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Abstract. Let M be a closed 1-connected smooth 4-manifolds, and let
r be a non-negative integer. We study the problem of finding minimal
number of r-periodic points in the smooth homotopy class of a given
map f : M → M . This task is related to determining a topological invari-
ant D4

r [f ], defined in Graff and Jezierski (Forum Math 21(3):491–509,
2009), expressed in terms of Lefschetz numbers of iterations and local
fixed point indices of iterations. Previously, the invariant was computed
for self-maps of some 3-manifolds. In this paper, we compute the invari-
ants D4

r [f ] for the self-maps of closed 1-connected smooth 4-manifolds
with definite intersection forms (i.e., connected sums of complex pro-
jective planes). We also present some efficient algorithmic approach to
investigate that problem
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1. Introduction

The problem of finding minimal number of fixed points in the homotopy class
of a given self-map of a compact manifold goes back to the classical papers
of Jacob Nielsen [33]. The same problem has also been studied for the more
general setting of the r-periodic points, where r ≥ 2 is a given integer. In
1983, B. Jiang introduced a topological invariant NFr(f), and showed that
it is a lower bound for the number of r-periodic points in the homotopy class
[26]. Later, it was proved that NFr(f) is the best such lower bound [24], so
it provides the exact value of the minimal number of r-periodic points in the
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homotopy class. The invariant was determined during recent years for some
special cases, see for example: [22,27,31,32].

In this paper, we study the more complicated problem of minimizing
the number of r-periodic points in a smooth homotopy class. The establish-
ing mutual relations between continuous and smooth categories is one of the
most important challenges in modern periodic point theory. That is, we con-
sider the smooth version of the problem, asking about minimal number of
r-periodic in the smooth homotopy class of f , i.e., for

min{#Fix(gr) : g
s∼ f}, (1)

where s∼ means that the maps g and f are C1-homotopic.
The smoothness imposes additional restrictions in the considered homo-

topy class, which results in the fact that the value of minimum (1) in smooth
category is higher than in the continuous case.

In Refs. [13,14], two counterparts of NFr(f) in smooth category were
introduced: Dm

r [f ] for simply connected manifolds, and its generalization
NJDm

r [f ] in the non-simply connected case (where m ≥ 3 denotes the di-
mension of the considered manifold).

The second invariant is much more difficult to compute, as it needs
simultaneous control of the restrictions that come from both fundamental
group and Lefschetz numbers of iterations. In this paper, we concentrate on
simply connected case, when the first type of restriction disappears (notice
that for simply connected manifolds NFr(f) ∈ {0, 1}).

The determination of Dm
r [f ] and NJDm

r depends on finding minimal
decomposition of Lefschetz numbers of iterations into the local fixed point
indices at periodic points. As the complexity of forms of indices for smooth
maps grows with the dimension, for the first place, Dm

r [f ] was determined for
3-dimensional cases: for S

2 × I [13], S
3 [12], two-holed 3-dimensional closed

ball [11] and so NJD3
r [f ] for RP 3 [17].

The next natural but more difficult step is to calculate the invariant
D4

r [f ] for self-maps of a 4-manifold M . This work is devoted to determining
the invariant D4

r [f ] for a closed 1-connected 4-manifold M whose intersec-
tion form is definite, hence homeomorphic to a connected sum of complex
projective planes (cf. [6]).

In general, the process of finding the invariant may be divided into two
parts. First part is related to determining the forms of {L(fn)}n|r—Lefschetz
numbers of iterations and then identifying the set of so-called algebraic periods
of periodic expansion of {L(fn)}n|r: APr(f).

The second part is combinatorial in its nature: it is a decomposition of
APr(f) into the minimal number of sets that represent the sum of periodic
expansion of the sequences of fixed point indices.

The first part, however, is interesting in itself, as the determination of
APr(f) (or generally AP (f) for all natural r) is very important in many
considerations in periodic point theory. It was used to study the minimal
periods (especially for transversal self-maps) of various classes of manifolds
cf. Refs. [9,20,21,28,29], see also Ref. [30] and the references therein.
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The paper is organized in the following way. In Sect. 2, we introduce the
language of periodic expansion, which allows one to write down the sequences
of Lefschetz numbers of iteration in the convenient way. Section 3 is devoted
to determining the Lefschetz numbers of iterations of a self-map of a simply
connected 4-manifold obtained due to restrictions found by Duan and Wang
[7] (Corollary 8).

In Sect. 4, we give the description of the set AP (f) for manifolds with
definite intersection forms (Theorem 13). Note that we work in this section
without the assumption of smoothness, so the statements are valid in con-
tinuous category. We also show the application of the obtained results for
finding minimal periods of transversal maps.

The definition of the invariant D4
r [f ] is given in Sect. 6 and in the next

section, we realize the combinatorial part related to finding the invariant.
Section 7 provides the forms of local indices of iterations of smooth maps
in dimension 4 (Theorem 23) and the way of using it to combinatorically
compute D4

r [f ] once we know the set APr(f). In Sect. 8, we use the results on
APr(f) for finding D4

r [f ]. Although it is a demanding task in general case, we
are able to achieve it for some particular values of r and also determine D4

r [f ]
using a computer program for manifolds having 2 × 2 intersection matrices
and low values of r.

