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• Molecular descriptors, biomass compo
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A B S T R A C T   

Lignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the 
organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and 
hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been 
considered a renewable raw material for the production of chemicals and materials to replace petrochemical 
resources. In this context, an increasing demand for high-quality lignin is to be expected. It is, therefore, essential 
to optimize the technological processes of obtaining it from natural sources, such as biomass. In this work, an 
investigation of the use of machine learning-based quantitative structure-property relationship (QSPR) modeling 
for the preliminary processing of lignin recovery from herbaceous biomass using ionic liquids (ILs) is described. 
Training of the models using experimental data collected from original publications on the topic is assumed, and 
molecular descriptors of the ionic liquids are used to represent structural information. The study explores the 
impact of both ILs’ chemical structure and process parameters on the efficiency of lignin recovery from different 
bio sources. The findings give an insight into the extraction process and could serve as a foundation for further 
design of efficient and selective processes for lignin recovery using ionic liquids, which can have significant 
implications for producing biofuels, chemicals, and materials.   
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1. Introduction 

The utilization of fossil fuels has been closely linked to an escalation 
in environmental deterioration and pollution (Barczak et al., 2023). This 
association has prompted the exploration of alternative and sustainable 
energy sources, such as hydroelectric, wind, and solar power, and has 
fostered a growing interest in renewable resources, particularly ligno
cellulosic biomass (Paraschiv and Paraschiv, 2023). Lignocellulosic 
materials, encompassing hardwood, softwood, and agricultural resi
dues, have emerged as pivotal renewable assets, constituting a sub
stantial reservoir of carbon. Consequently, these resources have found 
successful applications in energy and chemical production processes 
(Kamm et al., 2008). 

Plant biomass, a composite material, consists of three fundamental 
biopolymers: lignin, hemicellulose, and cellulose, in different pro
portions (Agbor et al., 2011; Kazimierski et al., 2022). The distribution 
and spatial arrangement of these constituents within cell walls are not 
uniform and are contingent upon factors such as plant species, tissue 
type, and the stage of cell wall maturation (Barakat et al., 2013; Isikgor 
and Becer, 2015). Each biopolymer exhibits distinctive properties that 
contribute to the overall recalcitrance of the raw material. The carbo
hydrate fraction, termed holocellulose, which encompasses cellulose 
and hemicellulose, imparts structural fortitude and rigidity to cell walls 
(Agbor et al., 2011). In contrast, lignin functions as an adhesive within 
cell walls, conferring resistance to compression, protection against pests 
and pathogens, and structural integrity to plant tissues (Rubin, 2008). 

Broadly, plant biomass can be categorized into three principal groups 
predicated on the relative composition of holocellulose and lignin: 
softwood (coniferous; holocellulose 64.5 ± 4.6 %, lignin 28.8 ± 2.6), 
hardwood (deciduous; holocellulose 71.7 ± 5.7, lignin 23.0 ± 3.0), and 
herbaceous biomass, wherein the polymer composition varies substan
tially depending on the specific plant part (e.g., corn stover: hol
ocellulose 59.3 %, lignin 18.1 %; corn cobs: holocellulose 63.9 %, lignin 
21.2 %) (Liu et al., 2018a; Stolarski et al., 2018; Weerachanchai and Lee, 
2013). The efficient utilization of residual herbaceous biomass, partic
ularly in the context of expanding urbanization and heightened food 
demands, presents a significant technological and environmental chal
lenge. Prioritizing the utilization of renewable resources, such as 
lignocellulosic biomass, stems from a heightened emphasis on envi
ronmental conservation. Nonetheless, the fractionation of biomass re
mains a persistent challenge, particularly concerning the isolation of 
lignin. Given its prevalence in forestry materials, energy crops, and 
agricultural residues, along with its substantial untapped potential for 
cost-effective utilization, refining the lignin extraction process is 
imperative. Failure to employ environmentally sound practices in 
biomass valorization could impede the transition from conventional 
petrochemical methods. Therefore, integrating green chemistry tech
niques is crucial to advancing the objectives of sustainable development 
(Hasanov et al., 2020). 

The initial treatment of lignocellulosic biomass constitutes a pivotal 
preliminary phase, with the principal objectives of exposing the carbo
hydrate fraction and facilitating subsequent processing (Kumar and 
Sharma, 2017). The separation of individual biopolymers within the 
biomass matrix presents a formidable and resource-intensive challenge, 
primarily owing to the remarkable recalcitrance of cellulose to hydro
lysis, the influence of oxidizing agents and harsh alkaline conditions, 
and the cohesive attribute of lignin. These properties of lignin entail the 
formation of hydrogen bonds among polymer molecules (Deng et al., 
2022). However, other types of bonds between the biopolymer moieties 
should also be considered, including α ether linkage in carbohydrates- 
lignin complexes and covalent bonds. Besides hydrogen bonding, 
other interactions like van der Waals, ion-dipole attractions, and hy
drophobic interactions are significant when examining interactions with 
lignin (Singh, 2022). There is a growing interest in green solvents like 
ionic liquids (IL) and deep eutectic solvents (DES) because of their 
minimal environmental impact, characterized by features such as low 

emissions due to extremely low vapor pressure, customizable chemical 
structures to reduce solvent usage, and the ease of their recycling and 
reusing (Zhu et al., 2018). The separation process is inaugurated with a 
pretreatment stage, implementable through both physical and thermo
chemical methodologies (Kumar and Sharma, 2017). This preliminary 
phase is specifically engineered to enhance the overall digestibility of 
biomass by means of lignin removal, thereby streamlining the subse
quent processing of holocellulose. The acquired lignin has various ap
plications, serving as a valuable fuel source, an effective emulsifying 
agent, or a binder. Meanwhile, following hydrolysis and fermentation, 
the carbohydrate fraction undergoes a conversion into high-value 
commodities, including biohydrogen, methane, bioalcohols, and car
boxylic acids (Deng et al., 2022; Li and Takkellapati, 2018). 

Conventional separation technologies are often beset by multifarious 
constraints, principally related to their selectivity and, consequently, 
their overall process efficiency. Moreover, in this epoch marked by an 
inexorable surge in environmental pollution, there is an earnest pursuit 
of technologies that leverage not only waste materials but also envi
ronmentally benign solvents. This quest is exemplified by the applica
tion of two, partially overlapping, group of compounds, i.e. DES and ILs. 
This quest is exemplified by the application of ILs (Pin et al., 2021). 
Current work is focused, solely, on the former one. Although some 
compounds can be included in both groups, there are fundamental dif
ferences in the chemical composition of ILs and DES. This might be the 
case since ILs are only composed of ions in equimolar ratios, and de
scriptors can be calculated separately for cation and anion. In the case of 
DESs, the fact that the eutectic mixture might be obtained by mixing two 
or more components in different molar ratios must be considered. In 
consequence, the modeling of DES systems requires a different 
approach. ILs have garnered significant attention due to their excep
tional attributes, notably high thermal stability and low vapor pressure, 
which serve to mitigate exposure risks in separation processes, affording 
a substantial advantage over conventional volatile solvents (Flieger and 
Flieger, 2020). Recent years have witnessed a proliferation of research 
endeavors dedicated to the extraction of natural polymers in ionic liq
uids, thereby accentuating their noteworthy potential in pioneering 
alternative methods for the extraction and processing of biomass con
stituents (Rieland and Love, 2020). The most proficient lignin yield has 
been observed within the category referred to as herbaceous biomass. 
For instance, bagasse subjected to [Emim][ABS] at 190 ◦C for 1.5 h 
yielded an impressive lignin yield of 97 % (Tan et al., 2009). In contrast, 
when dealing with softwood and hardwood biomass, the efficiency of 
lignin separation has exhibited considerable variability, ranging from as 
low as 7.5 % for eucalyptus exposed to [Bmim][Cl] at 120 ◦C for 0.5 h to 
as high as 81.7 % for pine sapwood treated with [Bmim][HSO4] (20 % 
water) at 120 ◦C for 22 h (Brandt et al., 2011; Li et al., 2016). These 
results underscore the considerable potential of employing ionic liquids 
for the isolation of lignin from biomass. Nevertheless, the judicious se
lection of an appropriate ionic liquid, along with the optimization of 
temperature and contact time, remains a multifaceted issue that neces
sitates individualized analyses tailored to each biomass type or group. 
The industrial use of ionic liquids must, also, meet economic and envi
ronmental requirements. Due to their high price and not neutral impact 
on the environment, this is the main factor limiting their spread in 
practice (Sharma et al., 2023). In this context, conducting research 
based on building the theoretical predictive models is a desirable way to 
search for their optimal structure. 

