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A B S T R A C T   

This paper deals with the accurate modelling of ultrasonic wave propagation in concrete at the mesoscopic level. 
This was achieved through the development of a discrete element method (DEM) model capable of simulating 
elastic wave signals comparable to those measured experimentally. The main objective of the work was to 
propose a novel methodology for constructing a meso-scale model of concrete dedicated to the analysis of elastic 
wave propagation. All the material parameters necessary to prepare a numerical DEM model of concrete at the 
mesoscopic level were explored and explained. Calibration of the mechanical parameters of the DEM model to 
match the experimental values involved linking the local, micro-parameters between particles with the global 
response of the whole sample. The developed numerical model was further used to simulate the propagation of 
elastic waves in a cubic concrete sample, in the frequency range of 100–500 kHz. The results of the DEM cal
culations showed good agreement with the experimental ultrasonic signals.   

1. Introduction 

Ultrasonic waves are widely used in non-destructive testing (NDT) 
and structural health monitoring applications. The ultrasonic guided 
wave technique has already been successfully applied to the damage 
detection of thin-walled structures such as metallic plates [1], composite 
panels [2,3], adhesive joints [4], bolted connections [5] and many 
others [6]. Ultrasonic techniques have also been widely used in the non- 
invasive diagnostics of masonry [7], concrete [8,9], timber [10,11] or 
rammed earth structures [12]. Nowadays, determining the exact loca
tion of the damage or the moment of its initiation becomes a major 
challenge for modern damage detection algorithms and SHM systems 
utilizing ultrasonic waves. Therefore, a currently popular approach is to 
support diagnostic methods with numerical simulations in order to 
improve the interpretation of experimental results, which are usually 
obtained with a limited number of detection points. 

Numerical modelling of elastic wave propagation has attracted the 
attention of researchers in the field of NDT support. Different techniques 
are used depending on the problem being investigated. In general, the 
problem of modelling ultrasonic wave propagation is challenging 
because of the need for fine discretisation and a sufficiently small time 
step. One of the most efficient approaches is the use of a semi-analytical 

technique in the frequency domain, the so-called frequency domain 
spectral element method (FDSEM) [13]. However, this technique is 
limited to the analysis of simple 1D or 2D structures due to the diffi
culties in modelling finite length structures [14]. Therefore, the finite 
element method is usually used to analyse complex 3D structures. The 
advantage of the FEM is the availability of numerous commercial codes 
and its great ability to analyse structures with complicated geometry or 
heterogeneous internal structure. On the other hand, the application of 
the FEM to model wave propagation in the ultrasonic frequency range 
requires a very dense FE mesh resulting in long computation times. The 
improvement of the finite element method can be achieved by using 
special elements, with higher order interpolating polynomials. Such an 
approach is called (depending on the source) time-domain spectral finite 
element method (TDSEM), spectral finite element method (SFEM) or 
simple spectral element method (SEM) [14–16]. The main difference 
between FEM and SFEM lies in the choice of interpolation nodes. In the 
SEM, the element nodes are usually distributed according to the Gauss- 
Lobatto-Legendre quadrature rule. As a result, it is possible to obtain a 
diagonal element level mass matrix, which leads to efficient time inte
gration. The spectral finite element method has been proven to be a 
helpful tool in many successful damage detection applications, such as 
the identification of different-sized delamination within laminates [17] 
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or the simulation of ultrasonic guided wave propagation in the fibres 
[18]. There have been some attempts to model wave propagation in 
concrete subjected to mechanical degradation using SFEM, but these 
have been limited in scope to a rough approximation of the micro-crack 
zone inside the beam by a reduced Young’s modulus distributed ac
cording to some spatial function [19]. 

Accurate modelling of ultrasonic wave propagation in concrete, a 
material with a heterogeneous structure, requires a different approach. 
Meso-scale models of concrete (i.e. models in which concrete is treated 
as a multiphase system) have attracted the interest of researchers 
investigating various aspects of damage detection methods based on 
ultrasonic wave propagation. Asadollahi and Khazanovich [20] studied 
numerically the effect of aggregate shape and size on the scattering 
attenuation of shear waves in concrete. They developed a 3D numerical 
tool based on the elastodynamic finite integration technique. Yu et al. 
[21] employed a two-dimensional numerical model in the time domain 
based on a spectral element method. The model included a region of 
circular or polygonal scatterers randomly distributed between two ho
mogeneous regions. The authors showed that the orientation of the 
aggregates has a significant effect on the coherent wave parameters. Xu 
et al. [22] studied the detection of debonding defects in concrete-filled 
steel tubes both experimentally and numerically using ultrasonic 
waves induced by PZT transducers. They used a meso-scale FEM model 
of concrete consisting of circular aggregates, mortar and interface 
transition zones. Chen et al. [23] validated the feasibility of detecting 
interfacial debonding using meso-scale numerical analysis and the 
multichannel analysis of surface waves (MASW) approach. For the stress 
wave propagation, the FEM model with the dimensions of 1 m × 1 m, 
and with the number of elements up to 1 000 000 was used. Equivalent 
homogenisation was introduced to reduce the computational time. 