2. Periodic expansion of Lefschetz numbers of iterations

Definition 1. A sequence of integers {an}∞
n=1 is called a Dold sequence if the

following Dold congruence relations are fulfilled:
∑

k|n
μ(k)an

k
≡ 0 (mod n) for each n ≥ 1, (2)

where μ : N → Z is the classical Möbius function, given by the formula

μ(n) =

⎧
⎪⎨

⎪⎩

1 if n = 1;
(−1)k if n = p1p2 . . . pk for different primes pi;
0 otherwise.

Dold sequences play an important role both in dynamics and in topolog-
ical number theory [3]. We recall from Ref. [25] a convenient way to express a
Dold sequence as a combination of certain basic periodic sequences (so-called
periodic expansion).

Definition 2. For a positive integer k, define the map regk : N → N by

regk(n) =

{
k if k | n,

0 if k � n,

which is the periodic sequence:

(0, . . . , 0, k, 0, . . . , 0, k, . . .),

where the non-zero entries k appear precisely at the places divisible by k.
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Proposition 3. (cf. [3]) Any integer valued sequence {an}∞
n=1 can be written

uniquely in the following form of a periodic expansion:

an =
∞∑

k=1

bk regk(n), where bk =
1
k

∑

l|k
μ
(k

l

)
al ∈ Q. (3)

Moreover, the sequence {an}∞
n=1 is integer valued and satisfies Dold congru-

ences if and only if bk ∈ Z for every k ∈ N.

Remark 4. By Proposition 3, every Dold sequence is an integral combination
(perhaps infinite) of the basic sequences regk with so-called Dold coefficients
bk as coefficients.

For a given function f : X → X, a point x ∈ X such that fp(x) = x is
called a periodic point of period p ∈ N. If p is minimal with this property,
then p is called minimal period. A point with a minimal period p = 1 is called
a fixed point.

The fixed point index, which is one of the main tools used in this paper,
is a well-known topological invariant which is the algebraic measure of the
number of fixed points (for the precise definition, the reader may consult Ref.
[25]).

A. Dold in 1985 proved a strong result stating that any sequence of fixed
point indices of iterations is a Dold sequence.

Theorem 5. ([5]) Any sequence of fixed point indices of iterations
{ind(fn)}∞

n=1 is a Dold sequence (provided it is well-defined). As a result,
it can be represented in the form of a periodic expansion (3) with integral
coefficients.

In particular, the sequence {L(fn)}∞
n=1 of Lefschetz numbers is a Dold

sequence. By Remark 4, we get

L(fn) =
∞∑

k=1

bk regk(n), (4)

where bk are integers.

3. Lefschetz numbers of iterations for self-maps of closed
1-connected 4-manifolds

An n × n integral matrix A = (aij)n×n is called unimodular if detA = ±1;
is called symmetric if aij = aji, 1 ≤ i, j ≤ n. The classification of the closed
1-connected 4-dimensional manifolds has been done by Whitehead [34] and
Freedman [8].

Theorem 6. (Theorem 1.5 [8]) For any unimodular and symmetric integral
matrix A = (aij)n×n, there exists a closed 1-connected 4-dimensional mani-
fold MA, together with a basis
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ωA = {ω1, . . . , ωn} ⊂ H2(MA)

of the cohomology H2(MA), so that ωi � ωj = aij · ωM , where ωM ∈
H4(MA) = Z is an orientation class on MA.

Conversely, for any closed 1-connected 4-dimensional manifold M with
a basis

ω = {ω1, . . . , ωn} ⊂ H2(M)

of the cohomology H2(M), the integral matrix A = (aij)n×n defined by ωi �
ωj = aij · ωM is unimodular and symmetric.

In view of Theorem 6, we may call the matrix A the intersection form
of the 1-connected 4-dimensional manifold M with respect to the basis ωA.

For a self-map f : M → M of the manifold M , the induced homo-
morphism f∗ : H2(M) → H2(M) gives rise to an n × n integral matrix
P = (pij)n×n so that

⎛

⎝
f∗(ω1)

f∗(ωn)

⎞

⎠ = P

⎛

⎝
ω1

ωn

⎞

⎠ .

In this way, we get a correspondence g from the homotopy set [M,M ] of
self-maps of M into the set M(n) of all n × n integral matrix:

g : [M,M ] → M(n) = {(pij)n×n : pij ∈ Z}.

The following result was proved by Duan and Wang [7] (Diagram (1.1) in
Theorem A’). Let deg f denote the topological degree of the map f .

Theorem 7. Let M be a closed 1-connected 4-dimensional manifold with a
basis ω = {ω1, . . . , ωn} of the cohomology H2(M). The map g induces a
bijection

[M,M ] ←→ {P ∈ M(n) : PAPT = k · A, k ∈ Z}, (5)

where A is the intersection form of M with respect to the basis ω, P = g[f ],
k = deg(f), and where PT denotes the transpose of the matrix P .

Example. Let M be the connected sum CP 2# . . . #CP 2 of n-copies of
the 2-dimensional complex projective space CP 2. Then H2(M) is the free
abelian group of rank n , while the intersection form A of M is the identity
matrix In of rank n. In this case, Theorem 7 states that for each integer matrix
P of rank n and integer k that satisfy the matrix equation PPT = kIn, there
exists a self-map f of M such that f∗ = P on H2(M), and deg f = k.

