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HIGHLIGHTS

o Engine performance and emissions fuelled with acetylene/diesel were analyzed.

e The box-Behnken design was employed for the Design of Experiments.

e 4.48 lpm AGFR, 27.1 % BTE, and 76.58 bar Pmax are the optimized results.

o Tweedie has a better R% and MSE performance than LightGBM.
ARTICLE INFO ABSTRACT
Keywords: The study examined the dual-fuel engine performance employing acetylene gas as primary fuel
Dual-fuel engine and diesel as pilot fuel. The engine's operational parameters were adjusted using the Box-
Optimization Behnken design, and the results were recorded. The best operating settings were yielded as
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optimized setting the BTE was 27.1 % and the engine emitted 360 ppm of NOx, 56.2 ppm of HC,
104 ppm of CO. The experimental data at optimized setting was compared to the optimized re-
sults, and the percentage of errors was within 7 %. Two advanced machine learning methods,
LightGBM and Tweedie, were used to predict engine efficiency and emissions. Tweedie-based
models had an R2 value of 0.89-1, while LightGBM-based models had an R2 value of 0.38-1. The
mean squared error was 0.24-45.04 for Tweedie-based models and 8.5 to 153.89 for LightGBM-
based models. On the basis of R2 and MSE, it was observed that Tweedie was superior at making
predictions than LightGBM. The study demonstrated the efficient functioning of a dual-fuel en-
gine using acetylene as an alternative fuel for increased performance and lower emissions.
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List of nomenclature

AGFR  Acetylene Gas Flow Rate
ANN Artificial Neural Networks
BDC Bottom Dead Centre

BTE Brake Thermal Efficiency
CCD Central Composite Design
Cco Carbon Monoxide

CO, Carbon Dioxide

CR Compression Ratio

CoH, Acetylene

DoE Design of Experiment

DF Dual-fuel

ER Equivalence ratio

GFR Gas flow rate
GHG Greenhouse Gases

ICEs Internal Combustion Engines
Hy Hydrogen
HC Hydrocarbon

LCV Lower Calorific Value
LightGBM Light Gradient Boosting Machine
LPM Liters per Minute

m Mass
MSE Mean Squared Error
ML Machine Learning

MAPE  Mean Absolute Percentage Error

MAE Mean Absolute Error

MBT Minimum Spark Timing for Best Torque
NOx Oxides of Nitrogen

P Pressure

Pmax  Peak Cylinder Pressure

R? Coefficient of determinations
RE Relative Error

RSM Response Surface Methodology
SI Spark Ignition

T Temperature

TDC Top Dead Centre

LHV Lower heating value

UHC Unburnt Hydrocarbons
UsD United States Dollars

1. Introduction

Nowadays, humans are abusing natural resources at an alarmingly high pace to make their lives more pleasant and comfortable
[1,2], in which humans are constructing heavy industries to obtain a high level of comfort, which has resulted in a multiplication of
energy requirements in recent years [3,4]. In addition, rapid urbanization and industrialization along with the fast-growing human
population are resulting in shortage of energy sources and environmental pollution [5-7]. Due to this reason, massive deforestation
and thorough exploitation of natural sources are necessary to meet enormous energy demand [8,9], which raises serious concerns
about global warming, declining natural assets that are limited in nature, energy security, and environmental concerns [10,11]. In ad-
dition, massive deforestation along with the use of fossil fuels for energy and power production are found to increase CO, and green-
house gas emissions [12,13], resulting in a serious climate change in the world. Facing the depletion of fossil fuels and climate
change, society has begun to consider eco-friendly development which needs high technological advancements relating to alternative
fuel and renewable energy sources to slow down this consumption of fossils especially in the transportation sector as there is leap and
bound progress in the number of vehicles [14-16]. As a result, finding alternate fuels and renewable energy is critical to compensate
the ever-increasing shortage of energy and reduce the climate change, as well as target sustainable development goals of nations and
areas [17-19].

Indeed, with the continuous depletion of fossil fuels and environmental damage, experts all over the world are looking for viable
replacement fuels [20,21] aiming to satisfy two main goals of diversification of provided fuels and reduction of pollutant emissions
[22,23]. As reported in the literature, there have been many type of potential alternative fuels such as biodiesel [24,25], biogas/syn-
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gas [26,27], bio-oil from pyrolysis [28], alcohol (methanol, ethanol, propanol, butanol) [29-31], furan [32,33], ether [34,35], hydro-
gen [36,37], natural gas [38,39], and others. As it can be created using non-fossil sources like calcium carbide and water, acetylene
(C,H,) has been proposed as a potential replacement for fossil source-based fuels [40,41]. Acetylene generation depends on the
process used, the price of the raw materials, the price of the energy, and other aspects. As of 2023, it's estimated using data from the
local market that using calcium carbide to react with water will generate acetylene at a cheap price of about 0.4-0.5 USD per cubic
meter. Contrary to what has been observed, acetylene is highly explosive, so flashback arrestor use is always advisable as a safety
measure. Acetylene has properties such as being a colorless gas with a distinct garlic-like odour, being highly flammable, having an
ignition temperature around 305 °C, having a high flame speed, etc. Due to all these distinct physical and chemical characteristics,
acetylene is an intriguing prospective fuel for internal combustion engines (ICEs) [42,43].

Acetylene is one such fuel that can be used in ICEs because acetylene has a rapid speed of flame as well as low ignition energy,
which can result in enhanced combustion efficiency and lower pollution emissions [44,45]. Acetylene has the potential to be a fuel for
high-performance engines, including motorcycle, and racing vehicle engines, due to its high calorific value and fast flame [46,47].
Acetylene as a fuel for transportation is still in the trial stage, and no nation has widely adopted it because of its low energy density
[48]. It is also quite challenging to store and transport acetylene because this gas is prone to breaking down at higher temperatures
and pressures, and hence it is considered a highly unstable gas, which reduces its economic viability as a fuel for transportation [49].
Acetone-soaked porous materials like diatomaceous earth or activated charcoal are used to fill the cylinders used to store and trans-
port acetylene. The acetone dissolves the acetylene and prevents it from breaking down, which aids in stabilizing it [50].