In recent years, great progress has been made in the development of 
concrete models based on the discrete element method (DEM). As con
crete has a particular structure that is heterogeneous and discontinuous, 
the DEM is a numerical approach particularly suitable for studying its 
mechanical behaviour, including material meso-structure and cracks. A 
large number of works have reported on the effectiveness of the DEM in 
characterising fracture in concrete, e.g. [24–28]. However, studies of 
wave propagation modelling are still rare and limited to rock or granular 
materials. Sadd et al. [29] presented analyses of DEM-based simulations 
of wave propagation in granular materials, composed of assemblies of 
spherical particles and circular discs. The results showed the relation
ship between the wave velocity and the stiffness of the interparticle 
contacts. Nishida et al. [30] performed numerical DEM simulations of 
wave propagation in an ordered array of mono-sized spheres. The mo
tion and normal contact forces of the particle array were analysed. Rojek 
et al. [31] demonstrated the ability of the discrete element method to 
model wave propagation in solid materials. They numerically analysed 
elastic wave propagation in a rock-like cohesive material. They found 
that the elastic properties obtained from the DEM dynamic analysis were 
in agreement with those obtained from the DEM simulation in the quasi- 
static compression test. To the best of the authors’ knowledge, there is 
no accurate DEM model capable of simulating elastic wave signals 
comparable to those measured experimentally. 

The study presents a comprehensive investigation of the propagation 
of ultrasonic waves in concrete. The main objective of the paper was to 
explore all the parameters necessary to create a numerical DEM model of 
concrete at a mesoscopic level. Such a discrete model is crucial for 
further application in non-destructive testing and fracture monitoring of 
cementitious composites. A novel algorithm for modelling and calibra
tion of ultrasonic waves in concrete samples has been proposed. The 
main focus has been on the development of a step-by-step approach 
leading to an effective modelling of ultrasonic waves in a DEM 
environment. 

The paper is structured as follows: Section 1 is the introduction and 
briefly describes the modelling methods for elastic wave propagation. 
Section 2 provides the fundamentals of discrete element modelling and 

the developed framework for modelling elastic wave propagation using 
DEM. Section 3 describes the determination of material parameters in 
static and dynamic tests for DEM modelling. After that, the calibration of 
local, micro-parameters between particles was explained. The numerical 
DEM model was then applied in Section 4 to model elastic wave prop
agation in concrete cubic samples. Some concluding remarks are con
tained in Section 5. 

2. Formulation of DEM for concrete 

2.1. Fundamentals of DEM 

The numerical analysis was performed in the Yade software [32], 
which is based on the discrete element method (DEM). DEM is a 
computational technique used to model and analyse the behaviour of 
granular materials and particulate systems, including concrete. It fo
cuses on the simulation of individual particles and their interactions in 
order to understand the macroscopic behaviour of materials. Using an 
explicit time-stepping scheme, the particles in the DEM interact with 
each other during translational and rotational motions using a contact 
law and Newton’s 2nd law of motion [33,34]. 

The mechanical response of the DEM is shown in Fig. 1. A linear 
normal contact model was applied for compression. The interaction 
force vector between two spherical discrete elements in contact was split 
into normal and tangential components. Cohesive bonding was consid
ered at the grain contacts, resulting in brittle failure under a critical 
normal tensile load. Tensile failure resulted in contact separation, while 
shear cohesion failure initiated contact slip and sliding, following the 
Coulomb friction law under normal compression. Linear elastic behav
iour was assumed prior to reaching the fracture condition (see Fig. 1). 
The contact forces were related to displacements by the normal and 
tangential stiffness moduli, Kn and Ks. The forces acting on individual 
elements can be calculated using the following equations: 

Fn = Kn(U − Uo)N, (1)  

Fs = Fs,prev +KsΔXs, (2) 

where Fn is the normal contact force, U is the overlap between 
discrete elements (Uo is the initial overlap, before the test), N is the unit 
normal vector at the contact point, Fs is the tangential contact force, Fs, 

prev is the tangential contact force in the previous iteration, Xs is the 
relative tangential displacement increment (Fig. 1a), Kn is the normal 
contact stiffness, Ks is the tangential contact stiffness. 