For the cases n = 2 and k ∈ {2, 3, 4}, all possible solutions (P, k) to the
equation PPT = kIn are given in the proof of Theorem 17, where the results
are applied to calculate the algebraic periods AP (f) of f introduced in Sect.
4.
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By the definition of Lefschetz number, we get from Theorem 7 the fol-
lowing corollary.

Corollary 8. For a homotopy class [f ] ∈ [M,M ], we have
(1) L(f) = 1 + tr(g([f ])) + deg(f). In particular
(2) L(fn) = 1 + tr(g([f ])n) + (deg(f))n.

Remark 9. Let M be a closed 1-connected 4-dimensional manifold with the
intersection form A. Theorem 7 reduces the problem of homotopy classifi-
cation of self-maps of M to the arithmetic problem of finding the solutions
(P, k) to the quadratic system PAPT = k · A over the integers.

Conversely, each solution (P, k) of the system PAPT = k · A gives rise
to a self-map f : M → M whose Lefschetz sequence is L(fn) = 1 + tr(Pn) +
kn, n ≥ 1, by Corollary 8.

4. Algebraic periods of self-maps of closed 1-connected
4-manifolds with definite intersection forms

For a self-map f of a topological space, we define the set of algebraic periods
of f , AP (f), related to the representation of Lefschetz numbers in the form
of the periodic expansion (cf. [9]):

AP (f) = {k : bk 
= 0 in the expansion (4)}.

Let us emphasize that in this section, we do not assume that f is a
smooth map.

In this part of the paper, we describe the set AP (f) of algebraic peri-
ods for self-maps of 1-connected 4-manifolds whose intersection forms A are
definite. Obviously, we can assume that the forms A are positively definite
with rank m. We begin with two useful lemmas. Let Mm×m(R) denote the
space of m × m real matrices.

Lemma 10. If P ∈ Mm×m(R) is a solution to the equation

PAPT = A, (6)

then P is similar to an orthogonal matrix.

Proof. Since the form A is positively definite, we have the Cholesky decom-
position A = QQT for some Q ∈ Mm×m(R). The equation PAPT = A then
becomes

P · QQT · PT = QQT i.e., Q−1PQQT PT (QT )−1 = I.

We obtain (Q−1PQ) · (Q−1PQ)T = I, implying that the matrix Q−1PQ is
orthogonal. �

Lemma 11. If P ∈ Mm×m(R) is a solution to the equation

PAPT = k · A (7)

for some k ∈ N, then

| tr P | ≤ m ·
√

k. (8)
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Proof. The relation PAPT = kA is equivalent to ( 1√
k
P )A( 1√

k
P )T = A. By

Lemma 10, the matrix ( 1√
k
P ) is similar to an orthogonal matrix P ′. On the

other hand, since the eigenvalues of an orthogonal matrix have the modulus
equal to 1, we get | tr P ′| ≤ m. Finally, we obtain the desired inequality (8)
from the formula: ∣∣∣∣tr

(
1√
k

P

)∣∣∣∣ =
1√
k

| tr P | ≤ m.

�

Since deg(f) = k implies that deg(fn) = kn, we get the following corol-
lary.

Corollary 12. Under the assumptions of Lemma 11 we have:

| tr Pn| ≤ m ·
√

kn. (9)

Now we are ready to prove the main theorem of this section, which
determines the set AP (f) for self-maps of the 1-connected 4-manifolds whose
intersection forms are positively definite.

Theorem 13. Let M be a closed 1-connected 4-dimensional manifold whose
intersection form A = (aij)m×m is positively definite, and let f be a self-map
of M with deg(f) = k > 1.
(i) If k ≥ 6(m + 1)2, then for arbitrary n, n ∈ AP (f).
(ii) If k < 6(m + 1)2, but n ≥ 2 log 2

3k(2(1 + m)), then n ∈ AP (f).

Proof. We fix k and m and first find the estimate of the form

|nbn| ≥ W (n, k,m),

and then examine when the map W (n, k,m) is positive.
By Corollary 8 (the value of L(f l)), we get:

|nbn| =
∣∣∣
∑

l|n
μ(n/l)L(f l)

∣∣∣≥ |L(fn)| −
∣∣∣

∑

l|n,l �=n

μ(n/l)L(f l)
∣∣∣

= |L(fn)| −
∣∣∣

∑

l|n,l �=n

μ(n/l)(1 + Tr(P l) + kl)
∣∣∣

≥ |L(fn)| −
∣∣∣

∑

l|n,l �=n

μ(n/l)(Tr(P l) + kl) +
∑

l|n,l �=n

μ(n/l)
∣∣∣

≥ |L(fn)| −
∑

l|n,l �=n

|μ(n/l)|(|Tr(P l)| + kl) − 1,

(10)

where in the last inequality, we used the well-known fact that
∑

l|n μ(n/l) = 0.
Now we apply Corollary 12 and the fact that μ takes values in the set

{−1, 0, 1}. Continuing the sequence of inequalities from (10), we get

|nbn| ≥|L(fn)| −
∑

l|n,l �=n

(mk
l
2 + kl) − 1

≥|L(fn)| − (2
√

n − 1)(mk
n
4 + k

n
2 ) − 1.

