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Abstract 

Fast detection and correct diagnosis of any engine condition changes are essential elements 

of safety and environmental protection. Many diagnostic algorithms significantly improve the 

detection of malfunctions. Studies on diagnostic methods are rarely reported and even less 

implemented in the marine engine industry. To fill this gap, this paper presents the Support Vector 

Data Description (SVDD) method as applied to the fault detection of the fuel delivery system of 

two-stroke marine engine. The selected diagnostic data is the exhaust gas composition, with four 

components considered: oxygen, carbon oxide, nitric oxide, and carbon dioxide. With these 

diagnostics, the method distinguishes eight different engine faults from the efficient state. The 

manuscript presents in detail the methodology for applying the SVDD method in a marine engine. 

The method of obtaining diagnostic data and its scaling is described. The method of training and 

validating the algorithm is also presented, along with ready-made algorithms for use. The 100% 

accuracy of the proposed fault detection method. Based on the obtained results, the proposed fault 

detection method is promising for a simple application. Authors also present generalized 

algorithms that may be adapted to different technical solutions. 

Keywords: Marine Engine; Engine fault detection; Diagnostic methods; Diagnostic algorithms; 

Support vector data description 
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Highlights 

➢ SVDD was used for marine engine fault detection from exhaust gas composition

➢ Laboratory measurements were carried out on the two-stroke diesel engine

➢ The proposed algorithm detected the considered faults with 100% accuracy

➢ Generalized algorithm for adapting other complex technical objects was proposed
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1. Introduction

Effective and reliable operations of complex technical facilities are closely dependent on 

their design, technical condition, and progression of degradation over time. One such complex 

technical object is the internal combustion engine, which is still one of the most popular mechanical 

energy sources, used both in the transport and energy industries (Hoang, 2019)(Hoang, 2020). In 

the case of internal combustion engines, the wear and corrosion of their structural elements leads 

to a significant power loss, an increase in fuel consumption, and an increase in the emission of 

harmful exhaust gas components into the atmosphere (Ayyagari et al., 2018)(Hoang et al., 2020). 

Therefore, an important element of both safety and environmental protection is the earliest possible 

detection and correct diagnosis of any changes in the engine’s technical condition (Cai et al., 2020). 

In the case of engines used in shipbuilding, but also in other transport branches, the primary 

diagnostic tool is failure detection signaling based on exceeding the threshold value of the selected 

diagnostic symptom (Cao et al., 2015), as well as the use of low-carbon fuels for marine engine 

(Hoang et al., 2023). An example would be measuring the exhaust gas temperature behind the 

cylinder of a marine piston engine. Exceeding the temperature over the maximum value indicates 

a possible failure of the operator (Korczewski, 2015). On the other hand, the so-called slow 

steaming is a more and more commonly used method for reducing fuel consumption by ships. Slow 

steaming reduces the ship’s speed when the main propulsion engine is running with partial load 

(Borkowski et al., 2019)(Hoang et al., 2022). As a result, the engine load is so low that even 

significant damage to the fueling apparatus does not cause the exhaust gas temperature to increase 

above the threshold value and therefore the alarm signaling is not triggered (Kalghatgi, 2013). An 

alternative is shown by Puzdrowska (Puzdrowska, 2022), where the quickly changing temperature 

of the exhaust gas was used as the diagnostic signal. Using a suitably “fast” thermocouple instead 

of a standard one during engine testing provided much more detailed diagnostic information. 
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In the field of science, many algorithms significantly improved the detection of malfunctions, 

yet they have not been widely used in engineering practice so far. The use of a mathematical model 

as a diagnostic tool is presented in studies of Lamaris et al. (Lamaris and Hountalas, 2010), Tamura 

et al. (Tamura et al., 2011), and Scappin et al. (Scappin et al., 2012). The aforementioned models 

use the measured signals as the input data, translating them into a virtual image of the engine’s 

operation. Unfortunately, the use of online calculations requires significant simplification of the 

model. In order to increase the accuracy of the modeling results, approximating models based on 

Artificial Neural Networks (ANN) are applied increasingly (Basurko and Uriondo, 2015; Lazakis 

et al., 2018). Correctly trained ANN can be used in operational conditions, although only for 

specific learning solutions (Rudzki et al., 2022). Changing the configuration of a complex technical 

object usually leads to a long and costly process of ANN re-learning (Noyel et al., 2016). In recent 

years, a significant acceleration in the development of Machine Learning (ML) algorithms for 

diagnostic purposes has been noted. Wang et al. (Wang et al., 2013) apply adaptive wavelet packets 

and EEMD-fractal dimension to the vibration signal analysis. Kowalski (Kowalski, 2015) 

introduced the concept of the multidimensional diagnostic tool based on the analysis of exhaust 

gas composition. Further, execution of the process by an ensemble of Extreme Learning Machine 

(ELM) was presented by Kowalski et al. (Kowalski et al., 2017). Cai et al. (Cai et al., 2020) 

suggested applying a Bayesian network to vibration signal analysis for the purpose of technical 

diagnosis. Liang et al. (Liang et al., 2020) proposed a fault diagnostic method in power converters 

for wind power generation systems. Namigtle-Jimenez et al. (Namigtle-Jiménez et al., 2020) 

formulated and experimentally applied a fault detection and diagnosis scheme based´ on ANN for 

isolating the damaged injector of an internal combustion engine. Tan et al. (Tan et al., 2020) 

investigated data-driven approaches, based on one-class classifiers, among all SVDD, for condition 

monitoring of marine machinery systems. As for marine diesel engines, Liang et al. (Liang and 
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Chen, 2022) proposed a Big Data method based on a Gaussian Mixture Model and Density-Based 

Spatial Clustering to monitor the degree of degradation of the main engine performance. A 

comprehensive analysis of more ML algorithms applications for diagnostics and control is 

presented by Aliramezani et al. (Aliramezani et al., 2022). 