The initial overlap Uo was extracted from the calculated overlap at 
each step. This allows for the preparation of denser samples, which is an 
important consideration in concrete calculations. The stiffness Kn and Ks 
depend on the radii of the elements in contact (RA and RB), the Young 
modulus of the contact (Edem), and the ratio between normal and 
tangential stiffness (νdem), sometimes referred to as the Poisson’s ratio of 
the contact. These values can be obtained from the following equations: 

Kn = Edem
2RARB

RA + RB
and Ks = νdemEdem

2RARB

RA + RB
(3) 

Note that Edem and νdem are local, micro-parameters between parti
cles. It is often difficult, if not impossible, to determine these parameters 
for concrete in the laboratory. The widely used method for determining 
Edem and νdem is the trial-and-error technique, which involves deter
mining the global response of the whole sample and comparing it with 
laboratory experiments. However, the global response (Eglob and νglob) 
depends not only on the local parameters (Edem and νdem), but also on the 
initial porosity, the initial coordination number, the element size, and 
the distance to neighbouring elements. Therefore, the entire process of 
determining the parameters by the trial-and-error method can be quite 
time-consuming. 

The model postulates a cohesive bond at the grain contact, with a 
brittle failure below the critical normal tensile force. Under normal 
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compression, shear cohesion failure leads to contact slip and sliding, 
which follows the Coulomb friction law, in the following situations, 
namely, before contact breakage: 

‖Fs‖ − Fmax
s − ‖Fn‖ × tanμ⩽0, (4)  

and after contact breakage: 

‖Fs‖ − ‖Fn‖ × tanμ⩽0, (5) 

where μ is the Coulomb inter-particle friction angle and Fmax
s is the 

critical cohesive contact force. The parameters used in the DEM were re- 
calibrated to obtain a global response consistent with the experimental 
results. The forces (critical cohesive contact force Fmax

s and minimum 
tensile force Fmin

n ) in the numerical method were calculated as follows: 

Fmax
s = CR2 and Fmin

n = TR2, (6) 

where R is the smaller radius of the spheres in contact, C is the 
cohesive contact stress (maximum shear stress at zero pressure), and T is 
the normal tensile contact stress. Failure occurs when the cohesive bond 
between the spheres (Eq.(6)) disappears after a critical threshold is 
reached. When the normal force between two elements exceeds the level 
of Fmin

n , the contact is broken and the normal force is equal to zero. If a 
shear force exceeds Fmax

s , the cohesion is broken but the contact can still 
exist. If a contact between spheres re-appears after failure, the cohesion 
is no longer present (Eq. (5)). A crack was considered to be open if the 
cohesive forces between grains disappeared when a critical threshold 
was reached. The choice of a very simple linear elastic normal contact 
was intended to capture, on average, the different contact possibilities in 
real concrete. Note that material softening is not taken into account in 
the DEM model. In order to dissipate the excess kinetic energy in a 
discrete system, a simple local non-viscous damping scheme was adop
ted [33], which assumed a change of forces by using the damping 
parameter αd: 

Fk
damp = Fk − αd⋅sgn

(
vk

p

)
Fk (7) 

where Fk
damp is the damped contact force, Fk and vk

p are the kth com
ponents of the residual force and the translational particle velocity, 
respectively, and αd is the positive damping coefficient less than 1 (sgn 

(•) that returns the sign of the kth component of the velocity). 
In the general case, the mutual configuration of two particles has 6 

degrees of freedom (DoFs), similar to a beam in 3D space. Each particle 
has 6 DoFs, while the interaction itself is free to move and rotate in space 
with both spheres, also having 6 DoFs: normal straining (1 DoF), 
shearing (2 DoFs), twisting (1 DoFs) and bending (2 DoFs). 