(11)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


   23 Page 8 of 21 H. Duan et al.

The last inequality is a consequence of the fact that the number of different
divisors of n is not greater than 2

√
n (cf. [4]) and 2|k| l

2 + |k|l is increasing as
a function of l.

On the other hand, again by the inequality (9) of Corollary 12, we get:

|L(fn)| = |1 + Tr(Pn) + kn| ≥ |kn + 1| − |Tr(Pn)| ≥ kn − mk
n
2 + 1. (12)

Finally, using (11) and (12), we get:

|nbn| ≥ W (n, k,m) = kn − mk
n
2 − (2

√
n − 1)(mk

n
4 + k

n
2 ). (13)

In the next part of the proof, we consider item (i) of the thesis. Recall
that k > 1 and n ∈ N. Obviously if kn − (m + (2

√
n − 1)(m + 1))k

n
2 > 0,

then |nbn| ≥ W (n, k,m) > 0. Solving the inequality, we get:

k
n
2 > 2(1 + m)

√
n − 1. (14)

Now we are ready to specify the condition on k which imply that all bi

are non-zero. Observe that if k
n
2 > 2(1+m)

√
n, then |nbn| = W (n, k,m) > 0.

On the other hand, the inequality k
n
2 ≥ 2(1 + m)

√
n is equivalent to:

k ≥ n
√

(2(1 + m))2 n
√

n. (15)

Applying the inequalities 3
2 ≥ n

√
n and (2(1 + m))2 ≥ n

√
(2(1 + m))2

we obtain the estimate depending only on m: for all k ≥ k0 such that k0 =
6(m + 1)2 we have |nbn| = W (n, k,m) > 0, so bn 
= 0 for all n ∈ N. This
completes the proof of item (i).

Finally, the last part of the proof will be devoted to the item (ii) of the
thesis. Let m ∈ Z+ be fixed, for every integer k > 1 we have:

k ≥ 3
2

n
√

(2(1 + m))2 ⇒ k ≥ n
√

(2(1 + m))2 n
√

n (16)

and

k ≥ 3
2

n
√

(2(1 + m))2 ⇔ n > 2 log 2
3k(2(1 + m)) (17)

so there is n0(k,m) = 2 log 2
3k(2(1 + m)) such that for every n >

n0(k,m), the inequality (15) holds, and thus the expression W (n, k,m) takes
only positive values, so also bn 
= 0, which proves (ii). �

Corollary 14. Let f be a self-map of a closed 1-connected manifold M with
the intersection form represented by a positively definite 2 × 2 matrix A and
deg(f) = k > 1. Then

• AP (f) = N if k ≥ 5;
• AP (f) ⊇ N \ {1, 2, 3, 4} if k = 2;
• AP (f) ⊇ N \ {1, 2} if k = 3, 4.

In particular, this statement holds for M = CP 2#CP 2 for which A is
2 × 2 identity matrix.
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Proof. By Theorem 13, we have n ∈ AP (f) if either k ≥ 54 or k < 54 and
n ≥ log 2

3k(6). It remains to consider the cases 2 ≤ k < 54 and 1 ≤ n ≤
log 2

3k(6). To this end, we first make use of the inequality (11) obtained in the
proof of Theorem 13 and then apply inequality (12) and (9) to obtain the
desire estimate:

|nbn| ≥ |L(fn)| −
∣∣∣∣∣

∑

l|n,l �=n

μ(n/l)(1 + Tr(P l) + kl)

∣∣∣∣∣

≥ kn − mk
n
2 −

∣∣∣∣∣
∑

l|n,l �=n

(1 + mk
l
2 + kl)

∣∣∣∣∣. (18)

Facilitated with a computer program for m = 2, a case by case computation
shows that (18) holds (and thus n ∈ AP (f)), unless k = 2, n ∈ {1, 2, 3, 4}
and k = 3, 4, n ∈ {1, 2}. �

5. Smooth self-maps of closed 1-connected 4-manifolds with
definite intersection forms

Let us remind that the classical Donaldson’s theorem for a closed smooth sim-
ply connected 4-manifold states that its intersection form is diagonalisable.
If the intersection form is positive (negative) definite, it can be diagonalized
to the identity matrix (resp. negative identity matrix) over the integers [6].

In the remaining part of this paper, a considered manifold M whose
intersection form A is definite, so due to the result of Donaldson, the inter-
section matrix A is ±Im, where Im = diag{1, . . . , 1} is the identity matrix of
rank m.

Thus, we get:

M = CP 2#CP 2# . . . #CP 2 if A = Im. (19)

M = CP
2
#CP

2
# . . . #CP

2
if A = −Im. (20)

where CP
2

denotes the complex projective plane CP 2 with opposite orienta-
tion, and M#N denotes the connected sum of two smooth manifolds M and
N with the same dimension.

Remark 15. Theorem 7 provides a severe restriction on the possible degrees
(denoted by k in (5)) for maps between 1-connected 4-manifolds, cf. [7]. In
our case, the obvious restriction following Eq. (5) is that k ≥ 0. In particular,
Theorem 13 is applicable to all self-maps of the manifolds M with degree
different from 0 and 1.