Support Vector Data Description (SVDD) has also been successfully adopted for fault 

detection and diagnosis, including anomaly detection Banerjee et al. (Banerjee et al., 2007), analog 

circuit faults detection Luo et al. (Luo and Jiang Cui, 2011), chillers fault detection Zhao et al. 

(Zhao et al., 2013), fault diagnosis of rotating machinery such as rolling bearings and gears, widely 

used in wind turbines, helicopters, high-speed, railways and cranes Zhang et al. (Zhang et al., 

2022), or fault diagnosis of gears Tang et al. (Tang et al., 2022). Regrettably, despite the 

development of and widespread access to more and more perfect diagnostic algorithms, the 

simplest and often unreliable diagnostic procedures are still widely used. The authors see the reason 

for this state of affairs in the insufficient popularization, among other things, of the already 

developed algorithms. The algorithms mentioned above are often presented on the basis of a 

complex mathematical apparatus, which may cause difficulties when adapted to specific technical 

solutions. For this reason, this work aims to develop a robust algorithm for recognizing selected 

faults of a Diesel engine similar in design to the two-stroke engines used in the main propulsion 

system of a ship. The contribution of this paper is the application of the SVDD method to new 

diagnostic data: the molar compositions of the exhaust gas components, to fault monitoring the 

overall fuel delivery system of a marine diesel engine. Both the application of the SVDD algorithm 

for the diagnosis of fuel delivery system of marine engines and the use of exhaust gas components 

for this purpose as carriers of diagnostic information for marine engines are not widely reflected in 

the literature. This work fills the gap for rarely reported robust fault detection algorithms in the 

marine engine industry. When compared to other diagnostic methods such as ANN, the choice of 
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this method is dictated by the multidimensionality of the input signal and the fast computation of 

the geometric description of the fault spaces. Authors also propose adapting this mathematical 

method to other complex technical objects or selected diagnostic signals by presenting generalized 

fault detection algorithms. This paper has been organized as follows. Section 2 presents the 

experimental setup. In Section 3, the SVDD method for fault detections is presented. As the success 

of the diagnostics is warranted by applying the right method to the data set characteristics, in 

Section 4.1 the data sets are described and analyzed. Section 4.2 focuses on the training procedure 

for calculating the boundary hyperspheres describing the faults. In Section 4.3, we describe a 

pretesting procedure to determine the main diagnostic parameter. Section 4.4 presents the 

validation of the method. The final conclusions are presented in Section 5. 

 

 

2. Experiment setup 

The data for the presented diagnostic model was collected during tests on a single-cylinder, 

two-stroke crosshead engine with longitudinal scavenging, loaded by a water brake. The engine 

parameters are presented in Table 1. 

Table 1. Laboratory engine parameters 

Nominal power [kW] 73.5 

Maximum rotational speed [rpm] 320 

Number of cylinders [-] 1 

Cylinder bore [mm] 220 

Piston stroke [mm] 350 

Compression ratio [-] 18.5 

Fuel delivery system Bosh type pump, 1 injector 

Specific fuel consumption at maximum load [g/kWh] 277.6 
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Two-stroke engines are commonly used in the main propulsion system of ships due to their 

high energy efficiency and low rotational speed required for marine propeller propulsion. An 

independently driven Roots blower charges the engine allowing for smooth regulation of its 

rotational speed. Single-cylinder engine design allows for undisturbed monitoring of the engine 

combustion process, the apparatus is shown in Figure 1a. 

For the experiment, Authors used marine diesel oil with a density of 829.6 kg/m3 at 15°C. 

The rationale behind choosing this type of fuel was to eliminate the impact of nitrogen content in 

the fuel at the level of nitric oxide emission. The engine was loaded to the maximum value at each 

observation during laboratory tests. The loads and rotational speeds were then reduced according 

to the marine propeller load characteristics, typical for two-stroke engines used in the ship 

propulsion system. The load pattern is presented in Table 2 and conforms to the E2 characteristics 

of the ISO8178 standard for emission testing. 

 

Table 2. The test cycle pattern 

Load [%] 100 87.5 75.0 62.5 50.0 37.5 25.0 

Speed [rpm] 320 305 290 270 250 225 200 

 

Each measurement was performed after stabilization of the gas temperature at the exhaust 

manifold. We recorded 5 to 10 minutes of measurements with a 1-second sampling time. Each 

observation was repeated three times. The diagnostic signals chosen were fractions of CO, CO2, 

O2, and nitric oxides as a sum of NO and NO2. Exhaust gas components were measured for each 

considered load of the engine. The exhaust gas analysis process is shown in Figure 1b. 
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Figure 1. (a) Laboratory engine (top), water brake (bottom); (b) Exhaust gas analysis process 

 