The following material constants: Edem, νdem, μ, C, and T are required 
for DEM simulations. In addition, R, ρ (mass density) and αd are needed. 
The accuracy of the model depends on many factors, including the 
number and size of the elements, the number of initial contacts, whether 
the calculations are performed in 2D or 3D, and the time step used. The 
DEM model has been successfully used by the authors to describe the 
behaviour of concrete materials [25–27]. It has shown excellent agree
ment with experimental data from a mechanical point of view (e.g., 
stress–strain curves, crack patterns). In this study, wave propagation 
signals were directly compared with experimental data to ensure accu
rate modelling. However, incorporation of the precise meso-structure of 
the specimens analysed would improve accuracy. 

2.2. Framework of modelling using DEM 

The phenomenon of wave propagation using the DEM is a complex 
problem that is influenced by various factors. In this study, we present a 
methodology for constructing an appropriate meso-scale model of con
crete dedicated to the analysis of elastic wave propagation. Fig. 2 il
lustrates a schematic overview summarizing the experimental 
investigations required and the calibration process of the numerical 
model. This scheme provides the basis for the development of a 3D 
numerical model that accurately represents the real object. The elements 
depicted in the diagram (experimental investigations and Yade DEM 
modelling) will be discussed in detail in the following sections. 

The following description outlines a step-by-step approach for car
rying out thorough experimental investigations and modelling:  

• Step 1: determining the density of a concrete sample. The dimensions 
of a specimen and its mass are measured, and the density is then 
calculated using the formula ρ = m/V.  

• Step 2: identification of the porosity. 

Fig. 1. Mechanical response of DEM: (a) tangential contact model, (b) normal contact model, (c) loading and unloading path in tangential contact model and (d) 
modified Mohr-Coulomb model [32,34]. 
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• Step 3: identification of the static mechanical parameters, i.e., static 
Young modulus and static Poisson’s ratio. This can be realized in two 
ways. The first is to perform a static compression test using two ex
tensometers (longitudinal and transverse) to obtain directly the 
static Young modulus Est and static Poisson’s ratio νst. The second 
approach is to determine the dynamic parameters (Edyn, νdyn) in the 
ultrasonic pulse velocity (UPV) test, based on the velocities of the 
propagating longitudinal and transverse waves. The empirical for
mula is then used to calculate the static modulus of elasticity Est. In 
this approach, the dynamic Poisson’s ratio is usually approximated 
to the static one.  

• Step 4: conducting static compression test up to failure to identify the 
maximum stress value σmax.  

• Step 5: creation of a DEM model. The physical parameters required 
for the numerical model, such as dimensions, porosity, and density 
are taken from the experimental investigation. Additionally, the 
particle sizes dmin and dmax should be selected.  

• Step 6: calibration of the mechanical parameters to match the 
experimental values of Est and νst. This is done by performing a static 
compression test on the DEM cube model. By selecting appropriate 
batch parameters Edem and νdem, the global values of Eglob, νglob were 
obtained. The calculated global stress (σglob) also needs to be cali
brated to match the experimental value (σmax). 

3. Determination of mechanical parameters for DEM modelling 

3.1. Object of research 

The test objects were cubes with dimensions of 50 × 50 × 50 mm3 

and 150 × 150 × 150 mm3. The specimens were made of concrete with 
only fine aggregate (so-called mortar concrete). The ingredients of the 
concrete mix were as follows: CEM I 42.5R (500 kg/m3), sand 0-2 mm 
(1500 kg/m3) and water (250 kg/m3). The samples were prepared in 
150 × 150 × 150 mm3 moulds, and then some of them were cut into 
cubes of 50 × 50 × 50 mm3. Before the tests, the geometry and mass of 
the cubes were measured to determine the density, which was ρ =
2129.56 kg/m3. The porosity was determined on a 50 × 50 × 50 mm3 

cube. This was the same cube that was then used for the wave propa
gation tests. Two methods were applied to determine the porosity. The 
first was an optical method based on the microscopic images of the outer 
surfaces of the cube (Fig. 3a). Before the images were taken, the pores 
were filled with white plaster compound to provide better contrast. The 
images were taken using a Keyence VHX-7000 digital optical microscope 
and then processed to count the area of the pores. The second approach 
was based on the micro-CT method. The cube was scanned using a 

SkyScan 1173 scanner. After the reconstruction process, images of the 
internal cross-sections were obtained (Fig. 3b). A thresholding tech
nique based on density differences was implemented to distinguish 
pores from concrete in the images. Example images with identified pores 
on the outer surface and internal cross-section are shown in Fig. 3. Using 
both methods, the air content was determined to be approximately p = 7 
%. 