Due to the complexity of the problem stated it might be valuable to 
use the approach that might predict lignin yield value while also 
providing some insights into the importance of all the factors involved in 
the process of lignin extraction. This kind of predictive modeling is well 
addressed with Machine Learning (ML) methods that are data-driven 
approaches. Models are trained using experimental data from previous 
studies on the topic. Machine Learning in the context of chemical en
gineering entails the application of computational algorithms and sta
tistical models to analyze and interpret complex datasets inherent to 
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chemical processes. By leveraging advanced mathematical techniques, 
practitioners in this field can derive insights, optimize processes, and 
make data-driven decisions. The integration of machine learning within 
chemical engineering facilitates the development of predictive models, 
enhancing efficiency and fostering a deeper understanding of intricate 
relationships within chemical systems. In this work, modeling incorpo
rating structure-property correlations is used. The main goal of the work 
is to propose ML models that can predict lignin extraction yield based on 
parameters describing the composition of biomass, conditions at which 
the process occurs, and structural descriptors of ionic liquids. This 
endeavor represents a novel contribution to the field of chemical engi
neering as it addresses the pressing need for accurate and efficient 
prediction tools in biomass processing. The integration of machine 
learning techniques specifically tailored to the intricate interplay of 
biomass composition and ionic liquid characteristics is a unique aspect 
of this research, aiming to fill the gap in the field of predicting experi
mental results on biomass samples using an easy-to-use model. The 
significance of this work lies in its potential to enhance the overall ef
ficiency of biomass processing, optimize resource utilization, and pave 
the way for sustainable and economically viable practices in the 
chemical industry. Furthermore, the exploration of this novel approach 
opens avenues for future research, fostering a deeper understanding of 
the underlying mechanisms governing biomass conversion processes 
and providing a basis for the development of advanced, data-driven 
strategies. 

2. Background and problem foundation 

2.1. Chemistry of lignin 

Lignin, abundant and ubiquitous, constitutes a significant renewable 
energy source, comprising approximately one-third of the Earth’s 

organic carbon, totaling around 1 billion metric tons (Martínez et al., 
2009). It ranks as the second most prevalent biopolymer, following 
holocellulose (Achyuthan et al., 2010). As a binding agent, lignin re
inforces the structure of plant cell walls by infiltrating the gaps between 
cellulose and hemicellulose, imparting strength and rigidity. Structur
ally, lignin is a three-dimensional polymer formed from the oxidative 
coupling of p-coumaryl alcohol, sinapyl alcohol, and coniferyl alcohol 
(see Fig. 1) (Isikgor and Becer, 2015). Its composition and properties can 
vary depending on factors such as plant species, botanical variety, and 
even within individual trees. 

Lignin consists of monolignols, characterized by phenolic groups and 
propyl side chains, with variations in the number of methoxy groups 
attached to the aromatic residue. The prevalence of each monolignol 
type in lignin is determined by the plant species’ taxonomic classifica
tion (Gillet et al., 2017), resulting in lignin types such as softwood lignin 
(G type), hardwood lignin (GS type), pressed wood lignin (HG type), and 
herbaceous lignin (HGS type) (G. Calvo-Flores et al., 2015). 

Lignin forms complex covalently linked structures with hemicellu
lose within biomass, contributing to its structural integrity. In herba
ceous biomasses, ferulic acid initially bonded to arabinoxylan via ester 
linkages facilitates this interaction, integrating into lignin as it matures 
through radical polymerization reactions. Softwood and hardwood 
exhibit direct interactions between lignin and carbohydrates during 
lignification, driven by interactions between carbohydrate hydroxyl 
groups and electrophilic intermediates in developing lignin chains 
(Brandt et al., 2013). The composition of individual polymers signifi
cantly influences material properties and interactions among lignocel
lulosic biomass constituents. Herbaceous biomasses, with lower lignin 
content, are more susceptible to pretreatment, while softwoods, rich in 
lignin, are less so (Weerachanchai and Lee, 2013), while softwoods, rich 
in lignin, evince lower susceptibility (Brandt et al., 2011). Higher 
hemicellulose or cellulose content may enhance delignification efficacy 

Fig. 1. Chemical structure of lignin and main lignin building moieties a) monolignols p-coumaryl alcohol and unit H, b) sinapyl alcohol, and unit S, and c) coniferyl 
alcohol and corresponding unit G. 
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due to reduced lignin percentage and restricted lignin access attributed 
to hemicellulose structure, although comprehensive studies on other 
biopolymers’ impact on lignin extraction efficiency are lacking. 

2.2. Biomass pretreatment for lignin separation 

The extraction of lignin from biomass can be achieved through 
physical, chemical, and physicochemical pretreatment or the isolation of 
native lignin (Yau et al., 2011). The selection of an appropriate biomass 
pretreatment method is of utmost importance as it dictates the structure 
of the extracted biopolymers (Hasanov et al., 2020). To efficiently 
isolate lignin from lignocellulosic biomass, pretreatment procedures 
should prioritize processes such as cellulose decrystallization, partial 
holocellulose depolymerization, and enhancement of the enzymatic di
gestibility of the initial biomass (Hasanov et al., 2020; Maurya et al., 
2015). Lignin separation represents a costly and intricate procedure, 
often resulting in alterations to the native lignin structure, yielding what 
is known as technical lignins (Rinaldi et al., 2016). 

Chemical extraction stands out as the most prevalent category of 
pretreatment methods, encompassing techniques like organosolv, sul
fite, and soda processes (Galbe and Wallberg, 2019; Kumar and Sharma, 
2017). Recently, ILs and DES are extensively studied as novel promising 
solvents for biomass pretreatment (Lopes, 2021) due to limitations of 
traditional processes. The mechanisms underlying these processes 
commonly involve the disruption of the bonds between lignin and 
hemicellulose within the lignin-hemicellulose complex, subsequently 
leading to lignin isolation through further treatment (Pinto et al., 2022). 
It is noteworthy that while most chemical methods primarily entail 
lignin modification via ester bond hydrolysis, a limited subset demon
strates the capability to effectively extract lignin from the cellulose 
matrix. Mentioned above methods come with a set of drawbacks, 
including the application of high pressures, susceptibility to equipment 
corrosion, elevated energy consumption, and difficulties in solvent re
covery (Jönsson and Martín, 2016). Consequently, these processes are 
considered environmentally unfriendly, driving the quest for solvents 
with higher lignin solubility, such as ILs (Achinivu et al., 2014) and DESs 
(Fernandes et al., 2021; Magalhães et al., 2022). 

In recent years, there has been a growing focus on ionic liquids as an 
alternative to conventional solvents due to their distinctive character
istics, which include a low melting point, non-flammability, low vapor 
pressure, and non-volatility (Claus et al., 2018). Since ILs are considered 
to be designer solvents, their chemical structure can be optimized so that 
biocompatible, biodegradable, and low toxic solvents can be obtained 

(Cvjetko Bubalo et al., 2013; Magina et al., 2021). It should be empha
sized that supporting the optimization process through the use of 
modeling techniques using artificial intelligence tools should addition
ally reduce the energy and material costs of the process while mini
mizing the negative impact on the environment. These remarkable 
properties facilitate the recovery of ionic liquids in excess of 99 % in 
numerous processes, resulting in significant cost reductions (Yau et al., 
2011). 

