 1) · dp denotes the DOF number of the approximated

physical stress resultants or (kinematic) strain field in each element. In this paper, we use pa = 1, so that the

time complexity for the first step is O(pp
2) with nel fixed, and is O(nel) with pa and pp fixed, due to the element-

wise operations. In the second step, we condense out the DOFs of the physical stress resultants and strains,

where we need the matrix inversion ke−1
rε , which requires O(mp 3

e ) operations. The subsequent matrix–matrix

multiplications, and the addition of the resulting matrix to ke
yy require O(me · mp 2

e + me
2 · mp

e), and O(me
2)

operations, respectively, where me := 3 · ne + 6 · nd
e = 3 · (p+ 1) + 6 · (pd + 1) denotes the DOF number of the

approximated center axis, and director displacement fields in each element. Note that, in the global approach,

the dimension of the inverted matrix is proportional to the total number of elements (nel). Table 1 summarizes

the time complexity of the static condensation in each approach. It is clear that the element-wise condensation

is much more efficient than the patch-wise one in the global approach (“glo”) for the same p, which is more

pronounced, as nel increases. Further, among the local approaches, the operations in “loc-ur” and “loc-sr” with

reduced pp are much less expensive than that in “loc”, since pp is much smaller than p, which is more pronounced,

as p or nel increases.

Table 1: Time complexity of the static condensation in the global and local approaches. Note that the degrees

pp in the approach “loc-ur” and “loc-sr” of IGA are much smaller than p.

First step (condensation of α) Second step (condensation of rp and εp)

nel changing,

with p fixed

pa = 1, p changing,

with nel fixed

nel changing,

with p fixed

p changing,

with nel fixed

glo O(nel) O(p2) O(nel
3) O(p3)

loc O(nel) O(p2) O(nel) O(p3)

loc-ur O(nel) O(pp
2) O(nel) O(pp · p2)

loc-sr O(nel) O(pp
2) O(nel) O(pp · p2)
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4.2.2. Update of the configuration and internal variables

Using the solution increment ∆yr obtained by solving Eq. (74), we update the control coefficients φI

and d̄J by the following procedure: At the ith iteration in the (n+ 1)th load step, we update

n+1φ
(i)
I = n+1φ

(i−1)
I +∆φI , I ∈ {1, 2, · · · , ncp} , (75a)

n+1d̄
(i)
J = n+1d̄

(i−1)
J +∆dJ , J ∈

{
1, 2, · · · , ndcp

}
, (75b)

with the initial guesses n+1φ
(0)
I ≡ nφI , and

n+1d̄
(0)
J ≡ nd̄J , from the equilibrium configuration in the

previous (nth) load step. Further, from ∆yr, ∆ye can be simply extracted for each element, and is

substituted into Eq. (68) to obtain the increment of internal variables ∆ee, ∆re, and ∆αe. Then, for

every element e ∈ {1, · · · , nel}, we update

n+1ee (i) = n+1ee (i−1) +∆ee, (76a)

n+1re (i) = n+1re (i−1) +∆re, (76b)

n+1αe (i) = n+1αe (i−1) +∆αe, (76c)

with the initial guesses n+1ee (0) ≡ nee, n+1re (0) ≡ nre, and n+1αe (0) ≡ nαe, from the converged solution

in the previous (nth) load step.

5. Imposition of rotational continuity between beams

In order to facilitate the connection of multiple beams with an arbitrary initial intersection angle

and rotational continuity, we introduce rotational degrees-of-freedom for directors at the ends of beam.

Here we are only concerned with the rigid joint condition, that is, all the connected beams’ cross-sections

may have only three rotational degrees-of-freedom. However, in contrast to the conventional rigid joint,

our formulation may still allow stretching along the two directors in each cross-section. The presented

formulation is limited to the finite element basis functions having Kronecker-delta property at the end

points of the beam. Therefore, for IGA, we only use clamped knot vectors. This enables us to simply

apply the necessary transformation operations after the finite element approximation, considering only

the director coefficients corresponding to the end points, as in the conventional finite element formulation,

e.g., see Romero and Armero (2002).

5.1. Multiplicative decomposition of the directors

The director vectors can be decomposed into a unit director and a scalar stretch, as (Simo et al.,

1990)

dα(s) = λα(s) tα(s), (77)

with the stretch ratio λα(s) := ∥dα(s)∥ > 0, where no summation is implied on α ∈ {1, 2}. Further, the

unit vectors can be expressed by rotational transformation as

tα(s) = Λα(s)Eα with Λα(s) ∈ S2α, α ∈ {1, 2} , (78)
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where we define (Simo and Fox, 1989)

S2α :=
{
Λ ∈ SO(3)|Λψ = ψ, and ψ ∈ R3 satisfies ψ ·Eα = 0

}
. (79)

SO(3) defines the set of proper orthogonal tensors in three-dimensional space, and S2α is a subset of

SO(3) such that the axis of rotation is orthogonal to Eα ∈ R3. That is, each unit director tα can be

parameterized by two rotational DOFs. Here, for simplicity, we restrict our discussion by removing the

DOF of changing the angle between two unit directors t1 and t2. Therefore, the rotational motion of two

unit directors is described by three rotational DOFs, which constitutes the orthogonal tensor Λ, such

that

tα(s) = Λ(s)Eα with Λ(s) ∈ SO(3), α ∈ {1, 2} . (80)

At an admissible perturbed configuration, Eq. (80) can be rewritten as

tαε(s) = Λε(s)Eα, ε ∈ R, (81)

where the subscript (•)ε indicates the dependence of (•) to the perturbation amount ε. Hereafter, we

often omit the argument s for brevity. Taking the directional derivative of Eq. (81) yields

δtα :=
d

dε
tαε|ε=0 = δ̂θ tα, α ∈ {1, 2} , (82)

where δ̂θ := δΛΛT is a skew-symmetric tensor, with the notation (̂•) representing the skew-symmetric

tensor associated for a given vector (•) ∈ R3, such that (̂•)h = (•)×h, ∀h ∈ R3. Thus, in the cross-section

at a selected end point, we eventually have three rotational DOFs, i.e., the components of δθ ∈ R3. Note

that the stretches along the directors, λα > 0 (α ∈ {1, 2}) are kinematically not constrained. Taking the

first variation of the director in Eq. (77), and substituting Eq. (82) gives

 δd1

δd2

 = Ξ


δθ

δµ1

δµ2

 , with Ξ :=

 −d̂1 d1 03×1

−d̂2 03×1 d2

 , (83)

where µα := lnλα (α ∈ {1, 2}) defines the logarithmic stretch ratio.

5.2. Isogeometric finite element formulation

Fig. 3 illustrates two cases of junction positions in a curve patch, where we can apply the joint

condition to

• Case 1 (joint at the left-end): the first control point (K = 1) having local support at the first

element e = 1, or

• Case 2 (joint at the right-end): the last control point (K = ndcp) having local support at the last

element nel,

where K denotes the index of control points in a given curve patch. Here, for simplicity, we consider

that an end element has a joint condition only at one end.
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Figure 3: Illustration of two cases of joint positions. The curve patch (solid line) of pd = 3 consists of three

elements, and □ and △ indicate the control points having local support at the first (e = 1) and the last element

(e = nel) of the patch, respectively. A joint condition can be imposed at the left end (the first control point, i.e.,

K = 1) (top figure) or the right end (the last control point, i.e., K = nd
cp) (bottom figure).

We also denote a set of indices of elements having a joint condition by J . That is, if eth element has

a joint condition, e ∈ J , otherwise, e ̸∈ J . At the end control point of the patch, using Eq. (83), we

reduce the six director DOFs to five, three rotation parameters and two logarithmic stretch ratios, such

that

δdK :=

 δd1K

δd2K

 = ΞK


δΘK

δµ1K

δµ2K

 , (84)

with

ΞK :=

 −d̂1K d1K 03×1

−d̂2K 03×1 d2K


6×5

, (85)

where K = 1 for e = 1 (i.e., Case 1), and K = ndcp for e = nel (i.e., Case 2), see also TableA.2 for the

pair of indices in each case. Here, we also define dαK := dhα|s=0 for K = 1, and dαK := dhα|s=L for

K = ndcp.

Remark 5.1. In our computer implementation, for convenience, we introduce a fictitious DOF (δΘ∗
K) to have

the same number of control coefficients at the selected boundary control points as we have at internal control

points. The matrix ΞK is also modified to have an additional sixth column of zeros accordingly, as

δdK = Ξ∗
Kδd

∗
K , with Ξ∗

K :=
[

ΞK 06×1

]
6×6

, and δd∗
K :=



δΘK

δµ1K

δµ2K

δΘ∗
K


, K ∈

{
1, nd

cp

}
. (86)

Note that the fictitious DOF (δΘ∗
K) is associated with the change of the angle between two directors, which is not

allowed in the rigid joint condition. The artificial DOFs are removed, together with the constrained displacement

DOFs, so that they are not considered in the final reduced system of linear equations.