3.2. Determination of material parameters in static and dynamic tests 

The compressive strength, modulus of elasticity and Poisson’s ratio 
are the mechanical parameters of concrete that need to be determined 
for DEM modelling. The modulus of elasticity of concrete can be 
determined using the classical compression test. The modulus deter
mined in this way is called the static modulus of elasticity. Extensome
ters, which measure longitudinal deformation, are commonly used for 
this purpose. Measurement of the transverse deformation required to 
determine Poisson’s ratio is less common and is usually performed using 
foil strain gauges, which is more time-consuming. Therefore, the dy
namic method of determining Young’s modulus and Poisson’s ratio by 
non-destructive evaluation has become popular in recent years. The 

Fig. 2. A flowchart depicting steps required for the calibration of the DEM model for wave propagation.  

Fig. 3. Determination of porosity: (a) using a microscopic image; (b) using the 
micro-CT method. 
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parameters determined in this way are called the dynamic modulus of 
elasticity and dynamic Poisson’s ratio. The relationship between static 
and dynamic moduli can be described by empirical relationships. The 
relationship between the static and dynamic Poisson’s ratio is not clear, 
so the two parameters are usually assumed to be equal. 

In this study, we have presented both approaches, static and dynamic 
testing. The first step was to perform a static compression test. Two tests 
were carried out, a cyclic test to determine the static elastic modulus and 
a standard compression test to determine the maximum stress value. The 
prepared cubes of dimensions 150 × 150 × 150 mm3 were subjected to 
axial compression. The experiment was carried out using the load frame 

Toni Technik model 2091 (Fig. 4a). The secant modulus of elasticity was 
determined by cyclic testing according to method B of PN-EN 
12390–13:2014–02 [35]. During the cyclic loading, the stress increase 
was controlled with a constant value of 0.3 MPa/s. The maximum stress 
level was assumed to be 16.7 MPa (about 25 % of maximum strength). 
The phases of no load and the maximum load lasted 20 s. Longitudinal 
deformations were recorded using a deformation measurement device 
equipped with a double extension sensor (two extensometers with a 75 
mm gauge base, attached to the opposite sides of the cube, see Fig. 4b). 
Finally, the cube was compressed up to failure in a destructive test, with 
a speed of 0.6 MPa/s, to determine the compressive strength. 

Fig. 5a shows the resulting stress-time curves, from which the static 
elastic modulus was obtained according to PN-EN 12390–13:2014–02. 
The stress–strain curve from the cyclic test is shown in Fig. 5b (blue 
line). As the destructive tests were carried out without an extensometer 
(to avoid destroying it), only the displacement of the crosshead was 
recorded. It is well known that the displacement of the crosshead cannot 
be used to calculate the deformation of the specimen, as such a result is 
subject to a large error. Therefore, the relationship between the actual 
strain (blue line) and the strain converted from the crosshead (magenta 
line) was established based on the cyclic test in which both the strains 
and displacements of the crosshead were recorded. By matching the 
curves, it was found that a strain multiplier of 1/4.5 was assumed for the 
testing machine used. Then, for the destructive test, the stress–strain 
curve (red line) was obtained using the same multiplier. On the basis of 
both compression tests, the following parameters were determined: the 
static elastic modulus Est = 27.42 GPa and the failure stress σexp = 66.0 
MPa. 

Ultrasonic measurements were then performed to determine the 
dynamic parameters. Pressure and shear wave velocities of cubes (150 
× 150 × 150 mm3) were measured using a Pundit PL-200 device (Pro
ceq) and ultrasonic transducers (Fig. 6). The ultrasonic pulse velocity 
(UPV) test was performed using two pairs of transducers. The first set 
consisted of two P-wave transducers with a frequency of 54 kHz, while 
the second set consisted of S-wave transducers with a frequency of 40 
kHz. In order to determine the material parameters of concrete, the re
lationships for an isotropic medium between the bulk wave velocities (i. 
e. the P-wave velocity vP and the S-wave velocity vs) and the material 
constants (i.e. the mass density ρ, the dynamic elastic modulus of elas
ticity Ed and the Poisson’s ratio ν) can be used: 

vP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ed(1 − νd)

ρ(1 + νd)(1 − 2νd)

√

, vS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E

2ρ(1 + νd)

√

(8) 

Based on the above relationships, one can obtain formulas for the 
dynamic elastic modulus of elasticity: 

Ed = 2ρv2
S(1 + νd) (9) 

and the Poisson’s ratio: 

Fig. 4. Experimental setup for static test: (a) compression of the cube; (b) 
extensometer attached to the specimen. 