We remark that Baralić gave a more detailed discussion of possible
degrees for self-maps of connected sum of complex projective planes ([2] Sect.
4), as well as maps between certain 4-manifolds.
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Remark 16. Observe that the equation PAPT = k · A in (5) is the same for
both P = ±id. For this reason, we can state our theorems for the connected
sum of complex projective planes (19), keeping in mind that the same is true
also for the connected sum (20).

Carrying on the discussion from Corollary 14, we determine the set
AP (f) of algebraic periods of a self-map f of the manifold M = CP 2#CP 2.

Theorem 17. If f : CP 2#CP 2 → CP 2#CP 2 is a smooth map with deg(f) =
k > 1, then AP (f) = N.

Proof. If deg(f) = k /∈ {2, 3, 4} we have bn 
= 0 by Corollary 14, implying
that AP (f) = N.

Assume next that deg(f) = k ∈ {2, 3, 4}. As in Theorem 7, we set
P = g(f) to get by (5) the equations

PAPT = k · A ⇔
[

p11 p12
p21 p22

] [
1 0
0 1

] [
p11 p12
p21 p22

]T

= k

[
1 0
0 1

]
, (21)

implying in particular that k = p211 + p212 = p221 + p222. With deg(f) = k ∈
{2, 3, 4}, the only possible solutions P to the system (21) are:

• k = 2

±
[

1 1
1 −1

]
, ±

[−1 1
1 1

]
, ±

[
1 −1
1 1

]
, ±

[
1 1

−1 1

]
,

• k = 4
[

0 ±2
±2 0

]
,

[±2 0
0 ±2

]
,

By formula (3) of Proposition 3, the coefficient bn of the periodic expansion
of the Lefschetz numbers

an = L(fn) = 1 + tr(Pn) + (deg(f))n

satisfies that

bn =
1
n

∑

l|n
μ
(n

l

)
L(f l) 
= 0,

excluding perhaps the cases k = 2, n ∈ {1, 2, 3, 4} or k = 4, n ∈ {1, 2},
see Corollary 14. We get AP (f) = N from the fact that also in these cases
(computed straightforwardly) bn 
= 0. This completes the proof of Theorem
17. �
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5.1. Periodic points of transversal maps

In this subsection, we make use of the description of algebraic periods given
in Theorem 13 to state the existence of periodic points with a given minimal
periods for transversal maps. We consider here a map

f : CP 2# . . . #CP 2 → CP 2# . . . #CP 2,

which is transversal. That is, it is a C∞ map such that 1 
∈ σ(Df i(x)) for any
i ∈ N and x being a periodic point with minimal period i, where σ(Df i(x))
denotes the spectrum of the derivative of f i at x. In what follows, we use
Per(f) to denote the set of minimal periods of a map f and by P (f) the set
of all periodic points.

The next theorem is a generalization in dimension 4 of the result of
Guirao and Llibre ([21] Theorem 2) about the set of minimal periods for
transversal self-maps of CPn (for the idea of the proof see also [28]).

Theorem 18. Let f be a transversal self-maps of connected sum of m complex
projective spaces with topological degree deg(f) = k.

Assume that one of the below conditions hold:
(i) k ≥ 6(m + 1)2,
(ii) k > 1 is arbitrary and m = 2,
(iii) k > 1 and m > 1 are arbitrary and i ≥ 2 log 2

3k(2(1 + m)).

Then i ∈ Per(f) if i is odd; i ∈ Per(f) or i/2 ∈ Per(f) if i is even.

Proof. For a point x0 with minimal period i and orbit Ox0 = {x0, f(x0),
. . . , f i−1(x0)}, the index ind(fn, Ox0) has only four possibilities (cf. [18])
written in terms of Definition 2 as follows:

ind(fn, Ox0) =

⎧
⎪⎪⎨

⎪⎪⎩

regi(n),
− regi(n),
regi(n) − reg2i(n),
− regi(n) + reg2i(n).

(22)

On the other hand, by the Lefschetz–Hopf formula, we have:

L(fn) =
∑

x∈P (f)

ind(fn, x) =
∑

i

∑

O∈Orbi(f)

ind(fn, O), (23)

where Orbi(f) denotes the set of i-orbits of f (i.e., orbits with points with
minimal period i) and where each summand ind(fn, O) has the form (22).
Expressing L(fn) in terms of the periodic expansion (4) we get by (23) the
equality

∞∑

i=1

bi regi(n) =
∑

i

∑

O∈Orbi(f)

ind(fn, O). (24)

If k,m and i satisfy one of the conditions (i)–(iii) of Theorem 18, we have
by Theorem 13 and Theorem 17 that bi 
= 0 in the left-hand side of (24).
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Thus, taking into account the formula (22) of the terms ind(fn, O) on the
right-hand side of (24), we get the desired result. �

6. The invariant D4
r [f ]

In this section, we introduce, for a self-map f of a closed m-dimensional
simply connected manifold, the topological invariant Dm

r [f ] of the minimal
number of r-periodic points in the smooth homotopy class of f . The so-called
Differential Dold sequences (called DD sequences in short) introduced in [13]
will play a key role in the definition.