Acetylene as an alternative fuel for ICEs has been the subject of several experimental research in the past. ilhak et al. [51] experi-
mentally carried out a performance and exhaust emission analysis of four-stroke water-cooled SI engine fuel using a mixture of gaso-
line and acetylene at various loads and flow rates of acetylene. It has been noted that with the induction of acetylene, not only does
the overall thermal efficiency reduce, but there is also a significant drop in hydrocarbon emissions at all loads and a modest rise in NO
at low loads. To reduce NOx, Hilden et al. [52] studied the engine performance and exhaust emission behavior of an SI engine with
acetylene as the fuel. This study team maintained consistent engine speed, constant airflow, and MBT spark timing throughout the
studies. Equivalence ratios between 0.43 and 0.53 and compression ratios between 4 and 6 are ideal because preignition began at
compression ratios higher than 6. Although acetylene fuelling results in a decrease in power and thermal efficiency when compared to
petrol fuel, it also generates little pollutants. In addition, ilhak et al. [53] advocated that ethanol and acetylene would be good substi-
tutes for petrol as they can be easily derived from renewable sources and thus evaluated this fuel along with petrol for exhaust emis-
sion and performance of a multi-cylinder, four-stroke, water-cooled Ford SI engine at different load settings at a constant speed. They
found that NOx formation and UHC emissions were reduced to a very large extent with this ethanol and acetylene. Because this acety-
lene has a low octane number of 50, it is susceptible to knocking, which can be overcome by supplying a lean mixture. Choudhary et
al. [54] tested the engine for the performance of a diesel-acetylene fuel combination on a single-cylinder water-cooled four-stroke CI
engine with a variable compression ratio. It has been reported that engines operate better at greater compression ratios of 19.5:1, al-
though emission characteristics are better at lower compression ratios of 18:1. Sharma et al. [55] conducted an extensive study in In-
dia to identify the optimal flow rate of acetylene between 50 and 200 LPM that best suited the engine characteristics of SI engines dri-
ven by a combination of petrol and acetylene. The results mimic that at a flow rate of 100 LPM acetylene provides very little emission
and hence using this optimum fuel flow rate various engine performances and exhaust emission characterization have been carried
out. It has also been discovered that small anomalous acetylene combustion occurs exclusively at greater loads. The research findings
of this research group stated that acetylene has a strong ability to replace petrol in the near future. Gupta et al. [42] turned a four-
stroke SI engine into a six-stroke engine by injecting water at the end of the recompression stroke to assess and compare the perfor-
mance of petrol and acetylene as fuels independently. When utilized in a six-stroke engine, acetylene exhibited encouraging results
when compared to petrol, with a 45 % increase in thermal efficiency and a considerable reduction in exhaust emissions when com-
pared to a four-stroke engine. The results of the exhaustive experimental examination showed that combining acetylene with the
modified six-stroke engine increased engine performance and emissions. In light of its combustion properties, Lakshmanan et al. [56]
investigated acetylene gas as fuel in air-cooled single-cylinder direct injection CI engines under variable load scenarios as an alterna-
tive to diesel fuel in dual fuel mode. In this case, diesel was employed as the primary fuel and acetylene as the supplementary fuel.
The engine performance worsened with this dual fuel, and there was a reduction in smoke, CO, and UHC owing to improved combus-
tion, as well as an increase in NOx production and peak pressure due to high-speed flame propagation.

Acetylene-diesel dual fuel compression ignition (CI) engines are being investigated as a potential alternative to standard diesel en-
gines. Despite substantial research in this area, some crucial research gaps must be filled to increase our understanding and optimiza-
tion of these engines. To begin, there are no comprehensive studies that investigate the combined effects of engine load, CR, and
acetylene gas flow rate (AGFR) on the performance, combustion characteristics, and emissions of acetylene-diesel dual fuel CI engines
in the existing literature. Most studies have focused on single factors, with little systematic investigation of the interaction between
several control variables and their overall impact on engine performance. Also, while RSM has been demonstrated to be an effective
optimization tool for a variety of engine systems, its application to acetylene-diesel dual fuel CI engines remains limited. The full po-
tential of RSM in this context must be investigated and leveraged to determine the optimal operating conditions for these engines in
terms of efficacy, emissions, and overall performance [57]. The major goal of this study work is to fill the gaps described above by
performing a thorough examination of the effects of engine load, CR, and AGFR on the performance of acetylene-diesel dual fuel CI
engines. It will be achieved by using RSM as a strong optimization tool to determine the ideal operating parameters that result in the
best trade-off between engine efficiency, emissions reduction, and overall efficiency. This study also intends to give useful insights
into the combustion properties and pollutant production mechanisms in acetylene-diesel dual fuel CI engines, particularly under di-
verse operating situations. The findings of this study will help to improve our understanding of the underlying mechanisms and will
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aid in the design and development of improved and environmentally friendly dual-fuel CI engines. A schematic of the research in this
study is depicted in Fig. 1.

2. Materials and methods

2.1. Test setup

In the present investigation, the experiments were carried out on a research engine with a maximum load capacity of 3.5 kW. As
shown in Fig. 2, the test engine is naturally aspirated and capable of accepting variations in operating characteristics such as injection
timings and loading conditions. The engine was a single-cylinder and four-stroke, and it has provision for loading using an eddy cur-
rent dynamometer. The engine had provisions for varying the compression ratio. The major specifications of the test engine are de-
scribed in the authors’ prior work. The fuel injection system consists of an injector with three circular holes of 0.3 mm diameter
spraying diesel at a 120° angle, a fuel pump made by Bosh, and a fuel filter. In this study, the fuel injection pressure was maintained at
220 bar.