The content of the above chemical compounds strictly depends on the combustion process 

parameters. In general, the carbon compound content is a good indicator of combustion process 

efficiency and fuel consumption; the oxygen content depends on the combustion process 

parameters as well as the parameters of the engine scavenging process, while the nitric oxide 

content depends on the combustion process temperature. The rotational speed and engine load were 

measured to ensure the E2 engine test cycle operation. Table 3 shows the range and accuracy of 

the measurement apparatus. 
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Table 3. Measurement apparatus parameters 

Parameter Range Accuracy 

Rotational speed of the engine 0 – 600 rpm 1 rpm 

The engine load 0 – 80 kW ±1.0% 

CO fraction in exhaust gas 0 – 10 000 ppm ±5.0% 

NO fraction in exhaust gas 0 – 3000 ppm ±5.0% 

NO2 fraction in exhaust gas 0 – 500 ppm ±5.0% 

CO2 fraction in exhaust gas 0 – 50% ±0.3% 

O2 fraction in exhaust gas 0 – 25% ±0.2% 

 

During the measurements, the engine operating parameters were modified to simulate 

selected faults. The exact parameter modifications for each fault are presented in Table 4. 

Table 4. The engine faults simulation description 

Fault Code description 

F1 The technical condition of the engine is assumed as proper 

F2 The start of the fuel injection is shifted from 7° to 4° BTDC 

F3 The start of the fuel injection is shifted from 7° to 10° BTDC 

F4 The opening pressure of the fuel injector is shifted from 22 MPa to 12 MPa 

F5 The opening pressure of the fuel injector is shifted from 22 MPa to 27 MPa 

F6 The opening pressure of the fuel injector is shifted from 22 MPa to 32 MPa 

F7 The throttling of the exhaust gas duct by 63% of the cross-section area 

F8 The throttling of the exhaust gas duct by 25% of the cross-section area 

F9 The reduction of the scavenging blower from a nominal 910 rpm to 450 rpm 

 

 

3. Support vector data description 

Data domain description comprises data set characterization and classification. To detect 

novel data or outliers, the boundary of a data set can be used. This procedure should cover most of 
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the target data while including the least redundant sets. The support vector data description (SVDD) 

method was proposed first by Tax and Duin (Tax and Duin, 1999) and elaborated in (Tax and Duin, 

2004), this method was inspired by the Support Vector Classifier (Chapelle et al., 1999). SVDD 

achieves optimization for a boundary around the data set, which is spherically shaped. To introduce 

this method, let us first consider a set of 𝑁 data objects: 

{𝒙𝒊 ∈ 𝑅𝑛, 𝑖 = 1, … , 𝑁}. (1) 

 

The goal is to find a minimum volume hypersphere containing most of the data objects. 

Figure 2 shows an illustrative example. Here, some data objects are allowed to be outside the 

sphere. This may be an advantage in respect of classification problems because the smaller the 

volume of the sphere, the less it is going to intersect with other classifiers. For this purpose, slack 

variables 𝜉i are introduced. 

 

Figure 2. Boundary sphere obtained by the SVDD method: some data objects are allowed to be 

outside the boundary 
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Furthermore, the sphere is described by the center 𝒂 and radius 𝑅, such that: 

𝐻(𝒂, 𝑅, 𝜉𝑖) = 𝑅2 + 𝐶 ∑ 𝜉𝑖𝑖 , (2) 

 

where the variable 𝐶 controls the trade-off between the volume of the hypersphere and the number 

of rejected objects (outside the sphere) and the slack variables are denoted by 𝜉i. Hypersphere (2) 

should be minimized for each data object 𝒙𝑖 under the following constraints: 

(𝒙𝑖 − 𝒂)𝑇(𝒙𝒊 − 𝒂) ≤ 𝑅2 + 𝜉𝑖 , (3) 

𝜉𝑖 ≥ 0. (4) 

Constraints (3)-(4) refer to each of the data objects indexed 𝑖 =  1, . . . , 𝑁 , and give 2𝑁 

inequalities. When including these constraints to the hypersphere (2), the following Lagrangian 

𝐿(𝒂, 𝑅, 𝜉𝑖, 𝛼𝑖 , 𝛽𝑖) is constructed: 

𝐿(𝒂, 𝑅, 𝜉𝑖, 𝛼𝑖, 𝛽𝑖)

= 𝑅2 + 𝐶 ∑ 𝜉𝑖

𝑖

−  ∑ 𝛼𝑖

𝑖

[𝑅2 +  𝜉𝑖  −  (𝒙𝒊
𝟐  −  2𝒂 ·  𝒙 +  𝒂𝟐)]

− ∑ 𝛽𝑖𝜉𝑖

𝑖

. 

(5) 

Here, 𝛼i and 𝛽i are the Lagrange multipliers such that 𝛼𝑖 ≥  0 and 𝛽𝑖  ≥  0. Setting the partial 

derivatives of the Lagrangian (5) to zero gives the following equations: 

𝜕𝐿

𝜕𝑅
= 0 ⇒  ∑ 𝛼𝑖 = 1,

𝑖

 (6) 

𝜕𝐿

𝜕𝒂
= 0 ⇒  𝒂 =

∑ 𝛼𝑖  𝒙𝑖𝑖

∑ 𝛼𝑖𝑖
= ∑ 𝛼𝑖  𝒙𝑖,

𝑖

 (7) 

𝜕𝐿

𝜕𝜉𝑖
= 0 ⇒  𝑪 − 𝛼𝑖 − 𝛽𝑖 = 0. (8) 

 

The next step is rewriting the Lagrangian (5) with the constraints (6)-(8), i.e., 