Fig. 5. Result of static compression test: (a) stress-time curve in the cyclic test, (b) stress–strain curves for cyclic and test and compression test up to failure.  
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νd =

0.5
(

vP
vS

)2

− 1
(

vP
vS

)2

− 1
(10) 

Fig. 7 shows the results of the UPV test performed on the concrete 
cube. The P-wave signal is plotted with the blue line, while the S-wave 
signal is plotted with the red line. The distance between the transducers 
was 150 mm. The time-of-flight (TOF) identified was: tP = 35 µs (for the 
P-wave) and tS = 55.1 µs (for the S-wave). The dynamic elastic modulus 
and Poisson’s ratio were calculated from Eqs. (9) and (10), and their 
values are: Ed = 36.68 GPa, νd = 0.16, respectively. 

Various empirical formulae have been proposed to find the rela
tionship between the static modulus of elasticity Est and the dynamic 
modulus of elasticity Ed [36]. Three methods are the most commonly 
used. The first is the relationship proposed by Lydon and Baledran [37]: 

Est = 0.83Ed [GPa] (11) 

Another formula can be found in the British Standard BS8100 Part 2: 

Est = 1.25Ed − 19 [GPa] (12) 

A formula incorporating the density of the concrete has been pro
posed by Popovics [38]: 

Est =
446.09E1.4

d

ρc
[GPa] (13) 

Table 1compares the Est values calculated from Eqs. (11), (12) and 
(13) with the value obtained from the static cyclic test. The relative 

Fig. 7. Wave propagation signals registered by P-wave and S-wave transducers, with indicated TOF for primary and secondary waves (blue line – P-wave, red line −
S-wave). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Experimental setup for UPV test: (a) ultrasonic pulse analyser; (b) P- 
wave and S-wave transducers. 

Table 1 
Comparison of the values of static elastic moduli.  

Method Lydon and 
Balendran 

BS8100 
Part 2 

Popovics Mean 
value 

Static 
test 

Est 

[GPa]  
30.44  26.85  32.46  29.92 27.42 

Relative error  

[%]  

11.0  2.1  18.4  9.1 –  
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errors obtained are 2.1 % for the BS8100 method and 9.1 % for the mean 
value of these three methods, confirming the validity of this approach. 
The static Poisson’s ratio νst was assumed to be the same as the dynamic 
ratio νd [39,40]. 

3.3. DEM numerical model 

The numerical DEM analyses were performed on a cube with di
mensions of 50 × 50 × 50 mm3 (Fig. 8). As the sample consisted of 
40,000 elements, resulting in almost 250,000 contacts, the number of 
global degrees of freedom was almost 1,500,000. The uniaxial and wave 
simulations tests were conducted for approximately 3 and 5 days, 
respectively, on Intel Xeon Platinum processors 8280 (2.70 GHz), 
without parallelization of the code. The particle diameter sizes were 
taken to be dmax = 2 mm and dmin = 1.6 mm. The maximum diameter 
was determined to correspond to the largest diameter of sand used in 
mortar concrete specimens, where gravel aggregates were not employed 
([25,41]). The smaller elements significantly increase the computation 
time, but have a negligible effect on the results [42]. The density 
parameter ρ was chosen so that the mass of the model matched the 
actual mass. The particles were placed randomly with the aim of making 
the porosity of the model equal to the experimental p = 7 %. Although 
results may vary slightly depending on the arrangement, the differences 
are expected to be negligible, given the same sieve curve of the elements. 

In contrast to the experimental measurements, a compression test 
was carried out numerically up to failure using vertical and horizontal 
virtual extensometers. The specimen was placed on the lower wall and 
the upper wall was moved at a constant velocity of 2.5 mm/s (the in
ertial number was kept below 10-4 to provide quasi-static conditions). 
Both walls were frictionless thus horizontal movement was possible. In 
the compression test, the parameters Edem and νdem were chosen so that 
Eglob and νglob matched the actual values of Est and νst. The calibrated 
values were equal to 23.31 GPa and 0.32, for Edem and νdem, respectively, 
which corresponded to global values of Eglob = 27.65 GPa, νglob = 0.16. 
The interparticle friction µ was equal to 18

◦

. The normal contact strength 
T and shear cohesion C were both chosen to be 24.4 MPa. These values 
correspond to the maximum uniaxial compressive strength equal to σdem 
= 66.5 MPa. The correctness of the calculations carried out was 
confirmed by the consistency of the parameters obtained (Table 2) and 

the agreement of the slope of the curve obtained numerically with the 
experimental ones (Fig. 9). 