Thus, if the first or last element of the given NURBS patch contains a junction, we apply the transfor-

mation

δde = Ξeδd∗e, e ∈ J , (87)
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with

Ξe :=



 Ξ∗
1 06×6(nd

e−1)

06(nd
e−1)×6 16(nd

e−1)×6(nd
e−1)

 , if e = 1, (Case 1)

 16(nd
e−1)×6(nd

e−1) 06(nd
e−1)×6

06×6(nd
e−1) Ξ∗

nd
cp

 , if e = nel, (Case 2)

(88)

and we define

δd∗e :=



[
δd∗T

1 , δdeT
2 , · · · , δdeT

nd
e−1, δd

eT
nd
e

]T
, if e = 1, (Case 1)

[
δdeT

1 , δdeT
2 , · · · , δdeT

nd
e−1, δd

∗T
nd
cp

]T
, if e = nel. (Case 2)

(89)

For convenience, we further define

Ξ̃
e
:=

 13ne×3ne
03ne×6nd

e

06nd
e×3ne

Ξe

 , and δỹe :=

 δφe

δd∗e

 , (90)

such that

δye = Ξ̃
e
δỹe. (91)

The same transformation applies to the increment,

∆ye = Ξ̃
e
∆ỹe. (92)

For an element that contains a junction at the end (e ∈ J ), the internal load vector of the element is

transformed, as

δyeTF̄
e
int = δỹeTF̃

e

int with F̃
e

int := Ξ̃
eT

F̄
e
int, (93)

where F̄
e
int is given in Eq. (73). In the same way, the elemental external load vector is also transformed

by

δyeTFe
ext = δỹeTF̃

e

ext with F̃
e

ext := Ξ̃
eT

Fe
ext. (94)

5.2.1. Linearization

The transformation of Eq. (87) also contributes to the geometric tangent stiffness, due to its depen-

dence on the current directors at the junction. Applying a perturbation to the transformation matrix,

the term δyeTfey in Eq. (59) can be rewritten, as

δyeT
ε fey = δỹeTΞ̃

eT

ε fey , ε ∈ R, e ∈ J . (95)

Then, the directional derivative is obtained by

d

dε

(
δỹeTΞ̃

eT

ε fey

)∣∣∣
ε=0

=


δΘK

δµ1K

δµ2K


T

KK


∆ΘK

∆µ1K

∆µ2K

 = δd∗T
K K∗

K∆d∗
K , (96)
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where

KK =


dαK ⊗ m̃α

K − (dαK · m̃α
K)13×3 m1

K m2
K

m1T
K d1K · m̃1

K 0

m2T
K 0 d2K · m̃2

K


5×5

, (97)

with a repeated index α ∈ {1, 2}, and no summation implied on K ∈
{
1, ndcp

}
. m̃α

K denotes the director

stress couple at the junction, which is simply obtained by the components, conjugate to δdαK , in the

elemental array fey . Note that δdαK ≡ δde
αI , based on the correspondence between the indices e, I, andK

in each of the Cases 1 and 2, see TableA.2. We also define the moment at the junction, mα
K := dαK×m̃α

K

(no sum on α ∈ {1, 2}). In the second equality of Eq. (96), we also introduce the fictitious sixth row and

column of zeros,

K∗
K =

 KK 05×1

01×5 0


6×6

. (98)

Then, the geometrical element tangent stiffness matrix due to the joint condition for the eth element

(e ∈ J ) is obtained by

K̃
e
=

 03ne×3ne
03ne×6nd

e

06nd
e×3ne

Ke

 , (99)

with

Ke :=



 K∗
1 06×6(nd

e−1)

06(nd
e−1)×6 06(nd

e−1)×6(nd
e−1)

 , if e = 1, (Case 1)

 06(nd
e−1)×6(nd

e−1) 06(nd
e−1)×6

06×6(nd
e−1) K∗

nd
cp

 , if e = nel. (Case 2)

(100)

Applying the transformation of Eqs. (91) and (92), and adding the additional geometric tangent stiffness

of Eq. (99), we obtain the tangent stiffness matrix of the element containing the joint, as

K̄e
int := Ξ̃

eT
K̄

e
int Ξ̃

e
+ K̃

e
, e ∈ J , (101)

where K̄
e
int is given in Eq. (72). Then, considering the joint condition, Eq. (69) can be rewritten as

δỹTK̄∆ỹ = δỹTF̄, (102)

where

K̄ := A
e ̸∈J

K̄
e
int + A

e∈J
K̄e

int, (103)

and

F̄ := A
e ̸∈J

(
Fe

ext − F̄
e
int

)
+ A

e∈J

(
F̃

e

ext − F̃
e

int

)
+A

[
R̄0

]
s∈ΓN

. (104)

After removing the rows and columns corresponding to the constrained DOFs from the Dirichlet (dis-

placement) boundary conditions, and the fictitious DOFs (see Remark 5.1) in the joint conditions, we

22

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


obtain the system of linear equations

K̄r ∆ỹr = F̄r, (105)

where the subscript (•)r in Eq. (105) denotes the reduced vector or matrix.

Remark 5.2. Symmetry of the tangent stiffness matrix at equilibrium. It appears that the additional geometric

tangent stiffness matrix due to the joint condition is generally non-symmetric due to the term dαK ⊗ m̃α
K . It has

been discussed in Simo and Vu-Quoc (1986, Sections 4.1 and 4.2) that the presence of a rotation group, which is

a nonlinear manifold, in configuration space leads to the non-symmetry; however, they also proved that the skew-

symmetric part of the geometric tangent stiffness operator vanishes at the equilibrium configuration. In a similar

manner, we further examine the skew-symmetric part of the tangent stiffness matrix, i.e., K∗A
K := 1

2

(
K∗

K −K∗T
K

)
,

which gives

δd∗
K ·K∗A

K ∆d∗
K = δΘK · 1

2
(dαK ⊗ m̃α

K − m̃α
K ⊗ dαK)∆ΘK =

1

2
mα

K · δΘK ×∆ΘK . (106)

For multiple beams (NURBS patches) connected to a joint with rotational continuity condition (δΘK)1 = · · · =

(δΘK)N ≡ δΘ and (∆ΘK)1 = · · · = (∆ΘK)N ≡ ∆Θ, where the subscript (•)i denotes that the quantity belongs

to i-th constituent beam (patch), and N denotes the total number of connected beams. Then, we can rewrite

Eq. (106) as
N∑
i=1

(
δd∗

K ·K∗A
K ∆d∗

K

)
i
= δΘ×∆Θ · 1

2

N∑
i=1

(mα
K)i. (107)

By the moment equilibrium at the joint,
N∑
i=1

(mα
K)i = 0. (108)

Therefore, the skew-symmetric part of the tangent stiffness matrix vanishes at equilibrium. That is, in the

equilibrium configuration, the symmetry of the global tangent stiffness matrix solely depends on whether the

external loading is conservative. In non-equilibrium configurations, the additional geometrical tangent stiffness

due to the rotational continuity conditions leads to an unsymmetric tangent stiffness matrix.

5.2.2. Configuration update procedure

For an end control point under the joint condition, the update process in Eq. (75b) should be replaced

by a multiplicative one for an exact update. Using Eq. (77), the end directors are decomposed into

n+1d
(i)
αK = n+1λ

(i)
αK

n+1t
(i)
αK . (109)

The finite rotation of the unit director, due to the (finite) incremental rotation ∆Θ, can be expressed

by (Argyris, 1982)

n+1t
(i)
αK = exp

[
∆̂Θ

]
n+1t

(i−1)
αK , n+1t

(0)
αK ≡ ntαK , (110)

where

exp
[
∆̂Θ

]
= 1+

sinΘ

Θ
∆̂Θ+

1− cosΘ

Θ2
∆̂Θ

2
, if Θ := ∥∆Θ∥ ≠ 0, (111)

and it becomes the identity tensor, if Θ = 0. The stretch ratio is also updated by the (finite) increment

of the logarithmic stretch ratio ∆µαK , as

n+1λ
(i)
αK = exp

[
n+1µ

(i)
αK

]
, (112)

with

n+1µ
(i)
αK = n+1µ

(i−1)
αK +∆µαK ,

n+1µ
(0)
αK ≡ nµαK . (113)
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Remark 5.3. It should be noted that the presented configuration update procedure does not require any sec-

ondary storage for the cross-sectional orientation and stretch at the previous iteration step, i.e., n+1t
(i−1)
αK , and

n+1µ
(i−1)
αK , respectively. This is due to the fact that they can be simply calculated using the primary control

coefficients of the director displacement d̄K :=
[
d̄
T
1K , d̄

T
2K

]T
(K ∈

{
1, nd

cp

}
) in Eq. (50), that is, the displacement

of directors at the joint.

6. Numerical examples

In numerical examples, we compare several approaches of approximating the physical stress resultant

and strain fields, see Remark 4.4. In all the considered approaches, we use the element-wise full Gauss

integration along the axis (“FI”). For the integration over the cross-section, we also use Gauss integration,

with 3× 3 quadrature points.

6.1. Cantilever beam under bending moment

We consider an initially straight beam of length L = 10m with a rectangular cross-section of width

w = 1m and thickness h. A St.Venant–Kirchhoff type material is considered, with Young’s modulus

E = 1.2 × 107 Pa, and Poisson’s ratio ν = 0. The beam’s left-end is kinematically constrained, and

the other end is subject to a moment load M = 2πEI/L, where I = wh3/12 denotes the second

area moment of inertia of the cross-section, see Fig. 4. The moment load is applied by a distributed

follower load on the cross-section at the right-end, whose expressions of the external virtual work and

its increment can be found in Choi et al. (2021). Here, we apply the total moment load in 10 load steps,

with uniform increments. At the left-end, the cross-section’s translation and rotation are constrained,

but the transverse normal (through-the-thickness) stretching is allowed, so that

φ = φ0, ∆d11 = ∆d12 = 0, and ∆d13 is free, (114)

where ∆dαi := ∆dα · ei. For the given problem, we have an analytical solution for the thin beam limit

(pure bending condition), such that the moment M deforms the beam’s axis into a circle with radius

R = EI/M .

Figure 4: Cantilever beam under bending moment. Geometry and boundary conditions. Note that the thickness

stretch (∆d13) is free at s = 0.

6.1.1. Alleviation of locking for p = 2 in IGA by reducing pd

Figs. 5a and 5b show the distribution of the transverse shear strain along the beam’s axis resulting

from FEA and IGA, respectively. In both cases, we use the element-wise uniformly reduced integration

(URI). The FEA result shows that the positions of the Gauss quadrature points in every element coincide
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with the zeros of the transverse shear strain, which is discontinuous across the elements. Thus, transverse

shear locking can be alleviated by URI in FEA. However, in the IGA results, it is seen that the continuous

strain distribution vanishes in other locations than the Gauss quadrature points, except at the first and

last quadrature points. This means that an element-wise uniformly reduced integration is not an effective

tool for IGA to alleviate transverse shear locking, see Adam et al. (2014) for a more detailed discussion.

Transverse shear locking can be explained by the field-inconsistency paradigm (Prathap, 2013). To

circumvent this inconsistency, we may consider to use one degree lower basis functions for the director

field. In Fig. 6, we investigate the effectiveness of using pd = p − 1 to alleviate the transverse shear

locking. Note that it is combined with the element-wise full Gauss integration along the axis (“FI”).