𝐿 = ∑ 𝛼𝑖 (𝒙𝑖 ∙ 𝒙𝒊) − ∑ 𝛼𝑖𝛼𝑗  (𝒙𝑖 ∙ 𝒙𝒋)

𝑖,𝑗

,

𝑖

 (9) 

where 0 ≤  𝛼𝑖 ≤  𝐶 and ∑ 𝛼𝑖𝑖 =  1. 
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Maximizing (9) results in the Lagrangian multipliers, 𝛼𝑖  that are the weight factors for the 

center of the hypersphere (7). For a small set of vectors, the equality in (3) will be satisfied; they 

are called the support vectors 𝒙𝑖. These are the data objects which are on the boundary of the 

hypersphere. For those vectors, 𝛼𝑖  multipliers will be non-zero and 𝛽𝑖  =  0. These are the only 

vectors needed to describe the hypersphere’s radius 𝑅, which can be calculated as the distance from 

the center of the hypersphere to the support vector with a weight smaller than 𝐶, i.e., 

‖𝒙̃𝑖 − 𝒂‖2 = 𝑅2 ⇒      0 < 𝛼𝑖 < 𝐶, 𝛽𝑖 = 0. (10) 

Thus, all the vectors for which 𝛼𝑖 = 0 are inside the boundary, that is 

‖𝒙𝑖 − 𝒂‖2 < 𝑅2 ⇒      𝛼𝑖 = 0, 𝛽𝑖 = 0. (11) 

Finally vectors for which 𝛼𝑖 = 𝐶 are outside the hypersphere’s boundary, i.e. 

‖𝒙𝑖 − 𝒂‖2 > 𝑅2 ⇒      𝛼𝑖 = 𝐶, 𝛽𝑖 > 0. (12) 

Having calculated the center and the radius of the hypersphere, Authors can determine 

whether a novel test point 𝒛 is within the radius; in such a case, the distance to the center of the 

hypersphere has to be less or equal to the radius 𝑅, i.e., 

(𝒛 − 𝒂)𝑇(𝒛 − 𝒂) ≤ 𝑅2. 
(13) 

 

The presented mathematical description allows us to determine the location of the minimum size 

of the hypersphere in n-dimensional space. The mentioned hypersphere contains the values of 

engine diagnostic parameters, allowing for identification of the failure. Therefore, it is important 

to select the appropriate diagnostic signals that clearly identify the failure, otherwise the 

hyperspheres may penetrate each other. Such interference means the possibility of ambiguous 

classification. 

4. Results and discussions 

4.1. Experimental data  

The experiments brought out 22 345 five-dimensional data points for nine engine faults. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


15 

Table 5 shows the number of 5D points for each fault space. Further, this data has been divided 

into three sets: the training set, the pretesting set, and the final testing set. 

 

Table 5. Number of five-dimensional points for each fault F1 − F9 

Fault F1 F2 F3 F4 F5 F6 F7 F8 F9 

5D points 3270 3031 3002 2827 848 656 3011 2729 2971 

 

One of these dimensions is reserved for the parameter that can be set in the experiment, i.e., 

the engine power load of 25%, 37.5%, 50%, 62.5%, 75%, 87.5%, 100%. The other four dimensions 

are reserved for emission exhaust gases O2, CO, NOx, and CO2. Space F1 stands for the efficient 

engine, whereas spaces F2−F9 indicate the faulty states. In the proposed model, the number of 

dimensions is adjusted to the research object. In the case of engine loading, such as with a fixed 

propeller, an additional dimension needs to be introduced. In this case, the engine may have 

variable load at a constant rotational speed. The presented research object is merely a simplified 

example of application. In real technical objects, multi-cylinder engine designs are used. In such 

cases, for fault detection purposes, additional signals measured on each cylinder are necessary, 

such as exhaust gas temperature or vibration signal. Consequently, the number of dimensions will 

increase proportionally with the number of cylinders. The most important aspect of selected 

diagnostic signals is their mutual independence. Table 6 gives the overall data characteristics: the 

maximum and minimum values, the mean value, and mean deviation for each exhaust gas 

dimension. 

Table 6. Exhaust gas data characteristics 

Gas O2% CO ppm NOx ppm CO2% 

minimum value 12.88 23. 76. 0.82 
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maximum value 19.5 3557. 545. 4.45 

mean 17.69 103.06 311.92 1.81 

mean deviation 1.11 48.64 72.15 0.61 

  

The maximum and minimum values for these four dimensions fall within a wide range. This 

is the main motivation for scaling each exhaust gas dimension for the same range ⟨0,1⟩.  Moreover, 

Figure 3 shows joined histograms of nine fault spaces for exhaust gas composition after the scaling 

procedure. 
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Figure 3. Histograms of four exhaust gas compositions after the scaling procedure for the 25% 

and 100% power load. Nine fault spaces are distinguished with different colors 

Further, we show random points of all nine fault spaces for the selected 3D exhaust gas 

dimensions in Figure 4. This was done after the scaling procedure with minimum and maximum 

values shown in Table 6. 

 

 

Figure 4. Random data points form fault spaces F1 − F9: the data cannot be easily clustered with 

one sphere per fault 

 The fault spaces are distinguished with different colors. As we can see, a single sphere for 

each fault could not easily cluster such data. Furthermore, in the case of faulty engines F2 − F9, the 

exhaust emission level of environmentally harmful gases such as CO, NOx, and CO2 is higher than 
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that for the efficient engine F1, this is better shown in Table 7. Based on the mean value and mean 

deviation for each fault-related exhaust gas dimension, we can see that the faulty engine F2 − F9 

emits more environmentally harmful gases than the efficient engine. 