The baseline test was started by operating the engine in diesel mode. Initially, the test engine was run at a lower operating setting
i.e.,, CR = 167.5 and FIT = 23°bTDC) for five different levels of engine loadings (20 %, 40 %, 60 %, 80 %, and 100 %). The engine is
operated with high-speed diesel as pilot fuel. The acetylene gas was drawn from an industrial-grade gas cylinder using a digital gas
regulator. It was ensured that fire extinguishers were available nearby to test setup and proper ventilation was ensured. In addition,
the main properties of the test fuel are listed in Table 1.

2.2. Design of experiments with Response Surface Methodology

Design of experiments (DoE) is a statistical strategy for methodically organizing, carrying out, and analyzing experiments with the
objective to optimize and enhance procedures, goods, or systems. It entails carefully modifying a system's input variables (factors) to
evaluate their impacts on the desired output response (outcome). DoE is extensively utilized in many industries, including engineer-
ing, production, chemistry, and social sciences, to study and comprehend the link between factors and responses in an efficient and ef-
fective manner. Response Surface Methodology (RSM) is a subset of DoE that focuses on developing mathematical models to charac-
terize the link between the input factors and the response, it could be used to optimize the experimental results [58,59]. It attempts to
identify the ideal settings for the components that will deliver the best potential response. Whenever the connection between vari-
ables and response is intricate and non-linear, RSM is very beneficial [60]. RSM represents the answer as a function of the components
using polynomial regression models. A second-order polynomial regression model with two components (x; and x») has the following
general form [61,62]:

Y = fo+ Brxy + Poxa + Brix(2 + Popxp2 + Proxixy + € (€Y

Wherein, the anticipated response of the variable (output) is denoted by Y. The regression coefficients that were determined based on
the data are fy, f1, B2, P11, P12, and Boo. X7 and x, are the levels (values) of the two elements under consideration. ¢ is the error term
that represents the amount of residual variation that the model does not explain. RSM's purpose is to calculate the coefficients (5, f1,
P, P11, P12, and fo5) from experimental data and subsequently, employ the model to improve the response by determining which fac-
tor values maximize or minimize it. RSM commonly utilizes several experimental designs, like Central Composite Design (CCD) or
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Table 1

Main characteristics of test fuel.
Properties Diesel Acetylene
Chemical formulae CqoHyg C,H,
Density (@ 1.01325 bar and 293 K) 857 kg/m® 1.092 kg/m®
Lower calorific value (kJ/kg) 42600 48300
Stoichiometric air-fuel ratio (kg/kg) 145 13.2
Cetane number 48 _
Viscosity 2.88 cSt -

Box-Behnken Design, to do this. These designs allow for efficient investigation of the factor space whilst reducing the number of tests
necessary [62].

These designs have been selected for their orthogonality as well as rotatability qualities, which aid in predicting the coefficients
with high precision and facilitate simple viewing of the response surface. RSM's mathematical methodology includes regression
analysis for calculating coefficients and statistical tests to determine the relevance of components. The model is then utilized to dis-
cover ideal factor values (to maximize or decrease the response) by accounting for crucial points such as stationary points and em-
ploying numerical optimization methods. Overall, RSM is a strong and effective approach that integrates experimental design, statisti-
cal evaluation, and mathematical modeling to improve processes and systems, reducing time and resources while meeting perfor-
mance goals.

2.3. Uncertainty analysis

For the uncertainty analysis associated with any experimental investigation, the broadly established Perturbation techniques are
applied [63]. Fig. 3 shows the relative errors and uncertainty associated with various performance metrics. In the case of peak pres-
sure measurement, the relative error (RE) was only 0.05 %, and RE was 1.2 % for engine speed. In the case of engine load RE was
0.2 % while it was 1 % for the lower calorific value (LCV) of the fuel. In the case of emission measurement, it was altogether 2.65 %.
These disparities underline the need for precise measurement and calibration methodologies in engine performance evaluation. On
the other hand, The AGFR uncertainty was estimated as 1.1 %, it was 1.2 % for air flow rate. Uncertainty was 1.6 % and 1.3 % for
BTE and brake power respectively.
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Fig. 3. (a) Relative error (b) Uncertainty.

2.4. Design matrix

The RSM-based Design of Experiment (DoE) was used to formulate an experiment strategy for conducting the experiments as
shown in Table 2. The Box-Behnken design was used in the present study. Box-Behnken Design, an intriguing variation of RSM, offers
a novel way to experimental design. This strategy enables researchers to investigate three variables at the same time, making it per-
fect for optimizing answers with minimal resources. Box-Behnken Design quickly estimates primary impacts, quadratic effects, and
two-way relationships by integrating fewer runs while keeping the design's orthogonality [64]. Its rotatability enables researchers to
investigate response surfaces from various angles, aiding the identification of optimal factor values. Box-Behnken Design is a tempt-
ing choice for an array of research and manufacturing processes, where it reveals hidden insights and accelerates breakthroughs in
numerous sectors, thanks to its ability to reduce experimental error and deliver exact model predictions.

2.5. Analysis of variance

Analysis of variation (ANOVA) is a method of statistics that evaluates the variation across groups to help uncover the secrets hid-
den inside data. ANOVA has evolved as a basic tool in many domains such as psychology, biology, engineering, and economics
[58,65,66]. The core of ANOVA is its capacity for comparing means and examining the influence of various factors on data variance.
ANOVA allows researchers to identify whether or not differences between groups are significant by splitting total variability into sep-
arate sources [67]. The ANOVA outcomes for BTE and Pmax are listed in Table 3, while for emission data is listed in Table 4.

2.6. Prognostics analysis with modern machine learning

2.6.1. Tweedie
Incorporating the statistical characteristics of the Tweedie distribution, the Tweedie machine learning approach adds a unique di-
mension to predictive modelling [68]. When represented mathematically:

Table 2
Design matrix for experiment.