0 5 10

-0.1

0

0.1

(a) FEA, p = pd = 2, URI

0 5 10

-0.5

0

0.5

(b) IGA, p = pd = 2, URI

Figure 5: Cantilever beam under bending moment: Comparison of the transverse shear strain distribution along

the beam’s axis according to FEA and IGA. The slenderness ratio is L/h = 102. In both cases, we use quadratic

basis functions, and five elements. In every element, we use two Gauss quadrature points (nG = 2), i.e., uniformly

reduced integration (URI). The hollow circles represent the positions of the Gauss quadrature points, and the

dashed vertical lines represent the element boundaries. All results are obtained from the displacement-based

formulation.

We first recall the expressions of the bending, membrane (axial), and transverse normal (through-the-

thickness) strain energies in Choi et al. (2021),

Πρ :=

∫ L

0

m̃1ρ1 ds ∼ h3, (115)

Πε :=

∫ L

0

ñ εds ∼ h5, (116)

and

Πχ :=

∫ L

0

l̃
11
χ11 ds ∼ h5, (117)

respectively. Therefore, the ratios Πε/Πρ and Πχ/Πρ should decrease quadratically with decreasing the

initial cross-sectional thickness h. Further, we investigate the transverse shear strain energy, defined by

Πδ :=

∫ L

0

q̃1δ1 ds. (118)

In the calculation of the strain energies in Eqs. (115)-(118), we use

• compatible strains in Eq. (6), with the approximated displacements, for the displacement-based

formulation,
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• approximated physical stress resultants in Eq. (56), and physical strains in Eq. (57) for the mixed

formulation.
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(d) Transverse normal strain

Figure 6: Cantilever beam under bending moment: Comparison of the strain energies resulting from different

selection of pd, including the cases of using (i) the same degree of basis p = pd = 1, 2 with the uniformly reduced

integration (URI), and (ii) different degree of basis p = 2 and pd = 1 with three Gauss quadrature points per

element (nG = 3), i.e., full integration (FI). Note that IGA using p = 1 gives the same result with that from

FEA using p = 1. All results are from the displacement-based formulation, and nel = 10.

Fig. 6a shows that the FEA result with p = 2 and URI (black curve with cross markers) exhibits a cubic

rate of decrease of the bending strain energy, as expected by Eq. (115). However, the result from IGA

with p = 2 and URI (red curve) shows, as expected, deviation from the analytical rate of decrease due to

locking. In IGA, only in the case of p = 1, shows the correct decrease rate, since it has no inter-element

continuity in the transverse shear and membrane strain fields, as in FEA. It is also seen in Fig. 6a that

IGA with p = 2 and pd = 1 (blue curve) suffers from severe locking. However, in Fig. 6b, the reduction

of pd to 1 (blue curve) yields much smaller spurious transverse shear strain energy than that from IGA

(p = pd = 2) with URI (red curve). In Figs. 6c and 6d, it is seen that the IGA results show spurious

increase in both of the membrane, and transverse normal strains. In contrast, the results having no
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higher inter-element continuity in the strain fields (black curves) show the quadratic rate of decrease in

both cases. This adverse effect of higher order continuity in IGA can be also observed in results from

the mixed formulation. In Fig. 7, we investigate the decrease rate of the strain energy, obtained by using

the mixed formulation, for different cases of pd and the inter-element continuity of the strains.
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Figure 7: Cantilever beam under bending moment: Comparison of the strain energies resulting from different

selection of pd, including the cases of using (i) the same degrees of bases p = pd = 2, and (ii) different degrees of

bases p = 2 and pd = 1, and pp = 1. All results are from the mixed formulation with pp = 1, combined with the

local approach, full integration along the axis (nG = 3), and nel = 10.

In Fig. 7, it is seen that the IGA using the mixed formulation, combined with a local (element-wise)

static condensation (red curve), suffers from severe locking, see spurious strain energy in Figs. 7b-7d,

and the resulting spuriously higher decrease rate of the bending strain energy in Fig. 7a. This is due to

the fact that it does not consider the locking arising from the continuity condition of the strain fields.

Surprisingly, if we reduce pd to 1 (blue curve), the transverse shear strain vanishes at fifth order rate, as

in the FEA result, and all the other spurious strain energies also vanish.

In order to further investigate the alleviation of locking, we compare the distribution of the axial (ε),

transverse shear (δ1), transverse normal (χ11), and couple shear (γ11) strains along the axis, resulting
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from three different finite element approximations in the mixed formulation using p = 2. Fig. 8 compares

the distribution of the transverse shear strain. In every case shown in Fig. 8, the physical strain agrees

very well with the element-wise average of the geometrical strain (black hollow circles), which means the

compatibility condition is weakly satisfied well. For the polynomial basis functions of p = pd = 2, the

transverse shear strain δ1 of Eq. (6c) is a cubic polynomial. In Fig. 8a, the FEA result (Case 1) clearly

shows the cubic (black) curve within each element; however, in the IGA result (Case 2), the geometric

strain field in each element (black curve) is very close to a quadratic function. This is attributed to

the additional constraints in IGA for the inter-element C0-continuity of δ1, and it eventually leads to

oscillatory distribution of the physical strains to satisfy the compatibility condition. In the FEA result

(Case 1), the geometric strain does not vanish, but the corresponding physical strain, using the degree

of basis pp = 1, vanishes properly, see also the physical strain distribution (blue square markers) in

Fig. 8b. In contrast, the IGA results with the same degrees of bases p = pd = 2, and pp = 1 (Case 2)

shows a significant amount of the transverse shear strain, which leads to a severe (artificial) increase of

the bending stiffness. By decreasing the degree pd in Case 3, the transverse shear locking is effectively

alleviated. It is noticeable that the geometrical strain also vanishes, in contrast to the FEA result using

pd = p = 2 (Case 1).
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Figure 8: Cantilever beam under bending moment: Distribution of the transverse shear strain δ1 along the axis.

(a) Comparison of the geometrical (black curves) and physical strains (colored curves) along the axis, obtained

by three different formulations (Cases 1-3). In the result of Case 3, the black and red curves are overlapping. (b)

Those physical strains in (a) are re-plotted in the common ordinate. In all results, we use ten elements (nel = 10),

and the selected slenderness ratio is L/h = 105. The dashed lines represent the element boundaries, and the

hollow circles in (a) represent element-wise average of the geometric strain.

Fig. 9 compares the distribution of the transverse normal strain (through-the-thickness stretch), and the

couple shear strain along the axis. For degree pd = p = 2 polynomial bases of director displacements, the

transverse normal strain χ11 in Eq. (6e) is a quartic polynomial. Similar to the previous case of transverse
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shear strain distribution, it is observed in Fig. 9a that the geometric strain field in the result of Case 2

is closer to a cubic function within each element, but the FEA result shows a quartic distribution of the

geometric strain in each element. In Case 3, we use pd = p−1 = 2, so that χ11 is a quadratic polynomial,

see the parabolic (black) curve in the result of Case 3 in Fig. 9a. The geometrical couple shear strain γ11

is one degree lower than χ11, due to γ11 = χ11,s, see the geometric strains (black curves) in Fig. 9b. Here

we observe an inconsistency between the strain fields γ11 and χ11,s, i.e., γ11 ̸= χp
11,s, in all the cases.

However, this couple shear strain is a higher order strain than the transverse shear strain, in terms of

the transverse coordinate ζ1 in the Green-Lagrange strain component E31, see Eq. (5). Thus, it may not

significantly affect the overall response in thin beams. Further alleviation of this inconsistency remains

future work.
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(a) Transverse normal strain
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Figure 9: Cantilever beam under bending moment: Distribution of the transverse normal (χ11), and couple

shear (γ11) strains along the axis. The geometrical (black curves) and physical (colored curves) strains in the

three cases of the mixed formulation are compared. The hollow circles represent the element-wise average of

the geometrical strain. In the result of Case 3 in (b), the black and red curves are overlapping. In all results,

nel = 10, and L/h = 105. The dashed lines represent the element boundaries.

Fig. 10 compares the distribution of the axial (membrane) strain along the axis. For the degree p = 2

polynomial bases of the axial displacement, the axial strain is a quadratic polynomial, see the parabolic

(black) curves for the geometric strains in Fig. 10a. In Fig. 10a, the physical strain in Case 2 shows

slight discontinuities across the elements, which can be more clearly seen in Fig. 10b. Thus, in full Gauss

integration along the axis, the spurious membrane strain is evaluated, which also contributes to the

artificial increase of the bending stiffness. It is remarkable that, when we reduce the degree pd in Case

3, the spurious physical axial strain vanishes. Although the director is not explicitly associated with the

axial strain, the alleviation of other coupled spurious strains may affect the axial deformation as well in

geometrically nonlinear problems.
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Figure 10: Cantilever beam under bending moment: Distribution of the axial strain ε along the axis. (a)

Comparison of the distribution of the geometrical (black curves) and physical (colored curves) axial strains along

the axis in the three cases. The hollow circles in (a) represent element-wise average of the geometric strain. (b)

Those physical strains in (a) are re-plotted in the common ordinate. In all results, nel = 10, and L/h = 105. The

dashed lines represent the element boundaries.

Observation 6.1.

• Local approaches like the element-wise uniformly reduced integration, and the mixed formulation, with

discontinuous physical stress resultants and strains across the elements, is not effective to alleviate numerical

locking in IGA, due to the higher order continuity in the displacement field.

• In the displacement-based formulation, the reduced degree pd = p − 1 alleviates transverse shear locking

due to the field consistency; however, it still suffers from severe membrane and curvature-thickness locking.

• In the mixed formulation (IGA, “loc-ur”) with p = 2 and pp = 1, the reduced degree pd = p− 1 = 1 turns

out to alleviate the numerical locking.

In the following, it will be shown that the system is again significantly over-stiffened, as we increase the

order of basis functions, p, and pd = p− 1. To alleviate this, for p > 2, we additionally adjust the degree

pp of the basis functions for the additional fields, physical stress resultants and strains.