 

Table 7. Data characteristics from each fault set: mean x and mean absolute deviation (MAD) 

Gas O2% CO ppm NOx ppm CO2% 

Fault 𝑥̅ MAD 𝑥̅ MAD 𝑥̅           MAD 𝑥̅ MAD 

F1 18.28 0.90 76.77 17.50 310.30 82.06 1.49 0.49 

F2 18.05 0.83 86.51 26.29 315.15 69.52 1.62 0.45 

F3 18.31 0.72 79.56 16.47 258.62 59.92 1.47 0.39 

F4 17.77 0.93 90.66 25.47 307.69 74.52 1.77 0.51 

F5 17.82 0.80 97.80 48.27 338.55 48.90 1.74 0.44 

F6 17.45 0.92 102.16 42.28 370.50 81.66 1.94 0.50 

F7 17.47 1.15 99.02 54.46 305.82 58.05 1.93 0.63 

F8 17.89 0.97 80.87 24.43 312.00 78.63 1.70 0.53 

F9 16.01 1.06 210.62 175.96 353.89 57.75 2.73 0.58 

 

All previous conclusions lead us to investigate further the power load dimensions. The power 

load data are different from the exhaust emission ones. First of all, the power load is the input of 

the experiment, contrary to the exhaust gas emissions, which represent the output. Secondly, unlike 

the exhaust gas emission measurements, which yielded a stochastic distribution, the power load 

can be fixed in the experiment. Figure 5 shows the selected three dimensions of the exhaust gas 

emission data for the efficient engine F1 and fault F9. Here, the different subspaces of power load 

are colored. As we can see, the data clusters for different power load subspaces within the same 

fault. This is the main motivation for applying power load subspaces to the SVDD method 

generating hypersphere boundaries in our problem. It should be noted that adding the detection of 
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another fault in the engine involves determining the parameters of another hypersphere. Similarly, 

adding another symptom involves adding another dimension to the multi-dimensional space.  

 

 

Figure 5. Random data points from power load subspaces 25% − 100% for fault spaces F1 (right) 

and F9 (left): data clusters for different power load subspaces 

4.2. Engine fault detection SVDD-based method with power load subspaces 

4.2.1. Training procedure 

The training procedure will return the boundaries of the fault sets, described by the centers 

and radiuses of the hyperspheres. For each fault, there are 5D data points. One of these dimensions 

is reserved for the parameter set in the experiment, i.e., the engine power load of 25%, 37.5%, 50%, 

62.5%, 75%, 87.5%, 100%. Some faults may be revealed differently under different power 

performances. This is why Authors subtract seven engine power load subspaces for each fault. The 

left four dimensions x represent the measured exhaust gases: O2, CO, NOx, and CO2. The main 

challenge of the SVDD method in diagnostics is finding the fault boundary hyperspheres that gather 

the maximum number of data points at the minimum volume so that they are less likely to intersect 

with other faults (Deng and Zhang, 2020). For that reason, the four-dimensional data has been 

scaled to the ⟨0,1⟩ range with the minimum and maximum values shown in Table 6. Such data 
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preparation will result in better SVDD performance, i.e., less intersection of hyperspheres 

describing F1-F9. 

Next, Authors randomly chose 200 training points from the testing set for each fault and 

power load subspace. With these data, Authors maximize the Lagrangian (9) and calculate the 

center coordinates and radius of the hyperspheres. The 𝐶 variables are set to 0.25. The maximum 

number of outliers in the SVDD method is (1 − 𝐶)/𝐶. This means that, for the chosen 𝐶 variable 

and 200 data points, the boundaries will cover at least 98.5% of the data. For engine faults and 

subspaces where the engine failed to start, phantom hyperspheres are written with a zero center and 

relatively small radius compared with other results. This is done to unify the algorithm. The results 

of the SVDD training procedure, i.e., the center coordinates and radiuses of hyperspheres for each 

fault F1-F9 and each power load subspace, are shown in Table 8. The selection of hypersphere 

radius is crucial for the accuracy of the proposed method. An increased radius means that the 

algorithm will identify a specific fault with relatively small changes in the values of diagnostic 

signals. In such a case, the fault will be indicated despite the correct operation of the system. 

Moreover, large hypersphere radius facilitates the possibility of overlapping hyperspheres in multi-

dimensional space. According to the methodology, the value of the C coefficient is responsible for 

the radius of the hypersphere. In order to adapt the method to other complex technical objects, the 

value of this coefficient can be optimized for each failure. On the other hand, adopting smaller 

radius reduces the effectiveness of detecting faults, and only very large changes in the values of 

diagnostic parameters (in this case, the composition of exhaust gas) will indicate a fault. Therefore, 

it should be remembered that the effectiveness of the proposed diagnostic method depends not only 

on the selection of training parameters but also on the selection of appropriate diagnostic signals. 