The pretreatment of lignocellulosic biomass using ILs initiates with 
the dissolution of biomass at atmospheric pressure, typically at tem
peratures ranging from 90 to 160 ◦C, over durations spanning from a few 
minutes to 24 h (Samayam and Schall, 2010). Subsequently, the biomass 
is reprecipitated by introducing water and subjected to multiple washes 
before undergoing enzymatic hydrolysis and subsequent procedures. 
The mechanism underlying lignin extraction and regeneration in ionic 
liquids remains incompletely understood (Lindman et al., 2010). It is 
postulated that ionic liquids, characterized by diverse interaction types 
such as ionic, hydrogen bonding, dipolar, or π-π interactions, may 
compete with the hydrogen bonds present in lignocellulosic biomass 
(Brandt et al., 2013). This competitive interaction effectively disrupts 
the three-dimensional network of the lignin-hemicellulose complex, 
thereby enhancing the digestibility of the initial material (Besombes 
et al., 2004; Moulthrop et al., 2005). Moreover, research has shown that 
the IL cation has a minimal impact on reducing the molecular weight of 
lignin, while the IL anion plays a pivotal role (George et al., 2011). To 
date, research on the extraction of lignin from herbaceous lignocellu
losic biomass has predominantly centered on the application of [Emim] 
[OAc] and [Bmim][OAc] as ionic liquids (Halder et al., 2019). The 
effectiveness of lignin recovery has demonstrated variability contingent 
upon the specific biomass and process conditions. For instance, utilizing 
[Emim][OAc] during a 4-h treatment at 110 ◦C, the lignin recovery ef
ficiency for rice husks amounted to 47 %, with an extension of the 
process to 8 h, resulting in nearly 100 % recovery (Lynam et al., 2012). 
In contrast, the lignin recovery efficiency for wheat straw, following a 2- 
h process at 120 ◦C, reached 87 % (da Costa Lopes et al., 2013), and 
switchgrass, subjected to a 3-h process at 160 ◦C, achieved a 69 % lignin 
recovery (Li et al., 2009). These findings emphasize the necessity to 
explore the combined impact of three main group of variables i.e. ionic 
liquid constituents, the biopolymer composition of biomass and the 
parameters of pretreatment processes, on the efficiency of lignin 
extraction. For this purpose, it was decided to develop and compare a 
number of ML tools as shown in Fig. 2. 

Fig. 2. Modeling schema incorporated in the study.  
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3. Methods 

3.1. Data collection and curation 

The process of assembling the dataset was meticulously designed to 
capture pivotal information essential for this study. It encompassed 
defining the most extensive set among the distinguished lignocellulosic 
biomass groups, namely softwood, hardwood, and herbaceous biomass. 
Following an initial analysis of literature data, the decision was made to 
focus on the most abundant group - herbaceous biomass, which is ex
pected to be the most amenable to pretreatment using ILs. A compre
hensive database was prepared for individual lignin extraction 
experiments, concentrating on the characterization of the raw material 
composition—its polymer composition—and process parameters such as 
process efficiency, temperature, duration, ionic liquid concentration, as 
well as the type of cation and anion. Various studies reported differing 
values of lignin recovery efficiency for duplicated process parameters. In 
instances of incongruent information, source articles were scrutinized to 
select more credible data based on the evaluation of the experimental 
protocol used. The resulting dataset comprised 45 values for rice husks, 
18 values for sugarcane bagasse, 15 values for wheat straw, 13 values for 
corn stover, 8 values for miscanthus, 6 values for switchgrass, and 4 
values for corn cobs, totaling a diverse compilation of 109 data points. 
For comparison, an analogous dataset was compiled for woody biomass, 
consisting of 10 values for softwood biomass and 21 values for hard
wood biomass. Detailed information regarding the dataset is available in 
Table S1-S3 in the supplementary electronic information (ESI). 

Firstly, it was checked whether, in the dataset, there are clusters 
impacting its uniformity and, therefore capability for modeling. It was 
assessed visually using the FreeViz algorithm (Demsar et al., 2008). The 
FreeViz allows visualizations to be obtained with clear class separation, 
which is especially important in exploratory data analysis. This method 
allows for finding optimal two-dimensional projection to differentiate 
between samples in a dataset. The rationale behind this algorithm might 
be explained by a physical metaphor: there is a mathematical construct 
similar to the physical potential applied that allows for attraction and 
repulsion between data points. Similar datapoints attract while in
stances varying substantially repulse other points, analogous to physical 
forces between particles. As a result, optimal projection is found, and 
effective class separation is revealed in a scatterplot. The optimization 
objective, achieving effective class separation, is akin to identifying the 
configuration (projection) with minimal potential energy in this meta
phorical framework. 

The present study addresses a challenge marked by the constraint of 
a relatively small dataset comprising approximately 110 samples. Given 
this limitation, machine learning Gradient Boosting (GB) and Random 
Forest (RF) algorithms were prioritized over deep learning approaches. 
For this kind of modeling, it is adequate to represent chemical structures 
in the form of molecular descriptors (MDs) or molecular fingerprints 
(MFs). These are computational tools used in the field of chem
informatics and computational chemistry to characterize and represent 
chemical compounds in a format suitable for quantitative analysis and 
modeling. Both MDs and MFs play crucial roles in the development of 
predictive models, virtual screening, and quantitative structure- 
property relationship (QSPR) studies (Xue and Bajorath, 2000). Chem
ical representation, both MDs and MFs, is calculated for both cation and 
anion. MDs and MFs related to cations are presented with the prefix ‘c’, 
while those related to anions with the prefix ‘a’ followed by a name 
depicting the family of molecular representation used - “mordred” for 
MDs calculated in Mordred (Moriwaki et al., 2018) software and “fp” for 
Morgan MFs calculated using RDKIT (Landrum, 2013). Both MDs and 
MFs were calculated separately for cation and anion-forming ionic 
liquid. The entirety of the coding process was implemented in Python 
with help of commonly used machine learning packages namely scikit- 
learn (Pedregosa et al., 2012), SHAP (Lundberg et al., 2020a), LIME 
(Ribeiro, 2016), ELI5 (Korobov and Lopuhin, 2017), Orange Data 

Mining (Demšar et al., 2013). 
MDs are numerical representations that encode structural, physico

chemical, or topological information about a molecule. These de
scriptors provide a quantitative way to describe the structural features of 
a molecule in a numerical manner. MDs are diverse and can include 
properties like molecular weight, polarizability, bond angles, or 
constitutional indices. Some of the MDs are not easily interpretable, 
limiting the possibility of obtaining physical or chemical insights based 
on performed modeling. In that case, additional effort is paid during the 
modeling phase so that model interpretation can be feasible (Eichenlaub 
et al., 2023). MDs are particularly useful in QSPR studies, where the 
objective is to correlate the molecular structure of compounds with their 
physical or chemical properties. On the contrary, MFs are binary bit- 
string representations of molecular structures. These fingerprints 
encode the presence or absence of specific structural features or sub
structures within a molecule. Each bit in the fingerprint corresponds to 
the presence (1) or absence (0) of a particular moiety. 

Since the number of structural features is exceptionally high, some 
feature space reduction is needed. Feature space reduction, in the 
context of ML methods, refers to the process of reducing the number of 
input variables or features in a dataset. The goal is to reduce the model’s 
complexity, improve computational efficiency, and potentially enhance 
its ability to generalize. This reduction can be achieved through various 
techniques, including feature selection and dimensionality reduction. In 
this study, several steps were taken to remove redundant features. 
Firstly, constant features (that have the same value for every sample in 
the dataset) were excluded since they cannot differentiate between the 
points. Then, features that are correlated with other features with a 
Pearson correlation higher than 0.9 were excluded. Finally, the multi
collinearity test was performed using the VIF criterium (Kim, 2019) to 
ensure that no information was provided to the model twice. Values of 
features were then normalized to the range 0–1. Finally, number of 
features for modeling was reduced using feature selection method, 
namely mutual information criterium. 