Definition 19. (Definition 2.9 [13]) A sequence {cn}∞
n=1 of integers is called

a DDm(1) sequence if there is a C1 map φ : U → R
m (U ⊂ R

m) with an
isolated fixed point p such that cn = ind(φn, p). If r ≥ 1 is a fixed integer and
if the equality cn = ind(φn, p) holds for every n|r, then the finite subsequence
{cn}n|r of {cn}∞

n=1 will be called a DDm(1|r) sequence.

That is, by a DDm(1) sequence, we mean a sequence of integers that
can be locally realized as the sequence of indices of an isolated fixed point of
some C1 map φ : U → R

m, U ⊂ R
m.

The strong restrictions for such sequences result in remarkable difference
between smooth and continuous categories in periodic point theory.

Let us remark here that there are also the bounds for the indices of the
iterations for other classes of maps, such as homeomorphisms and holomor-
phic maps cf. [1,23,35].

For a fixed integer r ≥ 1, the minimal decomposition of the sequence
of the Lefschetz numbers of iterations into DDm(1|r) sequences provides the
value of Dm

r [f ].

Definition 20. (Definition 3.4 [13]) Let {L(fn)}n|r be a finite sequence of
Lefschetz numbers. We decompose {L(fn)}n|r into the sum of DDm(1|r)
sequences {ci}n|r for i = 1, . . . , s.

Thus, for each n|r, the following equality holds:

L(fn) = c1(n) + . . . + cs(n). (25)

Each such decomposition determines the number s. We define the number
Dm

r [f ] as the smallest s which can be obtained in this way.

The following result tells that the invariant Dm
r [f ] is equal to the mini-

mal number of r-periodic points in the smooth homotopy class of f .

Theorem 21. ([10]) Let M be a closed smooth and simply connected manifold
of dimension m ≥ 4 and r ∈ N a fixed number. Then

Dm
r [f ] = min{#Fix(gr) : g is smoothly homotopic to f}.

Remark 22. According to Theorem 21, to minimize the number of r-periodic
points within a smooth homotopy class, we need only to make use of the
DDm(1) sequences related to the fixed points. This approach is applicable
to the manifolds with dimensions at least 4, because the minimal number of
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r-periodic points can then be realized by a map with all r-periodic points
being fixed points (see [10] for details). We may interpret geometrically the
result described in Theorem 21 in the following way. In the smooth homo-
topy class of a self-map f , one can create fixed points such that the sum
of their indices of iterations is equal to the Lefschetz numbers of iterations
and then remove all the other r-periodic points [13] (which is guaranteed by
the powerful Canceling and Creating Procedures [24]). On the other hand,
by definition, the created fixed points must have indices that are DDm(1)
sequences. As a consequence, to determine the minimal number of r-periodic
points, we have to find the minimal number of DDm(1|r) sequences {ci}n|r
in the decomposition (25).

7. Combinatorial methods of determination of D4
r [f ].

For an integer r > 0, let Div(r) be the set of all divisors of r. We will consider
the set APr(f) := AP (f) ∩ Div(r).

To compute the invariant D4
r [f ] by a use of Definition 20, we must find

the minimal decomposition of {L(fn)}n|r expressed by the periodic expan-
sion:

∑

k|r
bkregk(n) =

∑

k∈APr(f)

bkregk(n) (26)

into the DD4(1|r) sequences. To this end, we need the following classification
result on the DD4(1) sequences obtained in [15,16]. By lcm(d, l), we will
denote the least common multiple of d and l. By (d mod 2), we understand
0 if d is even or 1 if d is odd.

Theorem 23. (Theorem 3.1 [15]) Any DD4(1) sequence has one of the fol-
lowing forms:

(i) b1reg1(n) + bdregd(n);
(ii) εreg1(n) + b2reg2(n) + bdregd(n) + γdb2dreg2d(n);
(iii) reg1(n) + bdregd(n) + blregl(n) + blcm(d,l)reglcm(d,l)(n),

where ε ∈ {0,±1}; bi ∈ Z; γd = d mod 2, and where d, l ≥ 3 in (iii).

We first find D4
r [f ] modulo reg1, i.e., we consider the decomposition

(25) only for the divisors k|r different from 1. In other words, we temporarily
ignore the coefficients at reg1.

Lemma 24. D4
r [f ] (mod reg1) is equal h, defined in the following way. h is

the minimal number determining the pairs of elements of APr(f) \ {1}

{d1, l1}, {d2, l2}, . . . , {dh, lh} (27)
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   23 Page 14 of 21 H. Duan et al.

such that
h⋃

i=1

{di, li, ki} = APr(f) \ {1}, (28)

where ki = lcm(di, li).

Proof. Let us observe that for i > 2 the coefficients, bi in the list of the
sequences in Theorem 23 may be arbitrary. Thus, to decompose the sum (26)
into DD(1|r) sequences, it is enough to decompose the set of natural numbers
APr(f) into the union of sets of indices of sequences “reg” from the list of
Theorem 23. The minimal such realization takes the sequences of the form
(ii) or (iii) from that list. �
Remark 25. Let us observe that

D4
r [f ](mod reg1) ≤ D4

r [f ] ≤ D4
r [f ](mod reg1) + 1. (29)

Indeed, if needed, we may realize the sum b1 reg1 in (26) by one additional
sequence of the type (i) in Theorem 23.