6.1.2. Alleviation of locking for p = 3 and pd = 2 in IGA by reducing pp

Fig. 11 compares the convergence rate of strain energies resulting from using pp = p− 1 = 2 (“loc”)

and pp = 1 (“loc-ur”). Further, in order to investigate the effect of reducing pd, we additionally consider

two different selections, pd = p = 3, and pd = p−1 = 2. In Fig. 11, in the results from using pp = p−1 = 2

(black and blue curves) or pd = p = 3 (magenta curve), deteriorated convergences are clearly observed.

In Fig. 11b, between the results from using pp = 2, the amount of spurious transverse shear strain energy

is significantly lower for pd = p−1 = 2 (black curve), than the other from using pd = p = 3 (blue curve).

This also shows the alleviation of transverse shear locking by reducing pd = p − 1, as we observed in
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Section 6.1.1. It is remarkable that, when we choose the degrees pp = 1 and pd = 2, the correct decrease

rates are achieved in all cases (red curves).
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Figure 11: Cantilever beam under bending moment: Comparison of the strain energy from the different pp,

and pd. All results are from the mixed formulation with p = 3, combined with the local (element-wise) static

condensation, full integration (nG = 4), and nel = 10.

Observation 6.2.

• It is seen that the conventional selection of pp = p− 1 may lead to significantly over-constrained system in

IGA, due to additional artificial constraints arising from the higher order continuity in the displacement

field.

• It is verified that, by reducing the degree pd and pp, numerical locking can be effectively alleviated.

In the following two sections, we verify the advantages of IGA combined with the presented approach

“loc-ur”, in terms of the computational accuracy and efficiency over the conventional FEA, due to the

higher order continuity in the NURBS basis functions.
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6.1.3. Verification of the superior convergence behavior of IGA in h-refinement

We verify the convergence rate of the presented mixed isogeometric beam formulation, with the

reduced degrees of bases, pd and pp. We compare the IGA results with the FEA results using the Lagrange

polynomial bases of degree p. In FEA, we use p = pd, and the following two different formulations to

alleviate locking,

• the displacement-based formulation with a uniformly reduced integration along the axis (URI) with

nG = p,

• the mixed formulation with the degree of bases pp = p− 1 for the additional fields of the physical

stress resultants and strains.

For all the IGA and FEA results based on the mixed formulation, we use nG = p+ 1 Gauss integration

points for the exact (full) integration. For the given problem, we have an analytical solution in the thin

beam limit (pure bending condition), in which the X-displacement of the center axis is expressed by

uref = R sin
X

R
− L. (119)

For the following verification of the numerical solutions, we utilize the relative L2 norm of the difference

in the X-displacement (u) along the center axis

∥eu∥L2 :=

√√√√∫ L

0
(u− uref)

2
ds∫ L

0
uref 2 ds

. (120)

Fig. 12 compares the convergence of this quantity between the results of FEA and IGA. Figs. 12a and

12b plot the same results with different abscissae: the number of elements, and the number of DOFs,

respectively. In Fig. 12a, it is seen that the FEA results from using the displacement-based formulation

with URI (black curves with hollow markers) shows the same rate of convergence with FEA results from

using the mixed formulation (black curves with filled markers) for all degrees of bases, p = 1, 2, 3, but the

mixed formulation gives more accurate results due to more accurate numerical integration. Further, in

cases of very high beam slenderness ratio, the URI requires much more iterations in the Newton-Raphson

process, compared with the mixed formulation, which will be shown in Section 6.1.5. In the IGA results

(red and magenta curves), even though we use pd = p− 1, one degree lower than that of FEA (pd = p),

the convergence rate still agrees very well with the analytical (asymptotic) rate (order p + 1). Fig. 12b

clearly shows that IGA gives superior per DOF accuracy, compared with conventional FEA. It should be

noted that the number of DOFs in Fig. 12b only contains the displacement DOFs. In the case of p = 3,

IGA uses much fewer internal DOFs than FEA, due to the lower pp for the former, and the difference is

proportional to the number of elements.
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Figure 12: Cantilever beam under bending moment: Comparison of the relative difference ∥eu∥L2 in FEA and

IGA results. The dashed lines in (a) represent the analytical solution of asymptotic convergence rate, order

p+ 1 = 2, 3, 4. The selected slenderness ratio is L/h = 105. In all IGA results, we use pp = 1 (i.e., “loc-ur”), but

for FEA results, we use pp = p− 1 (i.e., “loc”).

Observation 6.3.

• In FEA, the element-wise URI effectively alleviates locking, so that it exhibits the same convergence rate

with the results of mixed formulation. However, it is less accurate than the mixed formulation, due to the

lower accuracy of numerical integration.

• In IGA, the solution convergence rate agrees very well with the analytical one, i.e., the decrease rate of

L2-difference in order p + 1, even though the degrees pd and pp are lowered. Eventually, IGA exhibits

superior per DOF accuracy over conventional FEA, and further, it uses much smaller number of internal

DOFs for the physical stress resultants and strains.

6.1.4. Further comparison: k-refinement in IGA vs. p-refinement in FEA

We verify the superior convergence behavior of IGA in k-refinement (smooth degree elevation) over

classical p-refinement (degree elevation) in FEA. The advantage of k-refinement is that it enables to

maintain the maximum Cp−1-continuity in the displacement field with bases of degree p, in contrast

to the C0-continuity from p-refinement (Hughes et al., 2005). We also observe an instability of IGA

with uniform reduction of the degree pp (“loc-ur”) for very high degree p ≥ 8, but this turns out to

be alleviated by increasing the number of elements. In Fig. 13, we compare the following three different

approaches of the IGA-based mixed formulation with the FEA-based one,

• the global approach (“glo”) using pp = p− 1, with pd = p,

• the local approach (“loc”) using pp = p− 1, with pd = p,

• the local approach (“loc-ur”) using pp = 1, with pd = p− 1.

In Fig. 14, we further compare the sparsity patterns and the number of nonzero components (#nzc) of

the tangent stiffness matrix in the four chosen cases. We choose the cases giving the relative difference
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around 10−7 in Fig. 13 (dashed line): (i) FEA (“loc”) with p = pd = 5 and pp = 4, (ii) IGA (“glo”)

with p = pd = 6 and pp = 5, and (iii) IGA (“loc-ur”) with p = 7, pd = 6 and pp = 1, and (iv) IGA

(“loc-ur”) with p = 6, pd = 5 and pp = 1, where we use nel = 10 for the first three cases, and nel = 20 for

the last case. Fig. 13 shows that the IGA-based mixed formulation (“loc”) without reducing the degrees

pd and pp (black curve with triangle markers) exhibits severe locking, which arises due to the fact that

the discontinuous fields of physical stress resultants and strains cannot resolve the parasitic strains from

the higher order continuity conditions in the displacement field. Even though the global approach of

IGA-based mixed formulation (blue curve with square markers) gives remarkable improvement of the

accuracy, it is computationally prohibitive, due to (i) the inversion of the full (global) Gram matrix in

the condensation process, and (ii) the resulting dense tangent stiffness matrix, see Fig. 14b. In contrast,

the presented IGA-based mixed formulation (“loc-ur”) with reduced degrees pd = p− 1 and pp = 1 (red

curve with star markers) gives comparable accuracy as the global approach, at much lower computational

cost, due to (i) element-wise (local) condensation, (ii) sparsity of the resulting tangent stiffness matrix,

see Figs. 14c and 14d, and (iii) much fewer number of displacement and internal DOFs due to the

reduced degrees pd and pp. However, in the results of IGA (“loc-ur”) with nel = 10, we observe that

the performance (i.e., convergence rate with increasing degree p) is much better in the range of degree

5 ≤ p ≤ 7, compared with other degrees. In cases of very high degrees, p = 9, 10, the solution process even

diverges. This result indicates that in the range 2 ≤ p ≤ 4, the system4 is relatively over-constrained,

whereas, in the range of 8 ≤ p ≤ 10, the system is under-constrained. The instability in the very high

range of p can be alleviated by increasing the number of elements (nel), see, e.g., the results from nel = 20

(cyan curve), which exhibit remarkable per DOF accuracy.

0 100 200 300 400 500 600 700 800

10
-8

10
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10
-4

10
-2

10
0

Figure 13: Cantilever beam under bending moment: Comparison of the results from the k-refinement in IGA

with the p-refinement in FEA for the relative difference of the X−displacement per displacement DOF. In each

graph, the markers represent the results of using p = 2, 3, · · · . In all cases we use the mixed formulation. IGA

(“loc-ur”) diverges from p = 9 and p = 10 onward for nel = 10 and nel = 20, respectively, so those data are not

shown. The slenderness ratio is L/h = 105.

4the system of linear equations in the iterative solution process
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(a) FEA (loc), p = pd = 5, pp = 4, nel = 10
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(b) IGA (glo), p = pd = 6, pp = 5, nel = 10
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(c) IGA (loc-ur), p = 7, pd = 6, pp = 1, nel = 10
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(d) IGA (loc-ur), p = 6, pd = 5, pp = 1, nel = 20

Figure 14: Cantilever beam under bending moment: comparison of the sparsity pattern in the tangent stiffness

matrix at the first iteration of the last (10th) load step. Here #nzc denotes the number of nonzero components.

Figures (b-d) are shown in the same scale as (a) for comparison.