Outliers in machine learning refer to data points that deviate 
significantly from the majority of the dataset and may introduce noise or 
distort the learning process of a model. The removal of outliers from the 
modeling training set is often desirable to enhance the robustness and 
generalization ability of the model, as outliers can disproportionately 
influence parameter estimation (Baran and Kloskowski, 2023). In order 
to remove data points that might be outlying from others, the Isolation 
Forest technique was incorporated, and hyperparameters for the method 
were selected using cross-validation. 

3.2. Modeling 

Two prominent algorithms, Gradient Boosting (GB) and Random 
Forest (RF), were chosen for the development of predictive models. 
These algorithms share a common foundation in that they build a 
collection, or ensemble, of decision trees to make predictions. Decision 
trees are individual models that recursively split the dataset into subsets 
based on features, forming a tree-like structure that facilitates decision- 
making. Their tree-based nature makes them particularly effective in 
scenarios with complex and non-linear relationships. 

A dataset-splitting strategy was employed to ensure robust evalua
tion and generalizability of these models. This involves dividing the 
dataset into distinct subsets, typically comprising training, validation, 
and test sets. Each subset serves a unique purpose in the model devel
opment and evaluation process. 

The training set is utilized to adjust the model’s weights, exposing it 
to the patterns and relationships present in the data. The validation set, 
employing a 5-fold cross-validation strategy in this instance, serves as an 
intermediary check during the model development process. Cross- 
validation is a technique that partitions the dataset into multiple folds, 
training the model on different combinations of these folds and assessing 
its performance iteratively. This approach helps mitigate the variability 
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in model evaluation that may arise from a single train-test split. 
Furthermore, a distinct test set, comprising 10 % of the original dataset, 
is reserved for final model evaluation. This test set, independent of both 
the training and validation sets, provides an unbiased assessment of the 
model’s ability to generalize to new, unseen data. Intermediate steps in 
model building are assessed using the R2 metric, while for the final 
model, additionally, the mean squared error (MSE) and mean average 
error (MAE) are provided. As a result, for train subset 72 % of the 
original dataset was allocated, while for validation and test accordingly 
18 % and 10 % of the original dataset. 

By reporting the mean metrics values computed over four distinct 
splits (i.e., repeated 4 times using different random seeds to randomly 
select test sets from the database), this study ensures a comprehensive 
and reliable evaluation of model performance. 

3.3. Model interpretation 

In order to enhance the interpretability of model predictions, various 
methods were employed. Specifically, SHAP (SHapley Additive exPla
nations) (Lundberg et al., 2020b; Lundberg and Lee, 2017), LIME (Local 
Interpretable Model-agnostic Explanations) (Visani et al., 2021), and 
ELI5 (Saha, 2018) techniques were applied to elucidate the underlying 
rationale of the models’ predictions. 

The SHAP method was utilized to quantify the contribution of each 
feature to individual predictions, offering a comprehensive 

understanding of the impact of different variables on the model’s out
comes. SHAP method utilizes game theory concepts to reveal how 
feature value contributes to both increasing or decreasing target value. 
The LIME (Local Interpretable Model-agnostic Explanations) technique 
was implemented to offer localized, easily understandable explanations 
for specific instances. LIME generates perturbations around a given 
prediction and observes the resulting changes in the model’s output, 
providing insights into the local behavior of the model. In the ELI5 
method, feature weights are computed by tracing decision paths within 
the ensemble of trees. In this process, each node within a tree yields an 
output score, and the attribution of a feature on the decision path is 
determined by the extent of score alteration from the parent node to its 
respective child node. 

These interpretative tools contribute to a nuanced understanding of 
the relationships captured by the developed models, fostering trans
parency and insight into the predictive mechanisms employed. 

4. Results and discussion 

4.1. Preliminary analysis on selected biomass type 

As previously described, there are two main groups of biomasses, 
namely woods (including softwoods and hardwoods) and herbaceous 
biomass. For the latter, more experimental results were reported in the 
literature on the topic. To obtain a dataset that is valuable for modeling, 
it must be ensured that all the records (data points) follow a uniform 
distribution in the multidimensional space created by features 
describing the records. To check that, parameters regarding the per
centage of hemicellulose (perc_hemicellulose), cellulose (perc_cellu
lose), lignin (perc_lignin), as well as time, temperature, concentration of 
ionic liquid (il_conc), and yield are used. Relations in multidimensional 
space are then mapped to the image using the FreeViz algorithm. The 
result of such projection is shown in Fig. 3. 

Fig. 3 clearly shows that there is a clear separation between herba
ceous biomass (represented as blue points) and woods (red points). Even 
without taking into account molecular representation, it can be 
observed that experiments differ significantly on the type of biomass 
used. Therefore, it could not be stated that the two groups could be 
potentially incorporated in a single model. The distinct physicochemical 
properties of wood and herbaceous biomass emphasize the necessity of 
considering them as separate product categories in the investigation of 
lignin extraction in ionic liquids (see Fig. 3). Wood is characterized by 
higher lignin content and intricate structural arrangements, demanding 
tailored pretreatment strategies due to its elevated resistance to 

Fig. 3. FreeViz diagram showing records similarity in multidimensional space 
of process parameters. 

Table 1 
Reduction of the number of features related to biomass composition.  

No. Biomass feature(s) 
included in modeling 

Overall number of 
parameters 

Ranking of features according to GB feature importance GB-MDs model  
R2 / MAE metric on dataset 
subset 

Train Valid. Test 

M1 cellulose  8 perc_cellulose, a_mordred_MDEO-11, temp, c_mordred_MATS3pe, il_conc, time, 
c_mordred_AATSC3i, c_mordred_AXp-5d 

0.98 / 
0.01 

0.63 / 
0.12 

0.75 / 
0.09 

M2 hemicellulose  8 perc_hemicellulose, a_mordred_MDEO-11, time, temp, il_conc, c_mordred_AATSC3i, 
c_mordred_MATS3pe, c_mordred_AXp-5d 

0.98 / 
0.01 

0.69 / 
0.11 

0.77 / 
0.09 

M3 lignin  9 perc_lignins, c_mordred_AATSC3i, a_mordred_MDEO-11, il_conc, temp, time, 
c_mordred_nHBAcc, c_mordred_MATS3pe, c_mordred_AXp-5d 

0.98 / 
0.01 

0.67 / 
0.11 

0.77 / 
0.09 

M4 cellulose +
hemicellulose  

9 perc_hemicellulose, perc_cellulose, c_mordred_AATSC3i, temp, c_mordred_MATS3pe, 
time, a_mordred_MDEO-11, il_conc, c_mordred_AXp-5d 

0.98 / 
0.01 

0.70 / 
0.11 

0.81 / 
0.08 

M5 cellulose + lignin  9 perc_lignins, c_mordred_AATSC3i, a_mordred_MDEO-11, temp, il_conc, perc_cellulose, 
time, c_mordred_MATS3pe, c_mordred_AXp-5d 

0.98 
/ 0.01 

0.68 / 
0.11 

0.80 / 
0.08 

M6 hemicellulose + lignin  9 perc_lignins, c_mordred_AATSC3i, a_mordred_MDEO-11, temp, il_conc, 
perc_hemicellulose, time, c_mordred_MATS3pe, c_mordred_AXp-5d 

0.98 / 
0.01 

0.69 / 
0.11 

0.83 / 
0.09 

M7 cellulose +
hemicellulose + lignin  

15 perc_lignins, c_mordred_AATSC3i, a_mordred_MDEO-11, perc_cellulose, 
perc_hemicellulose, temp, il_conc, a_mordred_TopoShapeIndex, 
a_mordred_EState_VSA9, c_mordred_MATS3pe, time, a_mordred_mZagreb1, 
a_mordred_SLogP, a_mordred_MDEC-33, c_mordred_AXp-5d 

1.00 / 
0.02 

0.63 / 
0.12 

0.71 / 
0.10  
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extraction. Conversely, herbaceous biomasses exhibit lower lignin con
tent and notably simpler structures, rendering them more amenable to 
pretreatment processes. Treating wood and herbaceous biomasses as 
distinct units allows for a targeted approach, thereby facilitating the 
development of refined strategies for lignin valorization in biomass 
conversion processes. Following that conclusion, molecular represen
tation was calculated only for records obtained from experiments on 
herbaceous biomass samples. 