Table 8. The radius and coordinates of the center of hyperspheres for each fault and power 

subspace 
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Fault Power Centre of hypersphere coordinates 𝒂 Radius R 

F1 

25.0%  

37.5%  

50.0%  

62.5%  

75.0% 

87.5% 

100.0% 

0.9777  

0.8714 

0.8409  

0.7512  

0.6713 

0.5888 

0.443 

0.0197  

0.0075 

0.0076 

0.012 

0.015 

0.0197 

0.0372 

0.307 

0.2961 

0.4447 

0.6125 

0.6368 

0.7501 

0.8044 

0.022 

0.1288 

0.1599 

0.2479 

0.3283 

0.4115 

0.5572 

0.0539 

0.1123 

0.094 

0.096 

0.1119 

0.1233 

0.1991 

F2 

25.0%  

37.5%  

50.0%  

62.5%  

5.0% 

87.5% 

100.0% 

0.9283 

0.8988 

0.7728  

0.728 

0.6571  

0.532 

0.4651 

0.0133  

0.0123 

0.0077 

0.0103  

0.02 

0.0289 

0.0517 

0.2626 

0.3396 

0.3924 

0.5819 

0.6642 

0.6397 

0.7197 

0.0723 

0.1012 

0.2264 

0.2719 

0.343 

0.4669 

0.5345 

0.1139 

0.0907 

0.1675 

0.0756 

0.0747 

0.1835 

0.2175 

F3 

25.0%  

37.5%  

50.0%  

62.5%  

75.0% 

87.5% 

100.0% 

0.9491 

0.898 

0.835  

0.775 

0.785 

0.5654 

0.5702 

0.0155 

0.0114  

0.0125  

0.0106 

0.0131 

0.0255 

0.0309 

0.2147 

0.2839 

0.3923 

0.4524 

0.4873 

0.6015 

0.5261 

0.052 

0.102 

0.1657 

0.2258 

0.2152 

0.4337 

0.4304 

0.0427 

0.0391 

0.0471 

0.0604 

0.2027 

0.0873 

0.2436 

F4 

25.0%  

37.5%  

50.0%  

62.5%  

75.0% 

87.5% 

100.0% 

0.9282  

0.8591  

0.7802 

0.6858  

0.611 

0.5083 

0.4826 

0.0205 

0.011 

0.008 

0.0112 

0.0151 

0.0267 

0.0356 

0.3176 

0.3401 

0.4435  

0.588 

0.6407  

0.662 

0.6231 

0.0718 

0.1416 

0.2198 

0.3134 

0.3891 

0.4917 

0.5172 

0.0792 

0.0583 

0.0901 

0.0642 

0.097 

0.1273 

0.2497 

F5 

25.0%  

37.5%  

50.0%  

62.5%  

75.0% 

87.5% 

100.0% 

0. 

0.8875  

0.826 

0.7336 

0.6644  

0.5484 

0.4786 

0. 

0.0137 

0.0078  

0.01 

0.0188  

0.0427 

0.0653 

0. 

0.3683 

0.451 

0.524 

0.5533  

0.676 

0.5865 

0. 

0.1134 

0.1733 

0.2665 

0.3357 

0.452 

0.5216 

0.001 

0.0679 

0.0821 

0.0896 

0.1444 

0.09 

0.2397 

F6 

25.0%  

37.5%  

50.0%  

62.5%  

75.0% 

87.5% 

100.0% 

0. 

0.8763  

0. 

0.7455  

0.6098 

0.4872 

0.4328 

0. 

0.011  

0. 

0.0083  

0.0158  

0.0318 

0.0498 

0. 

0.3681  

0. 

0.5299 

0.5193 

0.6391 

0.8252 

0. 

0.1225  

0. 

0.2548 

0.3899 

0.5131 

0.5661 

0.001 

0.1209 

0.001 

0.1227 

0.2229 

0.2522 

0.1505 

F7 

25.0%  

37.5%  

50.0%  

62.5%  

75.0% 

87.5% 

0.9332  

0.8567  

0.7665  

0.6772  

0.5725  

0.4289 

0.0139  

0.0105  

0.0127  

0.0108  

0.0214  

0.0332 

0.2697 

0.3709 

0.5011  

0.59 

0.6279 

0.6838 

0.0668 

0.1439 

0.2329 

0.3224 

0.427 

0.57 

0.0378 

0.0307 

0.0406 

0.0475 

0.0523 

0.0774 
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100.0% 0.2187 0.1433 0.5489 0.7806 0.2235 

F8 

25.0%  

37.5%  

50.0%  

62.5%  

75.0% 

87.5% 

100.0% 

0.9337  

0.8909  

0.8035  

0.7255  

0.6334 

0.5272 

0.3694 

0.0141  

0.0106  

0.0081  

0.0092  

0.0167  

0.0332 

0.0362 

0.3275 

0.3357 

0.4753 

0.5908 

0.6829 

0.7518 

0.7296 

0.067 

0.1095 

0.1964 

0.2745 

0.3669 

0.4724 

0.63 

0.0755 

0.0555 

0.0444 

0.0506 

0.0577 

0.0737 

0.0665 

F9 

25.0%  

37.5%  

50.0%  

62.5%  

75.0% 

87.5% 

100.0% 

0.7477  

0.539 

0.4914  

0.383 

0.3008 

0.2432 

0.1079 

0.0184  

0.021 

0.0218 

0.0287 

0.0403  

0.0661 

0.5001 

0.3966 

0.5394  

0.656 

0.7495 

0.7699 

0.7052 

0.5403 

0.2528 

0.4605 

0.5088 

0.617 

0.6985 

0.7562 

0.8909 

0.0955 

0.0725 

0.0703 

0.0707 

0.0493 

0.0929 

0.4617 

 

 

These calculations were performed on 12,000 four-dimensional data objects and took 52 

seconds using Wolfram Mathematica 12. Below a general pseudo-code algorithm for the above 

training procedure is presented. It may be adapted to different technical solutions. 