In order to further investigate the stability of the proposed mixed formulation (“loc-ur”) using pp = 1,

with pd = p−1, we calculate the natural frequencies of the straight beam by solving an eigenvalue problem

at the initial configuration. We solve a generalized eigenvalue problem with both ends free

K̄∆y = ω2 M∆y, (121)

where ω denotes the angular (natural) frequency, and K̄ denotes the global tangent stiffness matrix in

Eq. (70), and M denotes the global mass matrix (see Appendix B for its detailed expression). Here, we

consider the initial mass density ρ0 = 1kg/m3. As we consider no displacement boundary conditions,

i.e., free-free ends of the beam, the eigenvalue problem of Eq. (121) should give six zero eigenvalues,

associated with the rigid body motions. Here, all the results are calculated by the proposed mixed

isogeometric beam formulation (“loc-ur”) using pp = 1, with pd = p− 1. Fig. 15 shows the convergence

of the first four non-zero eigenvalues with increasing element number, for two different cases with degrees
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p = 2 and p = 3. The reference solution (“Ref.”) is obtained by numerically solving5 the frequency

equations for Euler-Bernoulli beam model, presented in Han et al. (1999). In all cases with p = 2 and

p = 3, the eigenfrequencies fi := ωi/2π (i = 7, 8, 9, 10) converge, and the converged values agree very

well with the reference solutions.
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(a) p = 2, pd = 1, pp = 1
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(b) p = 3, pd = 2, pp = 1

Figure 15: Eigenvalue analysis of a straight beam: Convergence of the first four non-zero eigenfrequencies,

f7 ∼ f10, with increasing number of elements (i.e., h-refinement). The generalized eigenvalue problem is solved

at the initial configuration. The dashed lines (“Ref.”) represent the Euler–Bernoulli beam solution for each

eigenmode, presented in Han et al. (1999). The slenderness ratio is L/h = 105.

Fig. 16 shows the convergence of the smallest four non-zero eigenfrequencies with increasing the degree

of basis p and pd = p − 1, for two different cases of element numbers, nel = 10 and 20. In both cases,

pp = 1. It is seen that the eigenfrequencies drastically decrease in very high degrees p ≥ 8, which means

that selecting those degrees may suffer from severe numerical instability, as we also observe in the result

(red curve) of Fig. 13. However, as we increase the number of elements to nel = 20, we obtain much

better accuracy of f8 and f9, which eventually leads to very accurate results even for those two degrees

p = 8 and 9 (cyan curve) in Fig. 13. For a further treatment of the locking and instability, one may

consider an adjustment of the degree pp selectively, in a similar way to the SRI method in Adam et al.

(2014). This (IGA, “loc-sr”) will be considered in Section 6.2.1. Further mathematical investigation on

the stability condition in the mixed formulation (see e.g., the generalized inf-sup test in Krischok and

Linder (2019)) remains future work.

5For this purpose, we use the function fsolve in MATLAB.
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Figure 16: Eigenvalue analysis of a straight beam: Convergence of the first four non-zero eigenfrequencies,

f7 ∼ f10, with increasing degree p and pd = p − 1 (i.e., k-refinement). The generalized eigenvalue problem is

solved at the initial configuration. The dashed lines (“Ref.”) represent the Euler–Bernoulli beam solution for

each eigenmode, presented in Han et al. (1999). The slenderness ratio is L/h = 105

Observation 6.4.

• The superior per DOF accuracy of IGA over conventional FEA is more pronounced, as the degree p

increases, due to the higher inter-element continuity of the displacement field.

• The uniformly reduced degree pp = 1 in IGA (“loc-ur”) may not be optimal, and exhibits instability in

very high degree p ≥ 8, which turns out to be alleviated by increasing number of elements.

6.1.5. Improved convergence in the thin beam limit

We show that the mixed formulation improves the convergence in the Newton-Raphson iteration.

Table 2 compares the convergence history at the last load step between the displacement-based formula-

tion with uniformly reduced integration (URI) and the mixed formulation. A very high slenderness ratio

L/h = 105 is considered. As seen, the mixed formulation needs much fewer iterations for the convergence

than the displacement-based one. Further the mixed formulation shows monotonic convergence, but the

displacement-based one exhibits severe oscillations during the iteration. TableC.1 shows that, as we

increase the number of load steps to 100, the number of iterations in each load step decreases. However,

we still observe a serious oscillation in the convergence history, due to the ill-conditioned tangent stiffness

matrix in the thin beam limit. The improved robustness due to the mixed formulation may extend to

transient dynamics problems, see e.g., Betsch and Janz (2016), which remains a future work.
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Table 2: Cantilever beam under bending moment: History of the Newton-Raphson iteration at the last (10th)

load step, in case of the slenderness ratio L/h = 105.

Displacement-based formulation Mixed formulation

FEA, p = pd = 2, nel = 10, URI IGA (loc-ur), p = 2, pd = 1, nel = 10, FI

Iteration#
Euclidean norm

of residual

Energy

norm

Euclidean norm

of residual

Energy

norm

1 6.3E-08 3.8E-08 6.3E-08 4.1E-08

2 4.1E+02 1.5E+02 4.8E+02 1.9E+02

3 5.6E+01 3.2E+00 2.3E+02 4.4E+01

4 2.1E+00 3.6E-03 7.7E+01 5.9E+00

5 3.9E-03 8.7E-09 1.2E+01 1.6E-01

6 4.0E-03 2.3E-08 2.8E-01 8.0E-05

7 2.8E-01 3.1E-05 4.6E-04 2.2E-10

8 6.5E-03 7.1E-08 1.5E-10 2.4E-23
...

...
...

299 9.9E-05 1.8E-11

300 1.5E-11 8.9E-19

301 3.0E-09 1.6E-20

302 1.5E-11 3.2E-26

6.2. 45◦-arc cantilever beam

We consider the initial beam center axis lying on the XY -plane and describing an 1/8 of a full circle

with radius R = 100m and square cross-section of dimension d [m], see Fig. 17. One end face is fixed, and

a distributed Z-directional force of F = F e3 [N/m
2] is applied on the other end face, where F represents

the external force per unit undeformed area, such that the resultant force is

F ·A = 7.2× 103
E0I

L0
2 , (122)

with the second area moment of inertia I = d 4/12, and the initial area A = d 2 of the cross-section.

E0 and L0 define the unit stress [N/m2], and the unit length [m], respectively. Note that we apply the

external (resultant) force F · A = 600N in the case of the slenderness ratio R/d = 102, as in Bathe and

Bolourchi (1979), see also Table C.2 for the other slenderness ratios. Two different cases with isotropic

material properties are considered:

• Case 1: St. Venant-Kirchhoff type material with zero Poisson’s ratio (ν = 0),

• Case 2: Compressible Neo-Hookean type material with Poisson’s ratio ν = 0.3.

In both cases the Young’s modulus is E = 10MPa. This example aims at verifying the followings: (i) the

improved agreement of the beam solution with the brick element one, due to the enriched cross-sectional

strains, (ii) alleviation of locking in IGA-based mixed formulation combined with the local approach, by
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reducing the degrees pd and pp, (iii) the robustness of the developed mixed finite element formulation

in terms of stable Newton-Raphson convergence in the thin beam limit, (iv) path-independence of the

solution from using the presented formulation.

Figure 17: 45◦-arc cantilever beam: Undeformed configuration and boundary conditions. Point A indicates the

loaded end (tip) of center axis.

6.2.1. Case 1: Linear elastic material without Poisson effect

We compare the displacement at the tip of the center axis (point A in Fig. 17) with the brick element

solution, in the case of the slenderness ratio R/d = 102. For the IGA-based brick element solution, the

following three different levels of mesh refinement in the cross-section is considered, with the same 320

NURBS elements (nonzero knot spans) along the center axis:

• a single linear element, i.e., deg. = (3, 1, 1), and nel = 320× 1× 1,

• a single quadratic B-spline element, i.e., deg. = (3, 2, 2), and nel = 320× 1× 1,

• 8× 8 cubic B-spline elements, i.e., deg. = (3, 3, 3), and nel = 320× 8× 8.

Here, the notation deg.=(pL, pH, pW), and nel=nL × nH × nW denotes the degrees of basis functions, and

the number of elements along the axial (L), and two transverse directions (H,W), respectively. TableC.3

shows the convergence of the brick element solution. In Table 3, we compare the tip displacements

of the presented beam formulation with reference solutions from literature. It is noticeable that the

presented beam formulation (“IGA,mixed, loc-ur”) gives much better agreement with the brick element

solution using a single quadratic element in the cross-section, compared with other reference solutions.

However, it still deviates from the brick element solution with multiple cubic elements in the cross-

section (i.e., “IGA, brick, deg.= (3, 3, 3)”). This can be further improved by enriching the higher order

cross-sectional strains including the out-of-plane ones (cross-sectional warpings), which remains future

work. It is seen that the enrichment of the linear and bilinear in-plane cross-sectional strains by the EAS

method (i.e., “IGA,mixed, loc-ur, EAS”) improves the agreement slightly.
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Table 3: 45◦-arc cantilever beam (Case 1, R/d = 102): Comparison of the tip displacements. The reference

solutions from literature are obtained from Table 1 of Frischkorn and Reese (2013)

u1 u2 u3

IGA, brick, deg.=(3, 3, 3), nel=320×8×8 13.730631 -23.825817 53.609888

IGA, brick, deg.=(3, 1, 1), nel=320×1×1 13.604502 -23.568020 53.477701

IGA, brick, deg.=(3, 2, 2), nel=320×1×1 13.604269 -23.567644 53.477296

IGA, displacement-based, p = 4, nel = 80 13.604255 -23.567612 53.477268

IGA, mixed (loc-ur), p = 4, nel = 80 13.604255 -23.567611 53.477267

IGA, mixed (loc-ur, EAS), p = 4, nel = 80 13.604256 -23.567616 53.477273

Frischkorn and Reese (2013) 14.11 -23.38 53.50

Rhim and Lee (1998) 13.70 -23.64 53.46

Bathe and Bolourchi (1979) 13.40 -23.50 53.40

Crisfield (1990) 13.69 -23.87 53.71

Simo and Vu-Quoc (1986) 13.50 -23.48 53.37

Cardona and Geradin (1988) 13.74 -23.67 53.50

Dvorkin et al. (1988) 13.60 -23.50 53.30

Further, Fig. 18 compares the convergence behavior between different finite element approximations of

the independent solution fields, i.e., the global or local approach, and different degree of bases p, pd, and

pp. We utilize the relative difference in the tip displacement,

ereli :=

∣∣∣∣ubeami − ubricki

ubricki

∣∣∣∣ , i ∈ {1, 2, 3} , (123)

where ubeami and ubricki denote the displacement component ui := u · ei of the beam and brick elements,

respectively. The black curves show the results from the global approach of the IGA-based mixed

formulation (“glo”), which exhibits the highest level of accuracy among all the shown results, but is

computationally very expensive. The blue curves show the results from the local approach of the IGA-

based mixed formulation using pp = p− 1 (“loc”), with pd = p. It is the same formulation as the global

approach for a single element (nel = 1), so their results coincide then. However, as we increase the

number of elements to nel = 2, which has an interface between elements, “loc” suffers from a serious

locking due to the Cp−1 continuity condition in the displacement field, see the drastic increase of the

relative difference in all components erel1 , erel2 , and erel3 , as we increase nel from 1 to 2. The red curves

show the beam solutions with the IGA-based mixed formulation using pp = 1 (“loc-ur”), with pd = p−1.