4.2. Preliminary analysis on feature space reduction 

In the dataset, as provided in Table S2, several features describing 
biomass composition were reported, namely percentage of cellulose, 
percentage of hemicellulose, and percentage of lignin. While the focus of 
research has predominantly been on three biopolymers, it’s important to 
note that biomass also comprises ash (from <1 % in debarked wood to 
up to 25 % in herbaceous materials) (Yan et al., 2020), moisture (Haldar 
and Purkait, 2020), and other constituents, such as proteins (e.g. corn 
stover and poplar contain 2.5 % and 1.3 % protein respectively) 
(MacLellan et al., 2017). However, literature discussing their presence 
in lignin isolation tests is limited, primarily due to their significance in 
biomass utilization as a fuel in thermochemical conversion processes 
such as combustion or pyrolysis. Additionally, the chemical composition 
of plants varies depending on the species, maturity, and environmental 
conditions in which they were cultivated (Langsdorf et al., 2021). The 
statistical rationale for their exclusion, based on their high correlation 
with the utilized parameters, is provided in Table S5, ESI. However, 
often in modeling, it is beneficial to include as few features as possible. 
Reducing the number of features, resulting in lowering the dimension
ality of a problem, often results in obtaining models that are less prob
able to overfit data (Teixeira et al., 2013). Therefore, all possible 
combinations of biomass composition–related features were tested for 
the model’s performance to obtain the balance between the best metric 
value and the probability of the model being overfitted to data. Table 1 
shows the results of a comparison between all these possible scenarios. 
Overall, the number of parameters was established by iteratively 

increasing the number of descriptors used for modeling until the per
formance on the validation set stopped rising with the increasing 
number of descriptors. Graphs justifying the selection are shown in 
Fig. S6. 

As can be seen in Table 1, models built upon different scenarios of 
used biomass-related features differ in the case of both the overall 
number of parameters needed for modeling and metrics. The number of 
parameters in each scenario was established using cross-validation 
search. Probing was performed in range between 2 and 15 parameters. 
Therefore, metrics are presented for best performing model with optimal 
number of parameters under each scenario and differ between models. 
Among the 7 models, variants M2 and M6 seem to be the most prom
ising. They both have comparatively good performance on the test set 
and comparable metric values on the validation set. However, it is hard 
to differentiate between the two. Scenario M6 resulted in a higher R2 

value on the test set. On the contrary, M2 might be more resistant to 
possible overfitting since it uses fewer parameters. Furthermore, most of 
the models including M2 and M6 rely on the same set of MDs, namely 
c_mordred_AATSC3i, c_mordred_MATS3pe, c_mordred_AXp-5d, a_mor
dred_MDEO-11. From the chemical point of view one might be con
cerned if lignin percentage being additional (when compared to M2) 
parameter describing biomass composition is in fact providing any 
useful information to the model. To further disclose which scenario 
should be used in further analysis, the loss decomposition method, as 
implemented in mlxtend (Domingos, 2002; Raschka, 2018) is used. 
Results are shown in Table 2. 

Loss decomposition allows for evaluating part of MSE loss that cor
responds to model’s bias (error related to systematic incorrectness in 
predicted values) and variance (changes in predicted output with 
accordance to small change in input parameters). Even though M6 is 
characterized by a lower value of the expected loss, the variance was 
responsible for a higher percentage of the loss. Furthermore, variance 
increased while moving from scenario M2 to M6. This fact is related to 
M6 utilizing more features than M2. This fact might further support the 
hypothesis on relatively high model’s variance. Since higher variance is 
related to the higher probability of model overfitting to data, M2 seemed 
to be a more reliable choice. Moreover, in M2 model by incorporating 
less biomass-related features, impact of structural features of ILs are 
expected to be of higher importance. Since it was one of the objectives of 
this study to provide validation of the models by comparison with 
literature findings, M2 was found to be better corresponding with this 
objective and selected for further studies. 

Surprisingly, models incorporating a percentage of lignin as an input 
parameter did not necessarily perform better than models that are not 
given that feature in the input matrix. Even though this study concen
trates on lignin isolation, the description of biomass does not need to 
explicitly include information on the percentage of lignin. This can be 
justified by poorer models’ metrics but also by the fact that the per
centage of hemicellulose has a relatively higher standard deviation in 

Table 2 
Results of comparison between scenarios M2 and M6.  

Model M2 M6 

Loss 0.032 0.027 
Bias 0.022 0.016 
Variance 0.010 0.011 
Variance as the fraction of loss 31 % 41 % 
predicted target vs. target (yield) plot 

Table 3 
Blackbox models metrics for different molecular representations.  

Model R2 Metrics of Blackbox Models Performance (on train / validation / 
test sets) in accordance with molecular representation 

Molecular 
Descriptors 
(MDs) 

Molecular 
Fingerprints 
(MFs) 

Both Representations 
(MFs + MDs) 

Gradient 
Boosting 
(GB) 

0.98 / 0.69 / 0.77 0.98 / 0.58 / 0.77 1.00 / 0.66 / 0.76 

Random 
Forest (RF) 

0.88 / 0.63 / 0.71 0.87 / 0.58 / 0.75 0.88 / 0.62 / 0.73  
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the dataset, leading to more information being processed by the model. 

4.3. Blackbox models 

For modeling, it was decided to use one parameter describing 
biomass composition (percentage of hemicellulose i.e. scenario M2 as 
described earlier), three describing conditions under which the process 
occurs (temperature, time, and concentration of ionic liquid), as well as 
molecular descriptors (MDs) /fingerprints (MFs). Firstly, the impact of 
molecular representation was tested. In order to check the influence of 
that factor, three possible scenarios were tested, namely the usage of 
solely MDs, solely MFs, and a combination of both (MDs + MFs). The 
results of the comparison are shown in Table 3. 

The superiority of MDs-based models over other scenarios could be 
explained by taking into account the statistical characteristics of the 
variables used in each of the scenarios. MDs provide detailed quantita
tive information about a molecule’s structure, and they are often nu
merical values with high variance. MFs, on the contrary, represent a 
binary encoding of structural patterns, being classified as categorical 
features (only a set of discrete values are allowed). While MFs are effi
cient for capturing molecular similarity and facilitating quick compari
sons, they may lack the nuanced information embedded in MDs. 
Combining MDs and MFs seeks to leverage the strengths of both ap
proaches, but the efficacy of this hybrid strategy depends on the 
compatibility between the two types of features. In the studied example, 
it seems that all substantial information was already captured by MDs. 

In order to check whether the model could provide some insights into 
the process being modeled, careful analysis of used descriptors is 
needed. Even though the MFs-based model seems to be interpretable, its 
predictive power is relatively poor (validation R2 < 0.6), and the ability 
to obtain insights from this model is limited. Therefore, interpretability 
options are evaluated for the MDs-based model. A list of descriptors used 
for the models’ building is shown in Table 4. Descriptions are based on 
official Mordred documentation (Moriwaki et al., 2018). 