Algorithm 1: Training procedure 

Input: training data from 𝑛  fault spaces and 𝑚  subspaces each 𝐹𝑖𝑗(𝒙𝒌), 𝑖 = 1, … , 𝑛, 𝑗 =

1, … , 𝑚, 𝑘 = 1, … , 𝑁 

Output: hyperspheres 𝐻𝑖𝑗(𝒂𝒊𝒋, 𝑅𝑖𝑗) 

1 take 𝑁 input training data for each of 𝑚 subspaces of all 𝑛 faults 𝐹𝑖𝑗 

2 for each fault indexed with 𝑖 =  1, … , 𝑛 

3     for each fault subspace indexed with 𝑗 =  1, … , 𝑚 

4         for each training data indexed with 𝑘 =  1, … , 𝑁 

5             maximize Lagrangian (9) 

6             return Lagrangian multipliers 𝛼𝑘 

7         end for 

8         from the Lagrangian multipliers calculate the center of hypersphere 𝒂𝒊𝒋 =   ∑ 𝛼𝑘𝒙𝑘𝑘  

9         take any multiplier 0 <  𝛼𝑘  <  𝐶 for the support vector 𝒙̃ 

10         for this support vector calculate the radius 𝑅𝑖𝑗 = √(𝒙̃ − 𝒂𝑖𝑗)𝑇(𝒙̃ − 𝒂𝑖𝑗) 

11     end for 

12 end for 

13 return hypersphere parameters 𝐻𝑖𝑗(𝒂𝒊𝒋, 𝑅𝑖𝑗). 
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4.2.2. Cross-section pretesting procedure 

The pretesting procedure will determine the main cutoff parameter and the testing sequence. 

In Figure 6, we show examples of the hypersphere’ projections leaving two-dimensional spheres 

for all seven power load subspaces. Each graph presents two different faults. The spheres intersect 

differently for each power performance. In the left figure, we see faults that can be easily separated 

for lower power loads but get to intersect for the 100% load. In the right figure, for lower loads, 

the fault space F2 contains F7, and both fault spaces get more separated for higher load 

performances. These two examples show that information from all power load subspaces for the 

final fault detection is needed. 
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Figure 6. Projections to two dimensions are shown for seven power load subspaces. F1 - orange 

and F9 - blue, F2 - green and F7 - red: faults may reveal differently under different power 

performances 

For the cross-section pretesting procedure, Authors randomly chose 50 data points from the 

pretesting set for each fault and power load subspace. These data points are scaled to the ⟨0,1⟩ 

range. Next, cross-section tests are performed for new test data representing actual faults F1 − F9 

with the parameters of the hyperspheres H1 − H9 calculated during the testing procedure. This 

Authors do separately for each power performance subspace. Using the formula (13), the output of 

this procedure is the percentage of points that are in the hyperspheres. Next, for each cross-section 

test, the mean value of the power load subspaces is calculated through the following formula: 

𝑃𝑖,𝑗 =
∑ 𝑃𝑅/𝑁)𝑙

𝑚
𝑙=1

𝑚
 (14) 

were 𝑃𝑅 denotes the number of positive results, 𝑁 is the dimension of the test data set – in our case 

50 and 𝑚 is the dimension of subspaces in our case, seven power subspaces. 

The result – a square confusion matrix 𝑃𝑖𝑗   – is shown in Figure 7. The true positive (TP) 
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diagnostic fractions are on the diagonal, whereas fractions of the false positives (FP) are outside 

the diagonal. 

 

Figure 7. Confusion matrix from cross-section pretests of hyperspheres H1 − H9 with novel data 

from actual faults F1 − F9: upper the diagonal, there are two high FP results; these can be 

eliminated by a proper testing sequence. 

Usually, all the TP from the confusion matrix 𝑃𝑖𝑗  have to be higher than all the FP diagnostics. 

However, a weaker condition can also be applied; namely, all the positive diagnostics from the 

diagonal elements of the matrix 𝑃𝑖𝑗  have to be greater than the false-positive results below the 

diagonal, i.e., 

∀𝑖𝑗𝑃𝑖,𝑖 > 𝑃𝑖,𝑗<𝑖 (15) 

If this is not the case, we can try rearranging rows and columns to fulfill (15). The efficient 

engine F1 should be tested as last; such a choice may signal the occurrence of novel and unknown 
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faults. Having fulfilled the weaker condition, we choose the main diagnostic parameter 𝐷 to be 

𝐷 =
1

2
(min

𝑖
𝑃𝑖,𝑖 + max

𝑖𝑗
𝑃𝑖,𝑗<𝑖) (16) 

The final fault detection test can be then performed by eliminating faults by means of the 

proper testing sequence, i.e., from the last row’s hypersurface to the first one. The proposed 

sequence testing based on the confusion triangular matrix is a trade-off for the robustness and 

simplicity of the algorithm. Below the pseudo-code algorithm for calculating the cross-section 

parameters is presented. 