Summing up this section: we have a combinatorial method of finding
our invariant Dr[f ] (Lemma 24) but to use, it is necessary to know the set
APr(f). The next section is devoted to the determination of this set for some
special values of r.

8. Determining D4
r [f ] for self-maps of closed smooth

1-connected 4-manifolds

8.1. The value of D4
r [f ] for r being a product of different primes

In general finding, D4
r [f ] is a challenging task; however, in some cases, the

value of the invariant may be determined precisely. For H, a finite subset
of natural numbers, by LCM(H) we mean the least common multiple of all
elements in H with the convention that LCM(∅) = 1.

Theorem 26. Let f be a smooth self-map of connected sum of m copies of
complex projective planes with degree k and r = p1 . . . ps be a product of
different odd prime numbers.

Assume that one of the following conditions holds:
(i) k ≥ 6(m + 1)2,
(ii) k > 1 is arbitrary and m = 2.

Then the value of D4
r [f ] mod reg1 depends only on s and is equal:

D4
r [f ] mod reg1 =

2s + (−1)s+1

3
= h(s). (30)

If
(iii) k > 1 and m > 1 are arbitrary and i ≥ 2 log 2

3k(2(1 + m))=: r0, then

2s′ − 1
3

+
⌈#G(r0)

3

⌉
≤ D4

r [f ] mod reg1 ≤ 2s + (−1)s+1

3
, (31)

where:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Algebraic periods and minimal number Page 15 of 21    23 

s′ denotes the number of elements in {p1, . . . , ps} which are ≥ r0,
G(r0) = {β|r : β ≥ r0 and ∃α|r,α�=1 α < r0 and α|β},
�a� stands for the least integer greater than or equal to a number a.

Proof. We recall that in dimension 4, each fixed point for a smooth map can
realize at most 3 coefficients bl 
= 0, i.e., by Theorem 23, each fixed point
(identified with a DD4(1) sequence) may be represented as a combination of
at most three basic sequences regl (not counting reg1). Observe that by the as-
sumptions (i) and (ii) and Theorem 13, we get that AP (f) = N, which means
that bl 
= 0 for all l ∈ LCM({p1, . . . , ps}). Since #LCM({p1, . . . , ps}) = 2s,
to realize all elements, different from 1, in LCM({p1, . . . , ps}), we need at

least
2s − 1

3
DD4(1) sequences. In Ref. [16] (Theorem 4.2), it is shown that

all elements in LCM({p1, . . . , ps}) may be realized by
2s + (−1)s+1

3
DD4(1)

sequences. This ends the proof of the formula (30).
To prove (31), observe that we have bl 
= 0 for l ≥ r0 where r0 is a fixed

number. We assume that there are exactly s′ numbers in the set {p1, . . . , ps}
which are ≥ r0.

Now, by the same arguments as in the part (i), to realize LCM({p1, . . . ,

ps}), we need at least
2s′ − 1

3
DD4(1) sequences. On the other hand, again

by Ref. [16] (Theorem 4.2),
2s + (−1)s+1

3
sequences are enough.

As a consequence, we get the estimate:

2s′ − 1
3

≤ D4
r [f ] mod reg1 ≤ 2s + (−1)s+1

3
. (32)

However, we may strengthen the estimate (32) by taking into account
the elements in the set G(r0). As each DD4(1) sequence consists of at most
3 regs, to realize basic sequences regl with l ∈ G(r0) needs at least

⌈#G(r0)
3

⌉

DD4(1) sequences. This completes the proof. �

8.2. D4
r [f ] mod reg1 for self-maps of CP 2#CP 2 and small values of r

We established in Theorem 17 that the set of algebraic periods of self-maps
of CP 2#CP 2 coincides with N. As a consequence, APr(f) = Div(r), where
Div(r) denotes the set of all divisors of r. Using this fact, in this section, we
apply directly Lemma 24 to calculate D4

r [f ] mod reg1 for small values of r,
by the application of the computer program. The pseudocode of the program
is presented below as Algorithm 1.

The construction of the algorithm can be described as follows. The input
data is the set APr(f) = Div(r) of algebraic periods and the output data is
the value of the invariant D4

r [f ] mod reg1. In the line 1, we assign to the
variable h the initial value equal to 0 and if APr(f)\{1} is nonempty (line
2), we start the proper part of the algorithm by assigning the value h = 1
(line 3). In the line 4, we create a family B containing pairs of elements of
APr(f)\{1} (cf. (27) of Lemma 24). In the line 5, we define the variable B
equal to family sets of the form {d, l, k}, where k = lcm(d, l) (cf. (28) of
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Algorithm 1: An algorithm for computation D4
r[f ] mod reg1

Data: APr(f) = Div(r)
Result: h = D4

r [f ] mod reg1
1 h ← 0;
2 if APr(f) \ {1} 
= ∅ then
3 h ← 1;
4 B ← {B : B ⊂ APr(f) \ {1} ∧ #B = 2};
5 B ← {{d, l, lcm(d, l)} : d, l ∈ B,B ∈ B};
6 Bf , SUMf ← {F ∈ B : F is not a subset of any G ∈ Bf};
7 while #SUMf 
= 1 do
8 SUM ← {U ∪ W : U ∈ SUMf ∧ W ∈ Bf};
9 SUMf ← {F ∈ SUM : F is not a subset of any G ∈ SUM};