As can be seen, descriptors incorporated in the blackbox model were 
not easily interpretable for humans. Even though features like weighted 

autocorrelation or path in molecular graphs might describe a molecule 
well, it is challenging to obtain useful chemical intuition based on their 
value. However, it was tested whether they can be correlated with de
scriptors that have simple chemical interpretation. In order to establish 
that, several interpretable descriptors related to molecular features that 
are expected to be of importance in the process were selected. Multiple 
linear regression was incorporated, and the R2 metric was used to assess 
linear correlation. For all descriptors, correlation with a set of inter
pretable alternatives was found to be exceptionally high. Therefore, it 
might be stated that almost all the information they were carrying would 
still be capture into the model built using only interpretable descriptors. 
Statistical analysis confirmed that the models constructed in this way 
were of similar quality in terms of metrics (Table S8), and at the same 
time provided better insight into the desired structural features of ionic 
liquids. 

4.4. Interpretable models and interpretation of features importance 

Proper understanding of model’s rationale is crucial for assessing its 
predictive usefulness and correctness. Analyzing Shapley diagrams, one 
can notice certain regularities common to all built models (see Fig. 4): 
the efficiency of the lignin extraction process is determined to the 
greatest extent by the composition of the biomass expressed as the 
percentage of hemicellulose (perc_hemicellulose), and two parameters 
of the process, i.e., time and temperature. The fourth variable not related 
to the structure of ionic liquids is their concentration (il_conc), and this 
factor is still one of the most statistically significant: the fourth in both 
models obtained using RF, the sixth in the GB models, and the seventh in 
the model-based simultaneously on molecular descriptors and molecular 
fingerprints (GB). 

However, one might want to assess whether the impact of molecular 
descriptors is significant for the model’s prediction. To further address 
this issue, an additional sensitivity analysis was performed incorpo
rating two feature importance scores: GB-based and permutation anal
ysis (see Table 5). The GB method is related to how often feature is used 
to make decision to create another split in decision trees (Hastie, 2009), 
while permutation method involves tracking the reduction in the 
model’s score when a single feature’s values are changed at random 
(Breiman, 2001). It can be observed that the impact of features related to 
biomass composition and process parameters is of high importance, as it 
was observed based on Shapley values. On the contrary, it can be clearly 
seen that molecular descriptors’ impact does not seem insignificant or 
minor. 

For instance, descriptor a_mordred_SlogP_VSA1 is comparable in 
importance with time and temperature, according to GB score. Simi
larly, c_mordred_nHBAcc and concentration of IL have similar scores in 
both GB and permutation analysis. The most important features related 
to the solvent structure have 26 % and 21 % scores for the most 
important feature for GB and permutation methods, respectively. 

Even though their scores are lower, they are vital for predicting the 
variance of a target variable. This fact can be further examined by 
comparing Pearson correlations with lignin yield values. None of the 
features are strongly correlated with the target property, implying that a 
combination of them is needed to explain the variance in the dataset. 

The prevailing impact of variables not directly related to the chem
ical structure of ionic liquids will, to some extent, suppress the possi
bility of optimization of the chemical structure of ionic liquids. On the 
other hand, attempts made to omit some of the above-mentioned vari
ables in constructing models led to a significant deterioration of the 
model’s predictive abilities and statistical metrics. In the case of hemi
cellulose content, duration of the extraction process, and temperature, 
the obtained models clearly indicate that increasing the values of these 
parameters is beneficial for the efficiency of the lignin extraction pro
cess, which is consistent with literature reports (Brandt et al., 2013). In 
the case of the last two, the interpretation is rather simple as both factors 
are related to the kinetics of the extraction process, time directly, while 

Table 4 
Descriptors used in the models.  

Descriptor Description / 
interpretation 

R2 for fit with a set 
of interpretable 
descriptors 

Blackbox model 
c_mordred_AATSC3i Autocorrelation of lag 3 

weighted by ionization 
potential 

1.00 

c_mordred_MATS3pe Moran coefficient of lag 3 
weighted by pauling 
electronegativity 

1.00 

c_mordred_AXp-5d 5-Ordered averaged Chi 
path weighted by sigma 
electrons 

1.00 

a_mordred_MDEO-11 Molecular distance edge 
between primary O and 
primary O 

0.95  

Set of interpretable descriptors 
c_mordred_nAromAtom / 

a_mordred_nAromAtom 
Aromatic atoms count 

c_mordred_nHBDon Number of hydrogen bond donor 
a_mordred_nHBAcc Number of hydrogen bond acceptors 
c_mordred_SlogP_VSA1 / 

a_mordred_SlogP_VSA1 
Estimated partition coefficient in with accordance 
to atoms’ contribution to the molecular surface area 

c_mordred_nRot / 
a_mordred_nRot 

Rotatable bonds count 

c_mordred_TopoPSA / 
a_mordred_TopoPSA 

Topological polar surface area 

c_mordred_MW / 
a_mordred_MW 

Exact molecular weight  
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the temperature influences both by increasing the reaction rate constant 
and by lowering the viscosity of the reaction mixture (Amini et al., 
2021). In the case of hemicellulose content, it is worth noting that its 
biomass content is not statistically significantly correlated with the 
lignin content (R2 = 0.10). Consequently, the increased efficiency of 
lignin extraction is not likely to be the result of its lower content in the 
biomass and is caused by other factors. It can be assumed that the 
hemicellulose content affects the structure of the biomass as a whole, 

which translates into a more or less limited availability of lignin exposed 
to the solvent (ionic liquid) (Geng et al., 2019). 

However, a comparison of the model’s rationale regarding ILs 
structural features and previously reported relationships might serve as 
additional validation of the model. Despite the relatively low statistical 
significance of both molecular descriptors and molecular fingerprints in 
the obtained models, their interpretation is still possible. In models 
based on molecular descriptors, the set of descriptors was limited to six 
due to the small impact on the model’s performance of descriptors with 
more distant positions. In both cases (GB and RF), the same set of de
scriptors was obtained, which can be ordered as follows: c_mor
dred_nRot > a_mordred_nHBAcc > a_mordred_SlogP_VSA1 >

c_mordred_nAromAtom > c_mordred_SlogP_VSA1 = c_mor
dred_TopoPSA. When interpreting the meaning of descriptors on the 
potentially optimal structure of ionic liquids, it should be borne in mind 
that the models are built on a relatively small number of different cat
ions (7) and anions (26). As a consequence, the indicated importance of 
individual descriptors for the obtained models may be significantly 
disturbed by both the number of representatives and the range of vari
ability of the descriptor itself. Nevertheless, the observed relationships 
are consistent with current knowledge. The c_mordred_nRot descriptor, 
the value of which varies from 0 to 5 for the set of ionic liquids used, 
actually indicates the presence of long alkyl chains in the cation. 
Consequently, its contrary effect on the extraction efficiency (the higher 

Fig. 4. SHAP diagrams for RF and GB models.  

Table 5 
Feature importances according to GB scores and permutation method for 
interpretable models.  

Feature GB feature 
importance 
score 

Permutation feature 
importance score 

Pearson 
correlation 
with lignin 
yield 

perc_hemicellulose  0.425  0.71 ± 0.20  0.49 
time  0.145  0.50 ± 0.13  0.11 
a_mordred_SlogP_VSA1  0.112  0.089 ± 0.040  - 0.33 
temp  0.101  0.37 ± 0.10  0.42 
il_conc  0.086  0.27 ± 0.10  - 0.15 
c_mordred_nRot  0.069  0.148 ± 0.050  0.11 
a_mordred_nHBAcc  0.036  0.069 ± 0.031  0.12 
c_mordred_SlogP_VSA1  0.018  0.0017 ± 0.0030  0.00 
c_mordred_nAromAtom  0.009  0.0007 ± 0.0023  0.14  
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it is, the lower the efficiency) can be associated, in principle, with the 
higher viscosity of ionic liquids composed of cations with long alkyl 
substituent (Amini et al., 2021). 