Run Control factors Response variables
Load, % AGFR, lpm CR BTE, % Pmax, bar UHC, ppm CO, ppm NOx, ppm
3 60 2 18.5 21.8 69.8 71 111 215
9 100 2 17.5 27.4 74.9 71 112 511
12 20 2 17.5 11.5 46 100 137 86
15 60 2 16.5 21.1 68.4 72 145 211
1 100 4 18.5 28.7 76.9 64 102 506
2 20 4 18.5 11.3 46.5 92 108 96
4 60 4 17.5 23.4 71.3 59 112 229
6 60 4 17.5 23.4 71.3 59 112 229
7 60 4 17.5 23.4 71.3 59 112 229
10 20 4 16.5 11.3 46 96 128 94
11 60 4 17.5 23.4 71.3 59 112 229
13 60 4 17.5 23.4 71.3 59 112 229
17 100 4 16.5 27 76 66 124 507
5 60 6 18.5 22.5 69.4 64 106 224
8 60 6 16.5 21.7 68.7 67 124 218
14 20 6 17.5 11.1 45.4 93 119 94
16 100 6 17.5 28.4 75.4 64 120 506
6


http://mostwiedzy.pl

A\ MOST

V.G. Nguyen et al. Case Studies in Thermal Engineering 59 (2024) 104488

Table 3
ANOVA outcomes for engine performance.

Source BTE Pmax
SS Value of 'F' p' value (Prob > F) SS Value of 'F' p' value (Prob > F)

Model 598.72 6898.87 <0.0001 2169.89 4927.56 <0.0001
Model 549.46 56981.17 <0.0001 1779.06 36360.38 <0.0001
P-Load 0.45 46.80 0.0002 0.01 0.10 0.7585
Q-AGFR 1.28 132.74 <0.0001 1.53 31.30 0.0008
R-CR 0.49 50.81 0.0002 0.30 6.18 0.0418
PQ 0.72 74.93 <0.0001 0.04 0.82 0.396
PR 0.00 0.26 0.6263 0.12 2.50 0.1576
QR 37.89 3929.82 <0.0001 364.17 7442.86 <0.0001
P2 2.69 279.45 <0.0001 10.44 213.47 <0.0001
Q2 2.87 297.19 <0.0001 1.78 36.36 0.0005
Residual 0.07 0.34
Lack of Fit 0.07 0.34
Pure Error 0.00 0.00
Cor Total 598.79 2170.23

Table 4

ANOVA outcomes for emission data.

Source UHC Cco NOx
SS Value of 'F'  p' value (Prob > F) SS Value of F'  p' value (Prob > F) SS Value of 'F'  p' value (Prob > F)

Model 3295.24 2562.96 <0.0001 1957.118 22.06 0.0002 369558  5155.77 <0.0001
P-Load 1682.00 11774.00 <0.0001 144.50 14.66 0.006 344450 43249.33 <0.0001
Q-AGFR 84.50 591.50 <0.0001 162.00 16.43 0.0048 45.13 5.67 0.0489
R-CR 12.50 87.50 <0.0001 1104.50 112.05 <0.0001 15.13 1.90 0.2106
PQ 0.00 0.00 1 169.00 17.14 0.004 42.25 5.30 0.0547
PR 1.00 7.00 0.0331 1.00 0.10 0.759 2.25 0.28 0.6115
QR 1.00 7.00 0.0331 64.00 6.49 0.038 1.00 0.13 0.7335
P2 1216.84 8517.89 <0.0001 16.84 1.71 0.232 24964.2 3134.52 <0.0001
Q2 151.58 1061.05 <0.0001 269.47 27.34 0.001 191.84 24.09 0.0017
R™2 51.58 361.05 <0.0001 9.47 0.96 0.359 116.05 14.57 0.0066
Residual 1.00 69 55.75
Lack of Fit  1.00 69 55.75
Pure Error  0.00 0 0
Cor Total 3296.24 2026.118 369614

yi=p+ @y =y e @

In Eq. (2), the y; denotes response variable, y; shows mean value, @ shows the dispersion parameter, and y also denotes the disper-
sion parameter. This formulation incorporates the interaction that exists between the response's mean and variance in addition to an
extensive range of data kinds, such as continuous, number, and sparse data. The Tweedie ML technique can handle complicated
datasets and provide reliable predictions because of its versatile mathematical underpinnings, particularly in situations when conven-
tional models fall short. This ground-breaking approach opens new doors for enhanced prediction capabilities and useful insights
across a variety of disciplines by seamlessly incorporating statistical insights into ML frameworks [69,70]. Due to its flexibility in han-
dling multiple data types and complex variance frameworks, the Tweedie ML method, which has its roots in its original mathematical
formulation, finds use in many different fields. Similar to how it helps in modelling over-dispersed species abundance data in ecology.
It is appropriate for examining consumer records of transactions or social media interactions since its incorporation into predictive
analytics enhances the precision of forecasts in settings characterized by diverse data sources [71,72].

The Tweedie machine learning strategy does, however, have some drawbacks, just like any other technique. When the fundamen-
tal information considerably departs from these assumptions, it may produce inferior results due to its reliance on the Tweedie distri-
bution assumptions. In addition, rigorous calibration is needed to establish the optimum values for the dispersion parameters (and),
which could prove difficult in practice. Despite these drawbacks, the method's distinctive integration of distribution features into ML
opens the door for more precise and nuanced modelling across a variety of domains, bridging the gap between statistical insights and
based data predictions.

2.6.2. LighGBM

The LightGBM ML approach offers a solid mathematical basis for predictive modeling and is renowned for its effective gradient-
boosting architecture. At its core, LightGBM minimizes loss while iteratively incorporating weak learners to optimize an objective
function. The weighted forecasts of all weak learners are added up to create the final prediction, with the weights being based on how
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much each weak learner contributed to reducing the loss [73]. In the case for a regression objective having N training samples consist-
ing of M features. Here the loss function is defined as following if y; and ¥;, are target value and predicted value, respectively.