Algorithm 2: Cross-section pretesting procedure 

Input: test data 𝐹𝑖𝑙(𝒙𝒌), 𝑖 =  1, . . . , 𝑛, 𝑙 =  1, . . . , 𝑚, 𝑘 =  1, . . . , 𝑁, 

Hyperspheres 𝐻𝑗𝑙(𝒂𝒋𝒍, 𝑅𝑗𝑙), 𝑗 =  1, . . . , 𝑛, 𝑙 =  1, . . . , 𝑚 from the Algorithm 1 output 

Output: 𝑃𝑖𝑗  cross-section matrix for positive results 

1 take 𝑁 input test data for each of 𝑚 subspaces for all 𝑛 faults 𝐹𝑖𝑙(𝒙𝒌), 

2     for each fault indexed with 𝑖 =  1, . . . , 𝑛 

3         for each hyperspace indexed with 𝑗 =  1, . . . , 𝑛 

4             for each subspace indexed with 𝑙 =  1, . . . , 𝑚 

5                 for each test data indexed with 𝑘 =  1, . . . , 𝑁 

6                     test all data from 𝐹𝑖𝑙(𝒙𝒌) with hyperspheres 𝐻𝑗𝑙(𝒂𝒋𝒍, 𝑅𝑗𝑙) from formula (13) 

7                     count positive results 𝑃𝑅 

8                 end for 

9             calculate (𝑃𝑅/𝑁)𝑙 

10         end for 

11         calculate the mean over all subspaces 𝑃𝑖𝑗  from formula (14) 

12     end for 

13 end for 

14 return 𝑃𝑖𝑗 

 

 

4.2.3. Validation procedure 
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To validate the method, the final fault detection algorithm is performed. We choose the main 

diagnostic parameter D = 90%. With the weaker condition (15), we can now perform the final 

testing by eliminating faults in the proper sequence. For our purpose, from the matrix presented in 

Table 7, the order of testing is {H9, H8, H7, H6, H5, H4, H3, H2, H1}. For the algorithm’s validation, 

Authors randomly pick new data points from the final testing data set for each nine fault spaces 

and each seven power load subspaces. 

In our case, we first test novel data with hypersphere H9 using the formula (13). If more than 

90% of the data points fall to H9 hyperspace, fault F9 is detected, and the test is stopped. If less than 

90% of the points fall into this category, fault F9 is eliminated, and the tests are continued for the 

remaining faults only. To describe the function of sequence testing, let us take a closer look at the 

confusion matrix where the hypersphere H2 could have falsely detected the actual fault F8 as F2, 

were it not for the sequence testing. With the sequence testing, if the actual fault is F8, the test 

performed first with the hypersphere H8 will return the result and end the procedure. Figure 8 

presents the final results of testing the novel data chosen randomly from each fault space.  

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


28 

Figure 8. Final confusion matrix for predictions H1 − H9 with novel data from actual faults F1 − 

F9. Tests were performed with 10 data sets for each actual fault: to get 100% accuracy, five data 

points were taken for each power load subspace. 

 

The test was performed ten times for each fault. In all cases, the actual faults were detected 

with 100% accuracy. The final diagnostics show that five exhaust composition measurements per 

seven power load subspaces are enough for 100% accuracy of this method. In practical use, for 

testing an actual engine fault, this would mean that the operator should take a minimum of five 

measures for each power load subspace. Below a generalized pseudo-code algorithm for the final 

testing is presented. It may be applied to different technical solutions. 

Algorithm 3: Final testing procedure 

Input: test data for m subspaces 𝑥𝑘𝑗, 𝑘 =  1, . . . , 𝑁, 𝑗 = 1, . . . 𝑚 

hyperspheres 𝐻𝑖𝑗(𝒂𝒊𝒋, 𝑅𝑖𝑗), 𝑖 =  1, . . . , 𝑛, 𝑗 =  1, . . . , 𝑚  

main diagnostic parameter - 𝐷  

order of fault testing {Hi}  

Output: the fault 

1 for the order {𝐻𝑖} 

2     for each subspaces indexed 𝑗 =  1, . . . , 𝑚 

3         for each test data indexed 𝑘 =  1, . . . , 𝑁 

4             test the data 𝒙𝒌𝒋 with hyperspheres 𝐻𝑖𝑗(𝒂𝒊𝒋, 𝑅𝑖𝑗) with formula (13) 

5             count positive results 𝑃𝑅 

6         end for 

7     calculate the fraction of positive results (𝑃𝑅/𝑁)𝑗  for each subspace 
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8     end for 

9     calculate the mean over all subspaces using the formula 𝑀 =
∑ (𝑃𝑅/𝑁)𝑗

𝑚
𝑗

𝑚
  

10     if 𝑀 >  𝐷 returns fault 𝐻𝑖  and end testing 

11     else exclude fault 𝐻𝑖 and continue with the testing order for the remaining faults. 

12 end for 

 

Finally, for more clarification, a flowchart of all the introduced procedures is given in Figure 9. 

 

Figure 9. A flowchart of all the procedures 

 

5. Conclusions 

Our team has adeptly developed and rigorously tested an innovative approach for diagnosing 

faults in marine combustion engines. This approach employs a Support Vector Data Description 

(SVDD) methodology, integrated with power load subspaces. Our findings reveal that signals from 

exhaust gas composition are highly informative for diagnostic purposes. This newly proposed 

method demonstrates a high efficacy, accurately identifying eight different simulated faults as well 
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as the state of engine efficiency, achieving a perfect accuracy rate of 100%. This was accomplished 

using merely five data points from each power load subspace. The implementation of this method 

is straightforward, eschewing the need for complex parameter optimization and is not burdensome 

in terms of time. Consequently, we infer that this methodology holds significant promise for facile 

application across various engine types. 
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