A clearly proportional influence of the descriptor value on the 
extraction efficiency can be seen for the second, most important 
descriptor a_mordred_nHBAcc, describing atoms that are hydrogen bond 
acceptors in the anion. The descriptor value varies in the range from 0 to 
4 and depends on the number of nitrogen and oxygen atoms. The ability 
to participate in the formation of hydrogen bonds between hydroxyl 
groups present in the lignin structure, and the solvent is considered to be 
a key mechanism supporting the lignin extraction process, which is re
flected in the obtained models (Ocreto et al., 2022). A significant impact 
on the lignin extraction efficiency can also be attributed to the number 
of aromatic atoms in the cation structure, which, according to literature 
reports, is the result of the π-π interactions between the cation and ar
omatic rings present in the lignin structure. The importance of this 
descriptor is higher in the case of the GB model, while in the RF model, it 
is the last of the six used. The probable reason is the small variability of 
this descriptor, which for the set of cations has a value of 5 for cations 
with an imidazolium ring and 0 for all others. Another descriptor that 
has a large impact on the efficiency of lignin extraction is a_mor
dred_SlogP_VSA1, the value of which depends on the van der Waals 
surface area of atoms influencing the value of the octanol/water parti
tion coefficient, which, in effect, is a measure of the polarity of the 
molecule and the ability to accept a hydrogen bond (Labute, 2000). In 
both models, the descriptor has a large impact on the outcome variable, 
but in the RF model, a lower descriptor value enhances the extraction 
process, while in the GB model, this effect is less clear. The remaining 
descriptors, however, improve the model statistics, but their quantita
tive interpretation is difficult to perform. Models obtained using MFs as 
an independent variable have properties that indicate the effect of the 
presence of specific groups of atoms in cation and anion molecules. The 
problem with their use is the number of atoms constituting the finger
print: too small a radius (1–2 atomic radii) does not allow for structural 
interpretation, while too large radii significantly reduce the diversifi
cation of the dataset. In the latter case, the resulting model is very 
dependent on the range of structural variability of the input data, which 
is visible in the examined case. The obtained statistical parameters of 
models based on fingerprints are significantly lower (approximately 10 
%) than models using molecular descriptors. However, despite these 
limitations, the calculated models are consistent with the results ob
tained from GB models and with literature reports. Moreover, in some 
cases, they are complementary to GB models. For example, it can be 
clearly seen that ionic liquids with the Cl− anion (a_fp_330) are unfa
vorable for the extraction efficiency of lignin. The detrimental impact of 
chloride anions present in ionic liquids on lignin extraction primarily 
arises from elevated extraction temperatures. These elevated tempera
tures can induce structural alterations in polysaccharides, consequently 
fostering the generation of undesired by-products. Additionally, the 
heightened viscosity of Cl- anion-containing IL’s poses barriers to effi
cient mass and heat transport, thereby constraining the effectiveness of 
lignin extraction (Naz et al., 2021). Such a conclusion would be difficult 
to draw out based solely on molecular descriptor values. The remaining 
anion fingerprints present in the models indicate a positive impact of the 
presence of primary amine groups (a_fp_147), bisulfates, and anions 
with a carboxyl group (a_fp_295) as well as anions with oxygen bound to 
sulfur (overlapping fingerprints: a_fp_285, a_fp_452, a_fp_285), which 

can generally be interpreted as the presence of atoms that accept 
hydrogen bonds. One can also notice a change in the proportion of 
variables describing the structure of the cation and anion, which, in the 
case of MF, shifted towards the anion fingerprints. In the case of cation 
fingerprints, there is a significant reduction in the diversification of the 
dataset. In the case of fingerprints c_fp_5, c_fp_15, and c_fp_70, they 
describe the presence of only one type of cation, while for c_fp_77, there 
is only one cation in the data set for which the fingerprint value is 0. 
Consequently, the interpretability of the results is very limited. How
ever, the negative impact on the extraction process of the presence of 
hydroxyl groups in the cation described by the high value of the c_fp_222 
descriptor can be indicated. It is believed that the hydroxyl groups in the 
cation can form hydrogen bonds with the acceptor sites of the anion, 
thus limiting its potential to interact with the hydroxyl groups present in 
the biomass sample (Hasanov et al., 2020). 

4.5. Models’ comparison and modeling limitations 

The final evaluation of the model’s performance with additional 
metrics is provided in Table 6 which shows that the models have a good 
predictive power, even on a test set. MEA metric is about 0.10 for 
validation and test set, implying that, on average, model error is about 
10 percentage points (pp). This value might be compared with un
certainties of obtaining yield as estimated from a few works in the field 
that reported multiple yield values for the same process condition. In the 
study (Liu et al., 2018b) value range, out of 4 repetitions, was 5.8 pp., 
and the standard deviation was about 2.4 pp., while in the other study 
(Wu et al., 2011) value range was 3.2 pp. It can be clearly seen that the 
average error of the model is just slightly higher than the uncertainty of 
the measurements as reported by experimental works in the field. 

Further comparison between the RF and GB models is possible via 
the interpretation of models’ predictions for certain data points. Inter
pretation of models’ predictions for specific samples from the dataset 
might be an interesting way of performing meta-analysis, trying to 
capture the relative importance of parameters influencing process yield. 

Table 6 
Detailed metrics of the obtained models.  

Model R2 metrics MAE metrics MSE metrics 

Train Valid. Test Train Valid. Test Train Valid. Test 

GB  0.98  0.71  0.73  0.01  0.11  0.10  0.01  0.02  0.02 
RF  0.87  0.63  0.63  0.08  0.13  0.12  0.01  0.03  0.03  

Table 7 
Analysis of feature contributions to models’ predictions for a few examples 
based on ELI5 methods.  

GB model RF model 

Feature Impact Feature Impact 

Example with low yield (sample 65) 
IL concentration +0.005 [bias] +0.5 
c_mordred_nRot − 0.084 IL concentration +0.001 
time − 0.091 perc_hemicellulose − 0.127 
perc_hemicellulose − 0.165 Time − 0.131  

Example with medium yield (sample 1) 
time +0.153 [bias] +0.5 
a_mordred_SlogP_VSA1 +0.093 time +0.122 
a_mordred_nHBAcc +0.021 a_mordred_nHBAcc − 0.001 
perc_hemicellulose − 0.115 perc_hemicellulose − 0.086  

Example with high yield (sample 46) 
perc_hemicellulose +0.321 [bias] +0.5 
IL concentration +0.057 perc_hemicellulose +0.239 
a_mordred_nHBAcc +0.031 IL concentration +0.068 
temperature − 0.019 temperature − 0.006  

K. Baran et al.                                                                                                                                                                                                                                   

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Science of the Total Environment 935 (2024) 173234

11

Fig. 5. LIME explanations for exemplary samples.  
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Detailed results of such analysis are shown in Table 7 and Fig. 5. Details 
on the input values for used datapoints are provided in Table 2, ESI. 

Analysis of results shown in Table 7 regarding ELI5 analysis reveals 
significant differences between RF and GB models. For the GB model, 
MDs often have impacts similar to process parameters. This is the case 
for sample 65, where c_mordred_nRot and time have very similar 
importance and impact (both value and sign of calculated impact are 
comparable), or for sample 46, where the impact of a_mordred_nHBAcc 
leverages the impact of temperature. That is often not the case for RF 
models, which seem to be dominated solely by process parameters. 
Differences between the two models are also clear when comparing the 
sample with a medium yield value like sample 1. In that case, bias is the 
most important factor impacting predicted yield. It is a clear drawback 
from the perspective of model interpretation. Even though the predictive 
power of the RF model seems to be satisfactory, it has a higher bias. As a 
result, model interpretation is disturbed by the bias. 