Loss function = (y;,5;) 3)
In case of each iteration ‘t’, the loss function's negative gradient comparative to previous model's predictions is estimated as:

~t=1
oL (y:5/")

~1—1

9y;

g = — @

The construction of tree in case of LightGBM grows in leafwise manner. At each node ‘m’ of the tree the optimized split is such a
way to minimize the loss function. In this case if ‘S’ represents sample set reaching leaf node ‘m’. The optimized point of split is found
by:

. . N .
split,, = arg mmsp,i,ZL <y[,yi(t )+ spln‘> )
=
On the tree construction completion, the output value in respect of each leaf node m is estimated using a weighted sum of negative
gradient of the sample in the leaf:
()

o8
leaf_[)utpu[m == & (6)

()
Zieshi +2

This presents a simplified overview of the LightGBM process which employs iteratively fitting trees to the negative gradients of the
loss function and updating the model's predictions consequently.

The leaf-wise tree growth approach of the method adds more mathematical sophistication. In order to generate more informative
splits, it chooses the leaf with the highest delta loss to expand. By adding regularisation terms in its objective function, the LightGBM
method also addresses overfitting by balancing the trade-off between bias and variance. With its histogram-based methodology, con-
tinuous characteristics are quantized into discrete bins, which enables quick computations and graceful handling of missing values
[73,74]. Due to its high computational efficiency, LightGBM is well-suited for real-time or huge dataset applications. Its depth-first
growth method, though, might make it more sensitive to outliers. Additionally, parameter adjustment, which includes learning rate
and number of leaves, calls for careful thought. However, LightGBM's role as a high-performance tool for diverse ML tasks, from clas-
sification to regression, and from ranking to recommendation algorithms, is supported by its use of mathematical elegance and opti-
mization approaches [75,76].

3. Results and discussion

3.1. Correlation among data

The data values gathered through extensive lab-based testing were checked for correlation to reveal statistical linkage among data
columns. It was observed that a high correlation (0.96) exists between engine load and BTE, and 0.97 between engine load and NOx
emission. This shows that at higher engine loads higher BTE and NOx are observed. On the other side, the acetylene gas flow rate
shows a slightly positive effect on BTE while it shows negative effects on UHC and CO emission. This is attributed to the fact thatin a
constant-speed engine, the fuel supply is controlled with a mechanical governor fitted on the engine. At higher loads, to maintain the
engine speed constant, a higher amount of fuel is supplied to the combustion chamber [77,78]. This results in higher temperature and
pressure in the combustion chamber resulting in improved BTE and higher generation NOx [79-81]. Similarly, CR shows positive ef-
fects on BTE peak pressure and NOx. The low values of correlation are caused by quadratic terms since the effects of AGFR and CR are
not linear. The correlation plot is depicted in Fig. 4.

3.2. Brake thermal efficiency

The F-value of the analysis, with a value of 6898.87, suggests that the predictive value is very significant. The possibility of seeing
a “Model F-value” of this size owing to noise is a mere 0.01 %. This implies that the model is not an outcome of random chance, but
rather a meaningful representation of the data's inherent relationships. Furthermore, the values of “Prob > F” for different model
terms are investigated in order to establish their importance. When “Prob > F” is less than 0.0500, it indicates that the model terms
are statistically noteworthy. The words A, B, C, AB, AC, A2, B2, and C? are all relevant model terms in this scenario. Values larger than
0.1000, on the contrary, imply that the predictive terms are not significant. If there are multiple inconsequential model terms, except
those essential for sustaining hierarchy, reducing them may be advantageous to enhance model performance. The computed standard
deviation is 0.098, while the R-squared value is 0.9999, suggesting that the model accounts for a significant amount of the overall
variation in the data. Furthermore, the Adjusted R-squared score of 0.9997 validates this conclusion and suggests that the model fits
the data well. The Coefficient of Variation (C.V.%) is 0.46, indicating that the relative volatility of the model is fairly low. The Pre-
dicted R-squared value of 0.9982 agrees with the Adjusted R-squared number of 0.9997, confirming that the model's predictive capa-
bility is adequate. The BTE model can be expressed as:
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BTE = —246.03 + 0.23 P + 1.24 Q 4+ 28.59 R + 0.0044 PQ

+0.011 PR +0.0125 QR - 0.0018 P2 — 0.2 62 - 0.825R2 @

Herein, P denotes the acetylene gas flow rate, Q represents engine load, and Q denotes the compression ratio of the test engine.

Adequacy Precision, which evaluates the signal-to-noise ratio, is an important metric for determining model dependability. A ratio
above four is regarded as ideal, and the Adequacy Precision in this example is 232.193, suggesting a high signal-to-noise ratio. The
finding adds to the model's usefulness for exploring the design space. In summary, statistical analysis of parameters shows that the
model is very significant and valid for the supplied data. The model has strong predictive power and dependability, making it a help-
ful tool for exploring the design space and making educated decisions based on the variables' correlations. The surface diagram for
BTE is depicted in Fig. 5.

As engine load increases, so does the power demand, culminating in increasing fuel consumption along with higher combustion
temperatures. The engine performs closer to its intended capacity under raised loads, resulting in better thermal efficiency, as shown
in Fig. 5a and b. Excessive loads, on the contrary, can increase mechanical losses and decrease thermal efficiency owing to friction
and other inefficiencies [82,83]. In a diesel engine, using acetylene gas as an alternative fuel can change the combustion parameters.
Acetylene gas has a greater flame speed along with energy content than diesel, allowing for faster and more efficient burning [84].
When the acetylene flow rate is modified, it can result in greater fuel-air mixing and more thorough combustion, which improves the
thermal efficiency of the brakes [85], as depicted in Fig. 5c. Throughout the compression stroke, a larger compression ratio generates
increased air temperature and pressure. This, in turn, improves combustion efficiency by compressing and heating the air-fuel combi-
nation, allowing for greater energy delivery throughout the power stroke and increased BTE [86-88].
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Fig. 5. Surface diagrams for BTE depicting the effects of (a) CR and engine load; (b) Acetylene gas flow rate and engine load; (¢) CR and Acetylene gas flow rate.