10 h ← h + 1;

11 return h;

Lemma 24). In the line 6, we define two equal variables Bf , SUMf and assign
them a value of filtering of B, leaving only the relevant sets, i.e., those that
are not contained in any other set of B. The filtering to obtain Bf allows
us to limit the size of B variable, and thus consider fewer cases in the rest
of the algorithm. Of course, such filtering does not affect the value of the
invariant D4

r [f ] mod reg1, indeed if
⋃h

i=1 Bi = APr(f) \ {1} where Bi ∈ B
and for some number j the set Bj ⊂ G for some G ∈ B, then we can simply
replace Bj by G. Now note that if #SUMf is equal to 1, then it must contain
only the set APr(f) \ {1}, since the sum of all sets from B, and hence also
B and Bf (SUMf ), must be equal to APr(f) \ {1} (which follows directly
from their construction). Finally while #SUMf 
= 1, we define a variable
SUM containing a family of sets, where to each set of the family SUMf , we
add a set of the family Bf . After that SUM is filtered and h is increased by
1. When the algorithm is completed, it returns the value of the variable h.
Now we present the results of the computations for small values of r. Note
that complexity of computations grows rapidly as the number of divisors of
r increases. The cardinality of the set SUM grows very fast, i.e., in each step
#SUM = #SUMf ·#Bf which involves high computation time of SUMf of
successive iterations and a memory filling problem. Let us notice that usually
from the point of view of the applications, the values of considered periods
are not very high; thus, our computations may turn out to be useful.

We introduce the following notation. Let r = pa1
1 . . . pak

k be a factoriza-
tion of the number r and M = {ai : i = 1, . . . , k.}. Note that the same set
M is shared by all r with the same number of primes and the set of powers
appearing in the factorization of r.

Lemma 27. Let r1 =
∏k

i=1 pai
i and r2 =

∏k
i=1 qai

i , APr1(f) = Div(r1),
APr2(f) = Div(r2), then D4

r1
[f ] mod reg1 = D4

r2
[f ] mod reg1.
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Table 1. The values of D4
r [f ] mod reg1 for M = {ai : r =

∏k
i=1 pai

i }

M D4
r [f ] mod reg1

{1} 1
{1, 1} 1
{1, 1, 1} 2
{1, 1, 1, 1} 5
{2} 1
{2, 1} 2
{2, 2} 3
{2, 1, 1} 4
{2, 2, 1} 6
{3} 1
{3, 1} 2
{3, 2} 4
{3, 3} 5
{3, 1, 1} 5
{4} 2
{4, 1} 3
{5} 2
{5, 1} 4
{6} 3
{6, 1} 5
{7} 3

Proof. We define a map η : Div(r1) → Div(r2) as follows: if x =
∏l

i=1 pβi

i is
a factorization of the natural number x, where l ≤ k, βi ≤ αi then

η

(
l∏

i=1

pβi

i

)
=

l∏

i=1

qβi

i .

Note that η is a bijection between Div(r1) and Div(r2) such that for a set of
natural numbers B of the form B = {l, d, lcm(l, d)}, the image of B has the
form B′ = η(B) = {η(l), η(d), η(lcm(l, d))} = {η(l), η(d), lcm(η(l), η(d))}.

Let h = D4
r1

[f ] mod reg1 and B = {B1, . . . , Bh} be a family of sets
of the form Bi = {di, li, lcm(di, li)} satisfying the conditions (27) and (28)
of Lemma 24. The family B′ = {B′

1, . . . , B
′
h} where B′

i = η(Bi) also sat-
isfy the conditions (27) and (28) of Lemma 24 for APr2(f) = Div(r2) so
h = D4

r2
[f ] mod reg1. �

Table 1 contains the values of D4
r [f ] mod reg1 (i.e., under the assump-

tion that the coefficient at reg1 is equal to zero) for r such that M = {ai :
r =

∏k
i=1 pai

i } (considered as a multiset). In Lemma 27, we showed that the
invariant D4

r [f ] mod reg1 depends only on the form of M . To illustrate the
cases of M shown in the table, let us note that they cover all values of the
invariant for 1 < r ≤ 2000 when r is odd and 1 < r ≤ 250 when r is even.
However, considered cases are much more general since each M corresponds
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to infinitely many natural numbers, i.e., to r1 = 27 and r2 = 12167, we can
assign the set M = {3} .

Example 28. Let f : CP 2#CP 2 → CP 2#CP 2 be a smooth map of deg(f) =
k > 1 and r = p21 ·p22 be a natural number such that p1, p2 are prime numbers
(e.g., r = 36 or r = 1225). We ask about the minimal number of r-periodic
points in the smooth homotopy class of f . In our case M = {2, 2} and
by Table 1, we obtain that the minimum we search is (mod reg1) equal to
D4

r [f ] mod reg1 = 3. Note that in the case the coefficient b1 of periodic expan-
sion of Lefschetz numbers of iterations of f is known, we are able to determine
the exact value of the invariant D4

r [f ] which is equal to D4
r [f ] mod reg1 or

D4
r [f ] mod reg1 +1 (so either 3 or 4 in our case) cf. Theorem 4.8 in [16].
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