Observation 6.5. It should be noted that, in this example, we need at least quadratic NURBS to exactly

represent the initial geometry of the center axis (circular arc), i.e., pg = 2, so that we need pd ≥ pg = 2 to

represent rigid body rotations exactly, see Remark 4.2. The inability to represent rigid body rotations in case

of pd = 1 < pg, which is seen in Table 4, leads to artificial bending stiffness. This error can be alleviated by

increasing the number of elements; however the convergence rate is significantly lowered, see the results of red

curves with circular markers (“loc-ur”) in Fig. 18, compared with the results from using pd = 2 (blue curves with

circular markers).
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In cases of degrees p = 3, 4, with pd = p−1, the rigid body rotation can be represented exactly (see Table

4), and it gives significantly improved per DOF accuracy (red curves with triangle and square markers)

in Fig. 18, showing much lower error, compared with the local approach (“loc”).
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Figure 18: 45◦-arc cantilever beam (Case 1, R/d = 102): Relative difference of the displacement at the tip

between beam and brick element solutions. The latter is for a single quadratic B-spline element in the cross-

section (i.e., “IGA, deg.=(3, 2, 2), and nel = 320 × 1 × 1”). The numbers in the bracket [•] denote the degrees,

[p, pd, pp]. All the beam solutions are obtained by the IGA-based mixed formulation. In the local approach

“loc-ur”, for p = 3, 4, we use pp = p− nel, if nel < p− 1. Otherwise, we use pp = 1.
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Table 4: 45◦-arc cantilever beam (Case 1, R/d = 102): Smallest six eigenvalues, ωi
2 [rad2/s2], i = 1, 2, · · · , 6.

The bold-faced eigenvalues represent inability to represent rigid body rotations for pd = p− 1 = 1, while all the

other cases of p and pd correctly show six vanishing eigenvalues. We use pp = 1, i.e., the approach “IGA, loc-ur”,

with nel = 10.

p pd ω1
2 ω2

2 ω3
2 ω4

2 ω5
2 ω6

2

2 2 -6.5E-12 -3.4E-12 9.0E-14 8.7E-12 9.3E-12 6.4E-11

2 1 -3.1E-12 -1.3E-12 5.0E-12 6.2E-06 8.7E-05 3.7E-03

3 2 -9.5E-12 -9.1E-13 4.3E-12 6.0E-12 2.3E-11 3.4E-11

4 3 -1.3E-10 -2.7E-11 -1.3E-11 -2.0E-12 1.1E-11 3.0E-11

In order to verify the alleviation of locking, we investigate the tip displacement in Z-direction, as

increasing the beam’s slenderness ratio, R/d. The applied end force is inversely proportional to the

bending stiffness, according to Eq. (122), see Table C.2 for the force in each case of the slenderness ratio.

Table 5 compares the Z-displacement at the tip, from two different approaches in IGA, the global (“glo”),

and local approaches (“loc”), both with pd = p, and pp = p− 1. In the results from the global approach,

for every degree p, it is seen that the tip displacement converges, as we increase the slenderness ratio.

In contrast, in the results of the local approach “loc” with lower degrees p = 2, 3, 4 exhibit significantly

decreased displacements, as increasing the slenderness ratio, due to locking. For higher degree p, the

locking is much less pronounced.

Table 5: 45◦-arc cantilever beam (Case 1): Z-displacement (unit:m) at the tip (point A). In all cases, we use a

single load step, and nel = 10. In the results of “IGA, loc”, the significant decrease in the bold-faced values, as

increasing the slenderness ratio, indicates the locking.

p pd

IGA, glo (pd = p, pp = p− 1) IGA, loc (pd = p, pp = p− 1)

R/d = 102 103 104 105 102 103 104 105

2 2 53.4759 53.4426 53.4425 53.4425 53.3906 50.5364 42.9073 33.4118

3 3 53.4773 53.4687 53.4686 53.4686 53.4590 52.4263 45.1947 42.1914

4 4 53.4773 53.4687 53.4686 53.4686 53.4771 53.4645 53.2287 50.6505

5 5 53.4773 53.4687 53.4686 53.4686 53.4772 53.4686 53.4663 53.3805

6 6 53.4773 53.4687 53.4686 53.4686 53.4772 53.4687 53.4685 53.4668

7 7 53.4773 53.4687 53.4686 53.4686 53.4772 53.4687 53.4686 53.4685

8 8 53.4773 53.4687 53.4686 53.4686 53.4773 53.4687 53.4686 53.4686

9 9 53.4773 53.4687 53.4686 53.4686 53.4773 53.4687 53.4686 53.4686

10 10 53.4773 53.4687 53.4686 53.4686 53.4773 53.4687 53.4686 53.4686

Table 6 shows the results from the reduction of pd, and pp. As mentioned in Observation 6.5, the selection

of degree pd = p − 1 = 1 for p = 2 suffers from the inability to represent rigid body rotations, which

accentuates the locking. Thus, in the results of local approaches “loc-ur” and “loc-sr”, using p = 2 and

pd = p − 1 = 1 gives much smaller displacements than those from using pd = p = 2. This is more
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pronounced, as the slenderness ratio increases. It is also seen that the local approach “loc-ur” with

pp = 1 (left-side of Table 6) further alleviates locking, compared with the results from using pp = p− 1

(“loc”, right-side of Table 5). However, the decrease in the displacement, as increasing the slenderness

ratio, is still clearly seen for lower degrees p (bold-faced values). Further, as we discussed in Section

6.1.4, numerical instability occurs for very high degrees p in the approach “loc-ur” with pp = 1, e.g.,

Newton-Raphson solution process even diverges for p = 10. It is noticeable that the local approach “loc-

sr” with selectively reduced degrees pp, given by Table A.1, effectively alleviates numerical instability

and locking.

Table 6: 45◦-arc cantilever beam (Case 1): Z-displacement (unit:m) at the tip (point A). In all cases, we use

a single load step, and nel = 10. In the results from using “loc-ur”, the significant decrease in the bold-faced

values, as increasing the slenderness ratio, indicates the locking. The Newton-Raphson iteration using the local

approach (“loc-ur”) diverges for p = 10, due to numerical instability.

p pd

IGA, loc-ur (pp = 1) IGA, loc-sr (pp is given by Table A.1)

R/d = 102 103 104 105 102 103 104 105

2 2 53.3906 50.5364 42.9073 33.4118 53.4758 53.4671 53.4671 53.4671

2 1 52.3462 42.4174 16.0015 0.7206 53.2293 52.3571 52.1100 52.1074

3 2 53.4606 52.4450 46.3224 44.8302 53.4848 53.4762 53.4761 53.4761

4 3 53.4772 53.4682 53.4612 53.3084 53.4818 53.4731 53.4730 53.4730

5 4 53.4773 53.4687 53.4683 53.4558 53.4824 53.4733 53.4730 53.4696

6 5 53.4774 53.4687 53.4686 53.4684 53.4829 53.4733 53.4730 53.4724

7 6 53.4776 53.4688 53.4687 53.4687 53.4838 53.4743 53.4733 53.4731

8 7 53.4780 53.4706 53.4688 53.4687 53.4774 53.4687 53.4686 53.4686

9 8 53.4774 53.4913 53.4755 53.4689 53.4773 53.4687 53.4686 53.4686

10 9 - - - - 53.4773 53.4687 53.4686 53.4686

The numerical instability in the formulation “loc-ur”, observed in the left-side of Table 6, is indicated

very well from the results of the generalized eigenvalue analysis at the initial (undeformed) configuration,

which is shown in the left-side of Table 7. It is seen that, in the results from using “loc-ur” with pp = 1, the

eigenvalues for p = 8, 9, 10 are much smaller than those from using other degrees, see bold-faced numbers

in the left-side of Table 7. This turns out to be alleviated by a selective adjustment of the degree pp

by Table A.1, see the eigenvalue analysis results in the right-side of Table 7. However, the selection of

pp in Table A.1 may not be optimal, and we may still observe spuriously decreased eigenvalues, e.g.,

ω10 in the result from using p = 9. A further mathematical investigation to determine the optimal pp

remains future work. We also observe that the eigenvalues in the result from using the local approach

“loc-ur” with pd = p = 2 are spuriously higher than the others, due to locking. This turns out to be

alleviated by the selective reduction of pp, i.e., the local approach “loc-sr”. Further, eigenvalues from

using pd = p− 1 = 1 (p = 2) are spuriously higher, in both local approaches “loc-ur”, and “loc-sr”, due

to the inability to represent rigid body rotations (see Observation 6.5).
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Table 7: 45◦-arc cantilever beam (Case 1, R/d = 102): The smallest four nonzero natural (angular) frequencies,

ωi [rad/s], i = 7, 8, 9, 10. The bold-faced ones represent spurious eigenvalues due to numerical instability. In all

cases, nel = 10.

p pd

IGA, loc-ur, pp = 1 IGA, loc-sr, pp is given in Table A.1

ω7 ω8 ω9 ω10 ω7 ω8 ω9 ω10

2 2 3.2514 9.1246 9.3017 15.4063 3.2377 8.8688 9.0037 14.5618

2 1 3.2631 9.0594 9.2475 14.9950 3.2569 9.0450 9.1958 14.9650

3 2 3.2387 8.8851 9.0238 14.6197 3.2381 8.8809 9.0159 14.6109

4 3 3.2379 8.8786 9.0115 14.5997 3.2380 8.8784 9.0136 14.6024

5 4 3.2379 8.8778 9.0106 14.5990 3.2380 8.8785 9.0137 14.6028

6 5 3.2377 8.8750 9.0079 14.5960 3.2380 8.8780 9.0137 14.6009

7 6 3.2368 8.8608 8.9944 14.5824 3.2380 8.8664 9.0137 14.5846

8 7 3.2301 8.7626 8.9097 14.4326 3.2380 8.8806 9.0136 14.6056

9 8 3.1713 6.6820 6.8214 7.2754 3.2379 8.8808 9.0007 10.0067

10 9 1.1305 1.1416 1.5804 1.6422 3.2380 8.8809 9.0137 14.6063

Table 8 shows that the presented mixed formulation allows much larger load steps, and eventually

requires much fewer number of iterations, compared to various reference formulations, including the

displacement-based one (i.e., “IGA, displacement-based”).