3.3. Peak cylinder pressure

The model for Pmax developed using ANOVA is given in Eq. (3). The exceptional “Model F-value” of 4927.56 emphasizes the mod-
el's relevance, meaning that such an as big “Model F-Value” is extremely unlikely to arise due to random noise. This implies that the
model incorporates significant correlations between the variables. A closer look at the “Prob > F” values indicates that numerous
model variables, including A, C, AB, A?, B2, and C?, are considered important since their respective probability are less than 0.0500.
These key model elements are critical in explaining the variances found in the data, confirming their relevance in the overall model.

Pmax = —187.64 4+ 1.01 P +4.46 Q + 23.39 R + 0.0034 PQ + 0.0025 PR

— 0.088 OR —0.0058 P2 — 0.394 02 — 0.65 R2 ®

Model terms with a probability larger than 0.1000, on the other hand, are deemed insignificant. The Forecast R-squared value of
0.9982 corresponds in magnitude with the Adjusted R-squared number of 0.9997, confirming that the model's ability to predict is ad-
equate. Adequacy Precision, which evaluates the signal-to-noise ratio, is an important metric used to assess model dependability. A
ratio greater than 4 is regarded as ideal, and the Adequacy Precision in this example is 232.193, demonstrating a high signal-to-noise
ratio. The finding adds to the model's usefulness for exploring the design space. In summary, statistical parameter analysis shows that
the model is very significant and valid for the supplied data. The model has strong predictive power and dependability, making it a
helpful tool for investigating the design space and making educated decisions based on the variables' correlations.
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More fuel is introduced into the cylinder as the engine load rises to match the increasing demand for power. As a consequence,
more fuel-air mixture is compressed in the cylinder throughout the compression stroke [89]. As a result, compressing an increased
amount of mixture leads to higher peak pressures throughout the combustion process, as shown in Fig. 6a. Because acetylene gas is
extremely reactive, it accelerates and completes the combustion process of the fuel-air combination [90,91]. When the flow rate of
acetylene gas is raised, it introduces more energy into the combustion process, enabling the combustion to proceed more quickly and
furiously. As a result, the rate of pressure rise throughout combustion accelerates, resulting in larger cylinder peak pressures, as
shown in Fig. 6b. A greater pressure at the final stage of the compression stroke results from a more efficient compression process.
Higher compression ratio results in higher cylinder pressures (Fig. 6¢), including the peak pressure following combustion [92,93].

3.4. Unburnt hydrocarbon emission

The model possesses an F-value of 2562.96, demonstrating that it is extremely significant. The likelihood of such a significant
“Model F-Value” being influenced by noise is under 0.01 %, showing a strong link between the variables. Model terms are of statisti-
cal significance if “Prob > F” is less than 0.0500. Model terms A, B, C, AC, BC, A2 B2, and C? are all important in this scenario, indi-
cating that they have a substantial impact on the model's output. Values larger than 0.1000 for “Prob > F” indicate that the relevant
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model terms are not significant. Reducing model complexity may result in benefits if there are multiple inconsequential model terms
(excluding those necessary for hierarchy). The UHC model can be expressed as Eq. (4):

UHC =1238.88 — 1.86 P — 9250 — 1235R+0.0125PR — 025 QR+ 0.01P2+ 1.5 02 +3.5 R2 (C))

The model performs well, having an R-squared value of 0.9997 suggesting that it explains nearly all of the variation in the data.
This beneficial degree of goodness of fit is reinforced by the Adjusted R-squared of 0.9993. The coefficient of variation is 0.53, indicat-
ing that the data is not variable. The “Pred R?” score of 0.9951 corresponds well with the “Adj R?,” demonstrating the model's depend-
ability.

Engine load, AGFR, and CR are all three essential elements that influence the total amount of UHC emissions released by a diesel
engine. The larger loads often result in greater-intensity combustion processes. At higher loads, the engine's cylinders endure higher
temperatures and pressures, resulting in more complete fuel combustion and, as a result, lower UHC emissions [94]. Indeed, it could
be seen the relationship between UHC emissions with compression ratio and engine loads in Fig. 7a. When employed as an additive,
acetylene gas improves combustion efficiency by accelerating the ignition and burning of any leftover fuel particles which could be
contributing to unburned hydrocarbons, as shown in Fig. 7b [95,96]. It works by encouraging more complete combustion of diesel
fuel. Finally, compression flow, as indicated by the compression ratio, is critical. A greater CR causes higher compression tempera-
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Fig. 7. Surface diagrams for UHC emission depicting the effects of (a) CR and engine load; (b) Acetylene gas flow rate and engine load; (c¢) CR and Acetylene gas flow
rate.
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tures and pressures, therefore improving combustion efficiency, and reducing unburned hydrocarbon production, as shown in Fig. 7c.
Finding a satisfying medium between these variables is critical for optimizing engine performance, fuel consumption, and environ-
mental effects, resulting in cleaner and more ecological diesel engine running [97,98].