4. Elastic wave propagation in concrete samples 

4.1. Experimental setup for wave propagation 

The measurements of elastic waves were carried out on cubes with 
edge lengths of 50 mm (Fig. 10). The piezoelectric plate transducers 
Noliac NAC2024 with dimensions of 3 × 3 × 3 mm3 were used to excite 
and register the waves. One of the transducers acted as an actuator (A), 
while the others (B – G) acted as sensors. The location of the actuator 
and sensors is shown in Fig. 10b. The wave packet induced by the 
actuator was a five-cycle sine function modulated with a Hann window 
(Fig. 10c). The centre frequency of the wave packet was set in the fre
quency range of 100–500 kHz with a step of 50 kHz. The signals were 
further processed using the Hilbert transform to obtain signal envelopes 
[43]. 

4.2. Elastic wave propagation using DEM 

After determining the crucial parameters calibrated to the experi
ment, it was possible to perform a simulation of elastic waves. The 
values of Edem and νdem obtained by calibrating the model in the 
compression test were used. The equation of motion was integrated with 
a time step of dt = 5⋅10-8 s, up to 1.5 ms. In DEM calculations, the chosen 
time step is critical for the accuracy of the calculation. It can be esti
mated using the wave propagation velocity as Δtcr = min(Ri

̅̅̅̅̅̅̅̅̅̅
ρi/Ei

√
), 

where Ri is the radius of the sphere, ρi is the material density, and Ei is 
the Young modulus of contact for element “i”. Taking into account the 
minimum radius of the sphere of 0.8 mm, the density of 2129.56 kg/m3 

and the Young modulus of the contact of 23.31 GPa, the critical time step 
Δtcr equals 2.418⋅10− 7 s. However, in our study, the time step was 
further reduced to 5⋅10-8 s to ensure accuracy in the propagation of 
elastic waves. A damping parameter of αd = 1⋅10-2 was used. In explicit Fig. 8. Numerical DEM model of a concrete cube.  

Table 2 
Comparison of calibrated numerical global values and experimental ones.   

Eglob 

[GPa] 
vglob 

[–] 
σdem 

[MPa] 

Experimental  27.42  0.16 66 
Numerical  27.65  0.16 66.5  

Fig. 9. Stress–strain curves for calibrated DEM model and experimental test.  
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simulations, it is desirable to dissipate the kinetic energy of the particles. 
Since constitutive laws do not inherently include velocity-based damp
ing, artificial numerical damping can be used. However, in dynamic 
studies, the numerical damping should be small enough to neglect its 
effects. After some numerical experiments using a trial-and-error tech
nique, a damping coefficient of αd = 1⋅10-2 was chosen, which affected 
the wave propagation results by less than 1 %. The interaction zone was 
characterised by a contact factor Cf = 1.1. This zone corresponds to the 
radius of contact for each particle. The signal was excited by actuator A 
and received by virtual sensors B-G, placed as in the experiment. The 
wave was excited as a five-cycle sine function which was set in the 
frequency range of 100–500 kHz with a step of 50 kHz. Fig. 11 shows 

snapshots illustrating the propagation of the disturbance in the DEM 
model of the concrete cube, at selected time instances. The wave starts to 
propagate at the centre of the left surface and then spreads throughout 
the sample. Acceleration signals of a length of 1.5 ms were recorded at 
the location of sensors B-D and then compared with the experimental 
signals in the following section. 

4.3. Experimental and numerical results of wave propagation 

In this section, the numerical and experimental signals of elastic 
waves propagating in the concrete cube are compared. Fig. 12 shows the 
signals recorded during the experiment. In an ideal situation 

Fig. 10. Experimental setup (a); localization of PZT transducers (b); excitation signal in time and frequency domains (c).  

Fig. 11. Visualization of wave propagation in DEM model of concrete cube.  

M. Knak et al.                                                                                                                                                                                                                                   

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Ultrasonics 141 (2024) 107336

9

Fig. 12. Experimental wave propagation signals in time domain registered by sensors B to G.  

Fig. 13. Numerical wave propagation signals in time domain registered by sensors B to G.  
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(homogeneous material, ideal positioning of the sensors) the individual 
signals recorded by the sensors placed on opposite sides should be the 
same, i.e. G = E and F = D. However, in real conditions, it is not possible 
to achieve perfect consistency and differences in the signals can be 
observed. The main factors influencing these differences are: heteroge
neity of the sample structure, variations in sample dimensions and in
accuracy in the arrangement and location of the sensors. 