Table 8: 45◦-arc cantilever beam (Case 1, R/d = 102): Comparison of the number of load steps and Newton-

Raphson iterations. The reference data from literature are obtained from Table 2 of Frischkorn and Reese (2013).

#load steps #iterations

IGA, mixed (loc-ur, EAS), p = 4, nel = 80 1 8

IGA, displacement-based, p = 4, nel = 80 1 18

IGA, brick, deg.=(3, 1, 1), nel=320×1×1 1 18

IGA, brick, deg.=(3, 2, 2), nel=320×1×1 1 18

Frischkorn and Reese (2013) 1 19

Wackerfuß and Gruttmann (2009) 1 9

Rhim and Lee (1998) 1 13

Crisfield (1990) 3 17

Cardona and Geradin (1988) 6 47

Dvorkin et al. (1988) 10 34

Simo and Vu-Quoc (1986) 3 27

Bathe and Bolourchi (1979) 60 -

We further show the path-independence of the proposed beam formulation employing the finite ele-

ment approximation of the total displacements in the extensible directors. We investigate if the displace-
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ment at the tip (point A) vanishes after unloading. Here, we consider the slenderness ratio R/d = 102.

We also compare the results with those from the beam formulation of Simo and Vu-Quoc (1986). In

the present paper, we approximate their field variables, displacement of the center axis, and the incre-

mental rotations by NURBS basis functions, in the framework of IGA, see Choi and Cho (2019) for

more details. Fig. 19 shows the X-, Y - and Z-directional displacements at the tip after unloading. The

beam formulation based on Simo and Vu-Quoc (1986) exhibits significant displacement error, which de-

creases with element number (black curves). In contrast, the proposed beam formulation yields vanishing

displacements to machine precision, in both the displacement-based and the mixed formulations.
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Figure 19: 45◦-arc cantilever beam (Case 1, R/d = 102): Displacement at the tip (point A) after unloading. All

results are obtained by IGA. The missing data points in the blue curves in (a) and (b) are due to their values

being exact zeros.

6.2.2. Case 2: Nonlinear material with Poisson effect

In Case 2, we consider a compressible Neo-Hookean type material with Poisson’s ratio ν = 0.3, and

Young’s modulus E = 10MPa. The same boundary conditions as in Case 1 are considered. Table 9

compares the displacement at the tip (point A in Fig. 17), with various brick element solutions. Severe

artificial stiffening is observed in the brick element solution with a single linear quadrilateral element in

the cross-section (“IGA, brick, deg.= (3, 1, 1), nel =320 × 1 × 1”), due to the lack of linear transverse

normal strain, coupled with the bending deformation. The beam solution without any enrichment of the

cross-sectional strains (“IGA, mixed, loc-ur”) suffers from even larger stiffening, since it lacks not only the

quadratic but also the bilinear in-plane displacement field (i.e., trapezoidal cross-section deformations).

After enriching the in-plane cross-sectional strains by the EAS method, the beam solution (“IGA, mixed,

loc-ur, EAS”) shows a good agreement with the brick element solution based on a single quadratic element

in the cross-section. Its deviation from the brick element solution using a single cubic element in the

cross-section (“IGA, brick, deg.=(3, 3, 3), nel=320× 1× 1”) shows the significance of the cross-sectional

warping, which our current beam formulation does not account for. This remains future work.

45

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 9: 45◦-arc cantilever beam (Case 2): Comparison of the tip displacements.

u1 [m] u2 [m] u3 [m]

IGA, brick, deg.= (3, 1, 1), nel = 320× 1× 1 12.5816 -21.6881 51.5348

IGA, brick, deg.= (3, 2, 2), nel = 320× 1× 1 13.8087 -23.9547 53.6642

IGA, brick, deg.= (3, 3, 3), nel = 320× 1× 1 13.9947 -24.2610 53.8291

IGA, mixed (loc-ur), p = 4, pd = 3, pp = 1, nel = 80 11.3090 -19.3285 49.1188

IGA, mixed (loc-ur, EAS), p = 4, pd = 3, pp = 1, nel = 80 13.8148 -23.9790 53.6901

In Fig. 20, we compare the convergence of the relative difference in the tip displacements, ereli in Eq. (123),

between several different finite element approximations for independent solution fields. As observed in

Case 1 (Observation 6.5), the results from using p = 2, and pd = p − 1 = 1 exhibit severe locking due

to the inability to represent the rigid body rotations (red curves with circular markers), in comparison

to the results from the same degree p = 2 with higher pd = p = 2 (blue curves with circular markers).

However, in the cases of higher p = 3, 4 and pd = p − 1 (red curves with triangle and square markers),

the accuracy improvement is noticeable.
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Figure 20: 45◦-arc cantilever beam (Case 2): Relative difference of the displacement at the tip between beam and

brick element solution. The latter is for a single quadratic B-spline element in the cross-section (i.e. “IGA, deg.=

(3, 2, 2), and nel = 320 × 1 × 1”). The numbers in the bracket [•] denotes the degrees, [p, pd, pp]. All the beam

solutions are obtained by the IGA-based mixed formulation. In the local approach “loc-ur”, for p = 3, 4, we use

pp = p− nel, if nel < p− 1. Otherwise, we use pp = 1.
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6.3. L-shape frame

In this example, we show the path-independence of the presented mixed isogeometric beam formu-

lation, considering two beams connected by a rotational continuity condition. We consider a L-shape

frame with two straight beams having the initial length L = 10m and a square cross-section of dimension

h = w = 0.5m. We select compressible Neo-Hookean type material with Young’s modulus E = 10MPa

and Poisson’s ratio ν = 0.3. A distributed force T̄0 = −200N/m is applied in Z-direction on the upper

edge of the end face, and the other end is fixed, see Fig. 21. The load is applied in five load steps

with uniform increments. In order to test the path-independence of the beam formulation, we impose

a prescribed rotation at the fixed end, keeping the applied load fixed, such that the force maintains

the negative Z-direction, and does not rotate along θ̄. This procedure is inspired by a similar test in

Ibrahimbegovic and Taylor (2002). The rotation is prescribed about the X-axis, and we choose the total

rotation angle θ̄ = 200π, i.e., 100 turns around the X-axis. In the additional prescribed rotation, we use

103 load steps in total, such that each full (360◦) turn is uniformly divided by 10 increments, i.e., 36◦

rotation is prescribed in each load step. Here, all the results are obtained by the proposed isogeometric

mixed formulation (IGA, “loc-ur”) with p = 3, pd = 2, pp = 1. We also use nel = 5 for each beam, so

that we have 10 elements in total.

(a) (b)

Figure 21: L-shape frame. (a) Undeformed configuration and boundary conditions. (b) Center axes of two

connected beams, where A and B indicate selected points where displacements are evaluated to test path-

independence.

Fig. 22 shows a periodic change of the displacements at the points A and B along the turns. Here, u,

v, and w indicate the X-, Y -, and Z-displacements, respectively. It is seen that the displacement at every

full turn exhibits the same value, which demonstrates the path-independence of our beam formulation.

For a more thorough investigation, in Fig. 23, we plot the change of the displacements at points A and B

along the 100 full turns. u0A, v
0
A, and w

0
A denote the displacements due to the applied force T̄ 0 at θ̄ = 0.

For all displacement components, the difference vanishes up to machine precision. A linearly increasing

small error is due to the accumulated numerical error by the limited machine precision.
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Figure 22: L-shape frame: Displacements at points A and B due to the additional prescribed rotation. The

horizontal dashed line marks the displacements at the deformed configuration by the applied force T̄ 0 and θ̄ = 0,

and the vertical dashed lines mark every full turn, i.e. n̄ := θ̄/2π = 1, 2, ..., 10.

10
0

10
1

10
2

10
-15

10
-10

10
0

10
1

10
2

10
-15

10
-10

10
0

10
1

10
2

10
-15

10
-10

(a) Displacements at A

10
0

10
1

10
2

10
-14

10
-12

10
-10

10
0

10
1

10
2

10
-14

10
-12

10
-10

10
0

10
1

10
2

10
-14

10
-12

10
-10

(b) Displacements at B

Figure 23: L-shape frame. Difference of displacements at points A and B due to the additional prescribed

rotations θ̄ = 2n̄π with n̄ = 1, 2, ..., 100. The subscripts A and B denote the displacements at points A and B,

respectively, and the superscript 0 denotes the displacements at the turn number n̄ = 0.

7. Conclusion

This paper presents an isogeometric mixed finite element formulation for nonlinear beams with exten-

sible directors. We particularly investigate a selective reduction of the degree of bases for the independent

solution fields of axis displacement, directors, and additional stress and strain fields. This approach ef-

fectively alleviates additional locking phenomena due to the higher order continuity of the displacement

field in IGA. Based on this, we show the superior per DOF accuracy of IGA over conventional FEA.

Further the developed method is computationally efficient, due to its local (element-wise) static conden-

sation process, and the symmetry of the tangent stiffness matrix under conservative loads, and much

less internal DOFs due to the reduced degree of bases. It is also shown that the mixed formulation

yields improved convergence in the Newton-Raphson iteration in the thin beam limit, compared to the

displacement-based one. Important extensions of this work are expected in the following directions:
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• Further investigation on the numerical stability in the proposed selection of degree pp, based on a

generalized inf-sup test for multi-field variational principle, e.g., see Krischok and Linder (2019),

• An optimal selection of degrees pp for each component of the stress resultant and strain,

• Further enhancement of the out-of-plane cross-sectional strains including torsion-induced warping.