It should be mentioned that different model interpretation methods 
operate on significantly different approaches and, therefore, might lead 
to slightly different conclusions. In order to obtain as precise informa
tion as possible, one might want to use a few methods and compare the 
insights. Somehow, similar conclusions result from LIME analysis, as 
shown in Fig. 5. For all of the studied examples from the dataset, the 
impact of a few first features on predictions was significantly larger in 
the RF model than in the GB model. This is yet another consequence of 
the RF model having a higher bias than the GB model. However, details 
on the importance of specific descriptors differ from what was observed 
in the ELI5 method. For example, for sample 46, LIME assigns very high 
importance to descriptor c_mordred_nRot, which ELI5 did not find to be 
influential for that sample. This implies the impact of a low number of 
rotatable bonds, probably related to the rigid aromatic structure of the 
cation, and indirectly suggests the high relevance of π- π interactions 
with the aromatic imidazolium ring. The opposite impact occurs for 
samples 1 and 65, where lack of aromaticity in cation structures results 
in a lower target value, as shown by LIME graphs for the GB model for 
the two samples. The impact of that structural feature seems to be 
similar or even more relevant than the impact of temperature. 

Finally, modeling limitations should be discussed to set assumptions 
that have to be met in order to use models properly. Modeling in the 
realm of machine learning is inherently constrained by several limita
tions that warrant careful consideration. One prominent concern is the 
challenge of overfitting, where a model becomes excessively tailored to 
the training data, capturing noise rather than genuine patterns. This 
phenomenon compromises the model’s ability to generalize to new, 
unseen data, undermining its predictive reliability. Striking a balance 
between model complexity and generalizability is crucial to mitigate the 
risks associated with overfitting. In this study, this concern was 
addressed by using a test set and providing detailed explanations of the 
merits behind models’ reasoning. 

Another notable limitation stems from the nature of the training 
dataset. The quality and representativeness of the data used to train a 
model significantly influence its performance. Since the training dataset 
does not encompass the full spectrum of all possible scenarios, the model 
may exhibit biases and struggle when confronted with novel situations 
that are vastly different from what was reported up to date. Due to the 
relatively small size of the dataset, it cannot be assured that models’ are 
not somehow biased by the design of experiments available in the 
literature. Additionally, the applicability domain of the models, or the 
range of conditions under which it reliably operates, is determined by 
the examples present in the training set. Large deviations from these 
conditions may lead to suboptimal or inaccurate predictions. Due to this 
limitation, wood biomasses were excluded from this study at the early 
stage of the models’ development. Consequently, the model should be 
applied only to herbaceous biomass samples. 

The inherently probabilistic nature of many real-world phenomena 
further complicates modeling efforts, as it might benefit from 
acknowledging uncertainties associated with predictions, which was not 

possible in this study due to a lack of enough experimental data on the 
topic. 

5. Summary 

In this study, machine learning models for predicting the yield of 
lignin extraction in ionic liquids were presented. The basic assumption 
of work is based on distinguishing the modeling process according to its 
purpose. There is a slight distinction between modeling focused on 
interpreting phenomena, and modeling focused on predicting phenom
ena. In order to comprehend the relative relevance of features and the 
lignin extraction process, an additional model involving the user-aided 
selection of molecular descriptors was required. Interpretative models 
are indispensable for elucidating the fundamental mechanisms and in
teractions with intricate biomass matrices in lignin extraction. 
Combining these modeling techniques provides a synergistic potential to 
find new solvents and methods that maximize lignin quality and re
covery. Molecular descriptors like the number of rotatable bonds, 
number of aromatic atoms, number of hydrogen bond donors and ac
ceptors, and weighted estimated partition coefficient are identified as 
factors describing ILs molecule that contribute to the model predicting 
lignin extraction yield. Based on the anticipated significance of various 
variables, proposed hypotheses can assist in prioritizing experimental 
studies and direct future research efforts. It was shown that modeling 
lignin yield for wood and herbaceous biomass should be performed 
separately due to significant differences between the two categories. For 
the latter, it was demonstrated that ML models achieving R2 metric for 
separate test set, disclosed from models’ training, of over 0.75 can be 
built. Proposed models incorporated hemicellulose percentage, time, 
temperature, concentration of IL, and molecular descriptors as input 
features. Insights into models’ rationale were, however, primary. 
Interpretable models were proposed to be additionally validated by 
comparison with literature findings in the field. 
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D., 2022. Ionic liquid dissolution utilized for biomass conversion into biofuels, value- 
added chemicals and advanced materials: a comprehensive review. Chem. Eng. J. 
445, 136733 https://doi.org/10.1016/j.cej.2022.136733. 

Paraschiv, L.S., Paraschiv, S., 2023. Contribution of renewable energy (hydro, wind, 
solar and biomass) to decarbonization and transformation of the electricity 
generation sector for sustainable develop- ment. Energy Rep. 9, 535–544. https:// 
doi.org/10.1016/j.egyr.2023.07.024. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., 
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., 
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., Louppe, G., 2012. Scikit- 
learn: machine learning in Python. J. Mach. Learn. Res. 12. 

Pin, T.C., Rabelo, S.C., Pu, Y., Ragauskas, A.J., Costa, A.C., 2021. Effect of Protic ionic 
liquids in sugar cane bagasse pretreatment for lignin valorization and ethanol 
production. ACS Sustain. Chem. Eng. 9, 16965–16976. https://doi.org/10.1021/ 
acssuschemeng.1c05353. 

Pinto, E., Aggrey, W.N., Boakye, P., Amenuvor, G., Sokama-Neuyam, Y.A., Fokuo, M.K., 
Karimaie, H., Sarkodie, K., Adenutsi, C.D., Erzuah, S., Rockson, M.A.D., 2022. 
Cellulose processing from biomass and its derivatization into 
carboxymethylcellulose: a review. Sci. Afr. 15, e01078 https://doi.org/10.1016/j. 
sciaf.2021.e01078. 

Raschka, S., 2018. MLxtend: providing machine learning and data science utilities and 
extensions to Python’s scientific computing stack. J. Open Source Softw. 3, 638. 
https://doi.org/10.21105/joss.00638. 

Ribeiro, M.T., 2016. Local Interpretable Model-Agnostic Explanations (Lime) [WWW 
Document]. 

Rieland, J.M., Love, B.J., 2020. Ionic liquids: a milestone on the pathway to greener 
recycling of cellulose from biomass. Resour. Conserv. Recycl. 155, 104678 https:// 
doi.org/10.1016/j.resconrec.2019.104678. 

Rinaldi, R., Jastrzebski, R., Clough, M., Ralph, J., Kennema, M., Bruijnincx, P., 
Weckhuysen, B., 2016. Paving the way for lignin valorisation: recent advances in 
bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. Engl. 55 https:// 
doi.org/10.1002/anie.201510351. 

Rubin, E., 2008. Genomics of cellulosic biofuels. Nature 454, 841–845. https://doi.org/ 
10.1038/nature07190. 

Saha, S., 2018. A comprehensive guide to convolutional neural networks—the ELI5 way. 
Towards data science 15. 

Samayam, I.P., Schall, C.A., 2010. Saccharification of ionic liquid pretreated biomass 
with commercial enzyme mixtures. Bioresour. Technol. 101, 3561–3566. https:// 
doi.org/10.1016/j.biortech.2009.12.066. 

Sharma, V., Tsai, M.-L., Nargotra, P., Chen, C.-W., Sun, P.-P., Singhania, R.R., Patel, A.K., 
Dong, C.-D., 2023. Journey of lignin from a roadblock to bridge for lignocellulose 
biorefineries: a comprehen- sive review. Sci. Total Environ. 861, 160560 https://doi. 
org/10.1016/j.scitotenv.2022.160560. 

Singh, S.K., 2022. Ionic liquids and lignin interaction: an overview. Bioresour. Technol. 
Rep. 17, 100958 https://doi.org/10.1016/j.biteb.2022.100958. 
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