3.5. Carbon mono-oxide emission

The Model F-value of 22.06 demonstrates that the model is very significant, and it has a 0.02 % chance of attaining such a huge F-
value as a result of noise. Model terms have significance when “Prob > F” is less than 0.0500. The words A, B, C, AB, BC, and B2 are
all pertinent in this scenario. Values larger than 0.1000, on the other hand, indicate that the model terms are not significant. Reduce
the model if it contains multiple inconsequential model terms. The standard deviation of 3.14, in addition to an R-squared value of
0.9659, indicates that the model describes a significant amount of variability in the data. This inference is supported by the adjusted
R-squared value of 0.9222, which indicates a satisfactory fit for the model. The term “Adeq Precision” refers to the signal-to-noise ra-
tio. A ratio larger than 4 is preferred, and the ratio of 17.754 shows a suitably strong signal in this circumstance. As a consequence,
this model may be employed to reliably investigate the design space. The model developed for CO emission for the present study can
be expressed as:

CO=97525 — 036 P — 58.13Q — 71.5R+0.08 PQ — 0.0125 PR +2 QR +0.00125 P2 +2 02 + 1.5 R2 5)

In a CI engine, raising the load may result in more CO emissions. Whenever the engine is running at greater loads, it takes more
fuel to create the necessary power, resulting in higher diesel fuel combustion [99,100]. This increased combustion might result in in-
complete combustion, which produces more CO as a byproduct. When acetylene gas is put into the engine in regulated proportions, it
can improve combustion and minimize CO emissions, as depicted in Fig. 8a and b. The inclusion of acetylene gas in the air-fuel combi-
nation can increase combustion efficiency, resulting in more complete burning of diesel fuel and, as a result, fewer CO emissions
[101,102]. Higher compression ratios result in higher compression stroke temperatures and pressures, resulting in better combustion,
as depicted in Fig. 8c. There is a reduced amount of unburned fuel with enhanced combustion, which equals lower CO emissions. A
lower compression ratio, on the contrary, may result in incomplete combustion and increased CO emissions.

3.6. Oxides of nitrogen

The model's relevance and efficacy are revealed via analysis. The model's F value of 5155.77 suggests that the model is very sub-
stantial, with only a 0.01 % probability of such a huge F-value being caused by noise. In addition, values less than 0.0500 for
“Prob > F” suggest that model elements A, B, A2 B2 and C? are statistically significant. Values larger than 0.1000, on the other hand,
imply that some model terms are not relevant. The model's ability to explain variance in the data has been shown by the standard de-
viation of 2.82 and R-squared value of 0.9998. Furthermore, the mean of 259.59 and Adjusted R-squared value of 0.9997 reflect the
model's great goodness of fit. The mathematical model for NOx emission is expressed as:

NOx = —-1584.56 — 0.097 P+ 12.75 Q + 18525 R — 0.04 PQ

— 0.019 PR+025 QR +0.048P2 — 1.6902 —525R2 ®

The model's forecasts are in high agreement with the actual data, as demonstrated by the Coefficient of Variation (C.V.) of 1.09 %
and the Forecast R-squared value of 0.9976. The model's accuracy in forecasting is measured by the “PRESS” value of 892.00, and the
Adequate Precision score of 195.315 shows an adequate signal-to-noise ratio. Finally, the research encourages the model's importance
and its ability to predict events with high precision. The “Pred R?" of 0.9976 corresponds precisely with the “Adj R%" of 0.9997,
adding to the model's dependability. With a reasonable signal-to-noise ratio, this model can be used with confidence to navigate the
design space.

To match the greater torque needs, additional fuel is pumped into the combustion chamber as the engine load increases. During
the combustion process, this results in increased pressures and temperatures. Because of the oxidation of nitrogen in the air at ele-
vated temperatures, the generation of NOx increases substantially [103,104]. As a result, larger engine loads tend to generate higher
NOx emissions due to the increase in temperature in the combustion process [105,106]. Indeed, it could be seen the relationship be-
tween NOx emissions with compression ratio and engine loads as using acetylene in from Fig. 9a. When acetylene enters the engine, it
combines with the nitrogen oxides, changing them to nitrogen and carbon dioxide, which are not as hazardous to the environment. As
a result, increasing the flow rate of acetylene gas can reduce NOx emissions, as shown in Fig. 9b. Higher CR contributes to higher
compression stroke temperatures along with pressures, resulting in improved combustion [107]. Normally, due to the greater com-
bustion temperatures, it may also increase the generation of NOx in the combustion chamber [108]. A lower CR, on the other hand,
may result in reduced NOx emissions but may affect engine efficiency and power production, as shown in Fig. 9c.

3.7. Desirability-based optimization

Desirability-based optimization is an effective approach for optimizing numerous responses in a process or mechanism at the same
time [109,110]. Researchers may use desirability-based optimization to simultaneously enhance BTE, Pmax, CO, UHC, and NOx emis-
sions in the context of the diesel engine's efficiency and emissions. In desirability-based optimization, the first step is to determine the
goal values or ranges for each answer. For example, we would wish to optimize BTE and peak pressure whilst reducing CO, HC, and
NOx emissions. Each response will be assigned a desirability function that measures how near it is to the goal value. Then, based on
the proximity to the goal, we assign distinct desirability scores to each response. A score of one suggests the reaction reaches or ex-
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Fig. 8. Surface diagrams for CO emission depicting the effects of (a) CR and engine load; (b) Acetylene gas flow rate and engine load; (c¢) CR and Acetylene gas flow
rate.

ceeds the intended value, whereas a value of zero indicates that it is far from it. Intervals between 0 and 1 denote partial attractive-
ness. The geometric mean of individual desirability for all responses is used to establish the overall desirability for the engine's effi-
ciency and emissions. The geometric mean method assures that all replies are equally weighted and that no single response dominates
the optimization [111,112].

Researchers may use techniques for optimization like the Genetic Algorithm or Particle Swarm Optimization to find the optimal
combination of engine operating parameters (engine load, acetylene gas flow rate, and compression ratio). This will provide an ideal
set of engine operating settings that maximize BTE and peak pressure while reducing CO, HC, and NOx emissions. Desirability-based
optimization offers an in-depth and equitable method for determining the best trade-offs between different options. It enables re-
searchers and engineers to find the optimum acceptable solution for a difficult problem, such as diesel engine performance and emis-
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sions, resulting in environmentally friendly and productive engines in real-world applications. The desirability set in the present
study is depicted in Fig. 10.

The optimized operational settings and the outcome at this optimum level is listed in Table 5. Subsequently, the engine was tested
at an optimized engine operation setting. The result of engine testing at the optimized setting is also listed in Table 5.