A. Appendix to the beam formulation

A.1. Operator expressions in the spatial discretization

As we separately arrange the control coefficients for the center axis position, and the director dis-

placement parts, some operator expressions need to be modified from those in Choi et al. (2021), as

follows.

A.1.1. Discretization of the internal virtual work

In Eq. (60a), we use the following operator

Be
total :=



B1
εφ · · · Bne

εφ 01×6nd
e

B1
ρφ · · · Bne

ρφ B1
ρd · · · Bnd

e

ρd

03×3ne
B1
κd · · · Bnd

e

κd

B1
δφ · · · Bne

δφ B1
δd · · · Bnd

e

δd

04×3ne
B1
γd · · · Bnd

e

γd

03×3ne B1
χd · · · Bnd

e

χd


15×me

, (A.1)

such that

δεh =
[
φT

,sN
p
I,s

]
δφe

I =: BI
εφδφ

e
I , (A.2a) δρh1

δρh2

 =

 dT1,sN
p
I,s

dT2,sN
p
I,s

δφe
I +

 φT
,sN

pd

J,s 01×3

01×3 φT
,sN

pd

J,s

 δde
1J

δde
2J

 =: BI
ρφδφ

e
I + BJ

ρdδd
e
J , (A.2b)


δκh11

δκh22

2δκh12

 =


dT1,sN

pd

J,s 01×3

01×3 dT2,sN
pd

J,s

dT2,sN
pd

J,s dT1,sN
pd

J,s


 δde

1J

δde
2J

 =: BJ
κdδd

e
J , (A.2c)

 δδh1

δδh2

 =

 dT1N
p
I,s

dT2N
p
I,s

 δφe
I +

 φT
,sN

pd

J 01×3

01×3 φT
,sN

pd

J

 δde
1J

δde
2J

 =: BI
δφδφ

e
I + BJ

δdδd
e
J , (A.2d)



δγh11

δγh12

δγh21

δγh22


=


dT1N

pd

J,s + d
T
1,sN

pd

J 01×3

dT2,sN
pd

J dT1N
pd

J,s

dT2N
pd

J,s dT1,sN
pd

J

01×3 dT2N
pd

J,s + d
T
2,sN

pd

J


 δde

1I

δde
2I

 =: BJ
γdδd

e
J , (A.2e)


δχh

11

δχh
22

2δχh
12

 =


dT1N

pd

J 01×3

01×3 dT2N
pd

J

dT2N
pd

J dT1N
pd

J


 δde

1J

δde
2J

 =: BJ
χdδd

e
J , (A.2f)

where the repeated indices I ∈ {1, 2, · · · , ne} and J ∈
{
1, 2, · · · , nde

}
imply summations.
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A.1.2. Geometric part of the tangent stiffness matrix

In Eq. (63a), we utilize the following operators from Choi et al. (2021) with the original stress resul-

tants replaced by the physical (independent) stress resultants.

kG :=


kε kρ kδ

kκ kγ

sym. kχ


15×15

, (A.3)

with

kε := ñp13×3, (A.4a)

kρ :=
[
m̃1

p13×3 m̃2
p13×3

]
, (A.4b)

kδ :=
[
q̃1p13×3 q̃2p13×3

]
, (A.4c)

kκ :=

 h̃
11

p 13×3 h̃
12

p 13×3

sym. h̃
22

p 13×3

 , (A.4d)

kγ :=

 m̃11
p 13×3 m̃21

p 13×3

m̃12
p 13×3 m̃22

p 13×3

 , (A.4e)

kχ :=

 l̃
11

p 13×3 l̃
12

p 13×3

sym. l̃
22

p 13×3

 , (A.4f)

and

Ye :=


Np

1,s13×3 · · · Np
ne,s13×3 03×6nd

e

06×3ne Npd

1,s16×6 · · · Npd

nd
e ,s

16×6

06×3ne
Npd

1 16×6 · · · Npd

nd
e
16×6

, (A.5)

such that 

∆φh
,s

∆dh1,s

∆dh2,s

∆dh1

∆dh2


= Yeδy

e, with δye :=



δφe
1

...

δφe
ne

δde
1

...

δde
nd
e


. (A.6)

A.2. Selectively reduced degree pp in each case of p = 2, 3, ..., 10

Table A.1 shows a list of selective reduced degrees pp for physical stress resultants and strains,

employed in the local approach “loc-sr”. Note that pp is always the same for the physical stress resultant

and strain in every work-conjugate pair, so that ke
rε of Eq. (63c) is always a square (invertible) matrix.
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Table A.1: Selection of degree pp in the approach “IGA, loc-sr”. pbp denotes the degree at the first and last

elements, which is shown here only if pp ̸= pbp. Note that α, β ∈ {1, 2}.

Physical

strains

Physical stress

resultants

pp (pbp)

p = 2 3 4 5 6 7 8 9 10

εp ñp 0 (1) 0 (1) 0 (1) 1 1 1 1 1 2

ρpα m̃α
p 1 1 2 2 2 2 2 2 3

κpαβ h̃
αβ

p 1 1 2 2 2 2 2 2 3

δpα q̃αp 0 (1) 0 (1) 0 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 2

γpαβ m̃αβ
p 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 1 1 (2) 2

χp
αβ ℓ̃

αβ

p 0 0 0 (1) 0 1 1 1 1 2

A.3. Imposition of rotational continuity between beams

Table A.2 shows the global control coefficient index K for the director displacement field, corre-

sponding to the given local coefficient index I in eth element, in two different cases of the location of

junction.

Table A.2: Two cases of the joint condition: Correspondence between the local coefficient index I in eth element,

and the global coefficient index K.

Element number e Local index I Global index K

Case 1 1 1 1

Case 2 nel nde ndcp

B. Appendix: Consistent mass matrix

We have the kinetic energy bilinear form for a three-dimensional body, as

d(x,tt, δx) =

∫
B
ρ0 δx · x,tt j0 dB, (B.1)

where (•),tt denotes the second order derivative with respect to time t. Applying the beam kinematics

in Eq. (4), we have

d(y,tt, δy) =

∫ L

0

δyTIρ y,tt ds, (B.2)

where Iρ is an inertia matrix, defined by

Iρ :=


ρA13×3 I1ρ13×3 I2ρ13×3

I11ρ 13×3 I12ρ 13×3

sym. I22ρ 13×3


, (B.3)

with the initial line density (mass per unit undeformed length)

ρA :=

∫
A
ρ0 j0 dA, (B.4)

52

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


and the first moment of inertia components

Iγρ :=

∫
A
ρ0 ζ

γj0 dA, γ ∈ {1, 2} , (B.5)

and the second moment of inertia components

Iγδρ :=

∫
A
ρ0 ζ

γζδj0 dA, γ, δ ∈ {1, 2} . (B.6)

It should be noted that the inertia matrix is constant during deformation, and it depends only on the

initial geometry and the initial mass density distribution. Applying the spatial discretization using

NURBS basis functions, we have

d(y,tt, δy) ≈ δyTMy,tt , with M :=
nel

A
e=1

me, (B.7)

where the element mass matrix is obtained as

me :=

∫
Ξe

Ne(ξ)
T
Iρ Ne(ξ) j̃ dξ. (B.8)

Note that the mass matrix is constant in deformation.

C. Appendix to numerical examples

C.1. Cantilever beam under bending moment

Table C.1 shows the Newton-Raphson iteration history for the displacement-based formulation, with

the increased load step number, 100, from that in the FEA result of Table 2.

Table C.1: Cantilever beam under bending moment: Newton-Raphson iteration history for the displacement-

based formulation using FEA (URI) with p = pd = 2, and nel = 10. Total number of load steps is 100, and here

we present only the history in the first (n = 1) and last (n = 100) load steps.

Iteration#

n = 1 n = 100

Euclidean norm

of residual

Energy

norm

Euclidean norm

of residual

Energy

norm

1 6.3E-09 3.9E-10 6.3E-09 3.9E-10

2 3.4E+00 1.9E-02 3.7E+00 1.8E-02

3 8.7E-03 9.0E-08 9.1E-03 8.6E-08

4 6.8E-08 9.5E-16 6.6E-08 8.6E-15

5 1.9E-06 2.6E-15 1.3E-05 1.4E-13

6 2.0E-09 1.9E-16 3.3E-10 1.4E-15

7 1.6E-06 4.3E-15 1.3E-05 2.5E-13

8 2.4E-12 4.7E-19 1.4E-11 3.4E-20

9 4.2E-09 3.4E-20 3.3E-10 1.6E-22

10 9.2E-13 8.1E-28
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C.2. 45◦-arc cantilever beam

Table C.2 shows the applied external force in each case of the slenderness ratio R/d.

Table C.2: 45◦-arc cantilever beam: Applied force in each case of the slenderness ratio R/d.

R [m] d [m] A [m2] R/d [−] F [N/m2] F ·A [N]

102

100 100 102 6× 102 6× 102

10−1 10−2 103 6× 100 6× 10−2

10−2 10−4 104 6× 10−2 6× 10−6

10−3 10−6 105 6× 10−4 6× 10−10

Table C.3 presents the convergence test results of the brick element solution of the tip displacement for

Case 1 considering R/d = 102.

Table C.3: 45◦-arc cantilever beam (Case 1, R/d = 102): Convergence of the brick element solution for d = 1m.

In all cases, we use IGA.

Brick, deg. = (3, 3, 3) Tip displacements

nel u1 [m] u2 [m] u3 [m]

40× 1× 1 1.3729E+01 -2.3822E+01 5.3607E+01

80× 1× 1 1.3730E+01 -2.3825E+01 5.3609E+01

160× 1× 1 1.3731E+01 -2.3826E+01 5.3610E+01

240× 5× 5 1.3731E+01 -2.3826E+01 5.3610E+01

240× 8× 8 1.3731E+01 -2.3826E+01 5.3610E+01

320× 8× 8 1.3731E+01 -2.3826E+01 5.3610E+01
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