Fig. 13 shows the numerical wave propagation signals. As in the 
experiment, there are differences between the G-E and F-D signals. In 
contrast to the experimental approach, the numerical cube has exactly 
the same dimensions and sensor locations. The differences observed are 
therefore due to the structure of the numerical model. The cubes are 
created by arranging spherical elements in a random pattern, creating 
inhomogeneity and causing differences in the recorded wave signals. As 
a result, elastic waves can exhibit variations in propagation in different 
directions. While the sieve curve (mainly dmax) remains unchanged, the 
results may vary slightly for different random distributions of spheres 
due to heterogeneity. Although the results would not be identical, the 
averages should converge for a large number of random calculations. 
However, including meso-scale features such as aggregates, mortar, and 
air voids in the model can increase the heterogeneity of the specimen. 
This would lead to even greater disturbances in wave propagation, 
resulting in better agreement with reality. 

Fig. 14 shows the envelopes of the signals obtained, both experi
mentally and numerically. The waveforms have been zoomed in to 

Fig. 14. Comparison of experimental and numerical signal envelopes in the 
time domain for the first few wave packets. 

Table 3 
Pearson correlation coefficient between experimental and numerical wave propagation signals in relation to excitation frequency.  

frequency 
[kHz] 

100 150 200 250 300 350 400 450 500 

PCC 
[–]  

0.68  0.72  0.70  0.74  0.75  0.70  0.74  0.73  0.70  

Fig. 15. Comparison of experimental and numerical signals in the frequency domain.  
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highlight the beginnings of the signals. By analysing the plots, it is 
possible to observe the compatibility of the shape of the wave packets. 

Despite slight differences in the corresponding experimental and 
numerical signals, a global agreement between the obtained signals is 
evident. The compatibility between the experimental and numerical 
signals was checked by calculating the Pearson Correlation Coefficient 
(PCC). The mean PCC values (for all sensors) in relation to the excitation 
frequency are presented in Table 3. A good agreement can be observed. 
As the PCC value is higher than 0.7, it can be considered as a strong 
correlation [44]. The obtained PCC values confirm the correctness of the 
calibrated mechanical parameters as well as the selected damping factor 
αd. 

An important aspect of verifying the accuracy of the computational 
model is to compare the recorded experimental and numerical signals in 
the frequency domain. Fig. 15 presents Fourier transforms calculated for 
all sensors B – G and selected frequencies (100, 300, 500 kHz). It can be 
seen that the experimental and numerical spectra are concentrated 
around the excitation frequency. 

5. Conclusions 

The presented paper investigated the modelling of wave propagation 
in a meso-scale model of concrete. The experimental and numerical tests 
were conducted on concrete cubic samples. The wave propagation 
experiment was simulated in a DEM environment. 

A key achievement of the research carried out was to propose a novel 
methodology for constructing a meso-scale model of concrete dedicated 
to elastic wave propagation analysis. Experimental tests required to 
determine the static mechanical parameters, i.e., the static Young 
modulus and static Poisson’s ratio were described. It was proven that 
static parameters can also be determined by dynamic testing and the 
application of appropriate empirical formulae. The calibration of the 
mechanical parameters of the DEM model to match the experimental 
values involved linking local, micro-parameters between particles to the 
global response of the whole sample. Due to calibration conducted by 
numerical compression test up to failure, the local parameters were 
identified in such a way that the global parameters matched the values 
of the static Young modulus and static Poisson’s ratio. 

The developed numerical model was further used to simulate the 
propagation of elastic waves in a concrete cubic sample, in the frequency 
range of 100–500 kHz. The results of the DEM calculations exhibited 
good agreement with the experimental ultrasonic signals. The compat
ibility between the experimental and numerical signals checked by 
calculating the PCC revealed a strong correlation in the analysed fre
quency range. 

This study takes the first step towards the investigating the phe
nomena of elastic wave propagation in heterogeneous materials. This 
knowledge is essential for further studies on the application of ultrasonic 
waves in fracture monitoring and explaining their interaction with 
micro- and macro-cracking of concrete elements. Further work will 
focus on more advanced DEM models, including real shaped aggregates 
and modelling of wave propagation during mechanical degradation of 
samples for early damage detection. 
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