4. Model prediction with machine learning

The data collected with experimental analysis was employed for developing the high-precision ML-based models, for effective
forecasting of the engine's output. Both Tweedie and LightGBM ML techniques were used for this purpose. The procedure is depicted
in Fig. 11.

It can be observed that both models performed efficiently during forecasting. In the case of the BTE model as depicted in Fig. 12a
for the Tweedie-based model and Fig. 13a for LightGBM. The R? value for Tweedie based model was almost 1 while it was 0.86 for the
based model during model training. However, when the model was tested on fresh data, the R? value became 0.99 and 0.8 for the
Tweedie and LightGBM-based models, respectively. The prognostic errors in the models as measured with MSE were 0 and 6.09 for
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Table 5
RSM optimized results, validation, and error.

Operating parameter Optimized level Response variable Result at optimized setting Experimental values % Error
AGFR, lpm 4.48 BTE, % 27.1 26.5 2.21
Engine load, % 81.25 Pmax, bar 76.58 73 4.67
CR 18 UHC, ppm 56.2 60 6.76
CO, ppm 104 110 5.76
NOx, ppm 360 372 3.33
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Fig. 12. Actual vs model predicted values using Tweedie ML for (a) BTE; (b) Pmax; (c) UHC emission; (d) CO emission; (e¢) NOx emission.
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Tweedie and LightGBM-based models during the training of models. The MSE values became 0.24 and 8.5 during the model test for
Tweedie and LightGBM-based models. The low model errors and high coefficient of determinates shows a robust model. However, the
Tweedie model performed superior to the LightGBM model. In the case of the Pmax model, as shown in Fig. 12b for the Tweedie-
based model and Fig. 13b for the LightGBM. During model training, the R? value for the Tweedie-based model was nearly one,
whereas it was 0.74 for the LightGBM-based model. However, when the model was evaluated on new data, the R? values for the
Tweedie and LightGBM-based models were 0.98 and 0.67, respectively. During model training, the prognostic errors in the models as
determined by MSE were 0 and 28.62 for the Tweedie and LightGBM-based models, respectively. During model testing, the MSE val-
ues for Tweedie and LightGBM-based models were 2.78 and 54.37, respectively. A robust model is shown by low model errors and a
high coefficient of determinates. However, the Tweedie model outperformed the LightGBM model, in this case too.

In the case of a UHC emission model, as shown in Fig. 12c for a Tweedie-based model and Fig. 13c for a LightGBM-based model.
During model training, the R? value for the Tweedie-based model was nearly one, whereas the R? value for the LightGBM-based
model was poor at 0.53. However, when the model is evaluated on new data, the R? value increases to 0.89 and 0.38 for the Tweedie
and LightGBM-based models, respectively. During model training, the prognostic errors in the models, as measured by MSE, were 0
and 74.55 for the Tweedie and LightGBM-based models, respectively. During model testing, the MSE values for Tweedie and Light-
GBM-based models reached 28.46 and 153.89, respectively. The low model errors and high coefficient of determinates indicates a
strong model. The Tweedie model, on the other hand, outperformed the LightGBM model.

As shown in Fig. 12d for a Tweedie-based model and Fig. 13d for a LightGBM-based model, for the CO emission model. During
model training, the R% number for the Tweedie-based model was almost 1, but it was only 0.9 for the LightGBM-based model. But
when the model is tested on new data, the R2 number goes up to 0.93 for the Tweedie-based model and 0.65 for the LightGBM-based
model. During model training, the Tweedie-based models had a mean squared error (MSE) of 0 and the LightGBM-based models had a
mean squared error of 5.01. During model testing, the MSE values for Tweedie-based models reached 7.14 and those for LightGBM-
based models hit 10.81. The high coefficient of determinates and low model mistakes show that the model is strong. The LightGBM
model, on the other hand, wasn't as good as the Tweedie model. For a NOx emission model, this is shown in Fig. 12e for a Tweedie-
based model and in Fig. 13e for a LightGBM-based model. During model training, the R? number was almost 1, for both models. It was
the same during the test also. During model training, the mean squared error (MSE) for the Tweedie-based models was 0 and it was
31.14 for the LightGBM-based models. During tests, the MSE values for models based on Tweedie reached 45.02, and those for models
based on LightGBM reached 52.16. The model is strong because it has a high coefficient of determinates and low model errors. On the
other hand, the LightGBM model wasn't as good as the Tweedie model.

5. Conclusions

In this study, acetylene gas was employed as the primary fuel and diesel as the pilot fuel The study effectively fine-tuned the diesel
engine's operating parameters by using a desirability-based optimization method. Also, two modern machine learning approaches
namely Tweedie and LightGBM were employed to develop prediction models for engine operating parameters. The main outcomes
are as follows.

o The optimized parameters estimated were 4.48 lpm for AGFR, 81.25 % for engine load, along with 18 for compression ratio. At
the optimized engine setting, the model predicted BTE was 27.1 %, and the peak cylinder pressure was 73 bar. In this case, the
UHC emission was 56.2 ppm, CO emission was 104 ppm, and NOx emission was 360 ppm at the optimized engine setting.

o At the optimized engine setting, all the model-predicted results were observed well within the 2.21-6.76 % range. The R?
value for Tweedie-based models was in the range of 0.89-1 while it was in the range of 0.38-1 in the case of the LightGBM-
based models.

o On the prediction error fronts, the mean squared error was in the range of 0.24-45.04 in the case of Tweedie-based models and it
was 8.5-153.89. Even though both machine learning methods worked well, Tweedie was much better at making predictions than
LightGBM-based models, both in terms of R? and MSE.

Finally, the optimization of operating parameters in dual-fuel diesel engines employing acetylene gas as the primary fuel offers an
achievable approach to improving engine performance and lowering emissions. This study paves the way for future research into im-
proving dual-fuel engines utilizing alternative fuels by employing intelligent approaches.
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Fig. 13. Actual vs model predicted values using LightGBM for (a) BTE; (b) Pmax; (c) UHC emission; (d) CO emission; (¢) NOx emission.
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