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Streszczenie

Wdzisiejszym szybko rozwijający się świecie, ciągła ewolucja technologii i stale rosnąca częstotli-

wość pracy urządzeń elektronicznych wymagają zaawansowanych narzędzi projektowych, które

są zarówno wyspecjalizowanie jak złożone. Analiza elektromagnetyczna wymaga rozwiązywania

zespolonych problemów własnych, reprezentujących różne parametry fizyczne, takie jak często-

tliwość rezonansową, współczynnik propagacji lub właściwości materiałowe. Rozwiązywanie rów-

nań z wartościami własnymi sprowadza się do znalezienia pierwiastków wyznacznika macierzy,

co jest podstawowym elementem algebry liniowej. Niemniej jednak, szukanie pierwiastków funkcji

zespolonych i rozwiązywanie nieliniowych problemów własnych jest nadal ogromny wyzwaniem.

Niniejsza rozprawa doktorska ma na celu opracowanie narzędzi numerycznych do badania

właściwości falowodów i rezonatorów w technologii mikrofalowej i terahercowej. W pierwszym roz-

dziale przedstawiono przykładowe problemy oraz opisano funkcje analityczne i metody numerycz-

ne do analizy falowodów, struktur rezonansowych i innych systemów. W kolejnym rozdziale zba-

dano skuteczność i ograniczenia obecnie dostępnych globalnych algorytmów szukania pierwiast-

ków funkcji zespolonych, w szczególności algorytmu GRPF (Global Complex Roots and Poles

Finding). Przedstawiono dalsze ulepszenia algorytmu GRPF, które wynikają z przeprowadzonych

badań. Zaproponowano samoadaptacyjny generator siatki początkowej dla algorytmu GRPF, któ-

ry umożliwia szybsze i dokładniejsze znajdowanie zer i biegunów funkcji zespolonych. Ponadto

przedstawiono optymalizację metody śledzenia, która opiera się na zastosowaniu samoadapta-

cyjnej dyskretyzacji zasady argumentu Cauchy’ego. Omówiono również ograniczenia śledzenia

i proponowane rozwiązanie problemu rozwidlenia charakterystyk. Na koniec przedstawiono no-

we podejście do wyznaczania krzywych reprezentujących zera i bieguny w funkcji dodatkowego

parametru. Proponowany algorytm opiera się na uogólnieniu zasady argumentu Cauchy’ego dla

przestrzeni zespolonej i rzeczywistej.

Ostatni rozdział jest podsumowaniem rozprawy, przedstawia wnioski i sugeruje możliwe dal-

sze badania. Zaproponowane w każdym rozdziale metody zmniejszają liczbę wywołań funkcji,

skracają czas analizy i zwiększają dokładność otrzymywanych wyników. Opracowane narzędzia

do rozwiązywania nieliniowych problemów wartości własnych mają praktyczne zastosowania wy-

kraczające poza problemy elektromagnetyczne i mogą być stosowane w innych dziedzinach inży-

nierii. Na przykład, podobne równania występują w akustyce, teorii sterowania i optyce. Wszystkie

opracowane algorytmy zostały zaimplementowane w środowisku Matlab i są publicznie dostępne

na platformie GitHub na licencji oprogramowania typu Open Source.
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Abstract

In today’s fast-paced world, the continuous evolution of technology and the ever-increasing oper-

ating frequency of electronic devices demand advanced design tools that are both sophisticated

and complex. The electromagnetics analysis requires solving complex eigenvalue problems, rep-

resenting various parameters such as resonant frequency, propagation coefficient, or material

parameters. Solving equations with eigenvalue boils down to finding the roots of the determinant

of the matrix, which is a fundamental element of linear algebra. Nevertheless, finding the roots of

complex functions and solving nonlinear eigenproblems is still a significant challenge.

This dissertation aims to develop numerical tools for investigating waveguides and resonators’

properties for microwave and terahertz technology. The first chapter presents example problems

and describes analytic functions and numerical methods for analyzing waveguides, resonant struc-

tures, and other systems. The next chapter investigates the effectiveness and limitations of cur-

rently available global algorithms for finding roots of complex functions, notably the Global Com-

plex Roots and Poles Finding (GRPF) algorithm. Further improvements to the GRPF algorithm,

which result from the conducted research, are presented. The proposed self-adaptive initial mesh

generator for the GRPF algorithm enables the faster and more accurate finding of zero and poles

of complex functions. Furthermore, the optimization of the tracing method is presented, which is

achieved by applying the self-adaptive discretization of Cauchy’s Argument Principle. The limita-

tions of tracing and the proposed solution to the multipath problem are also discussed. Finally, a

new approach to determining the curves representing zeros and poles as a function of an extra

parameter is presented. This new algorithm is based on generalizing Cauchy’s Argument Principle

in the analyzed complex and real space. It takes advantage of the features of global algorithms

while eliminating problems that occur in tracing.

The last chapter summarizes the dissertation, presents conclusions, and suggests further re-

search. The proposed techniques in each chapter reduce the number of function calls, shorten

the analysis time, and enhance the accuracy of the results. The developed tools for solving non-

linear eigenvalue problems have practical applications beyond electromagnetic problems and can

be applied in other engineering fields. For instance, similar equations occur in acoustics, control

theory, and optics. All the developed algorithms are implemented in a Matlab environment and

are publicly available on the GitHub platform under an Open Source Software License.
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List of abbreviations and symbols

Fundamental physical quantities and mathematical expressions

A,B,C, ... − matrices, labeled with bold capital letter

F (·) − function

arg(·), ϕ(·) − argument, phase of the complex function

Re(·), Im(·) − real, imaginary part of the complex number or function

C, R, Z, N − set of complex, real, integer, natural numbers

j − imaginary unit

e − Euler’s number

det(·) − determinant of a matrix

λ − eigenvalue and also wavelength

Ω − range of the domain

Q − quadrant

f − frequency [Hz]

γ − propagation coefficient

ε,εe − permittivity, relative permittivity

ξ − the curve in space C× R

δ − the accuracy of results, algorithms

The abbreviations used in the thesis

CAP − Cauchy’s Argument Principle

DCAP − Discrete Cauchy’s Argument Principle

GRPF − Global Complex Root and Poles Finding

SACRTA − Self-Adaptive Complex Root Tracing Algorithm

AAA − Adaptive Antoulas–Anderson

FEM − Finite Element Method

FDM − Finite Difference Method

MoM − Method of Moments

BEM − Boundary Element Method

FPOR − Fabry-Pérot Open Resonator

ARRAW − Anti-Resonant Reflecting Acoustic Waveguides

CPU − Central Processing Unit
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Chapter 1

Introduction

The ongoing evolution of technology and increasingly higher frequency bands in wireless com-

munication require even more complex and efficient tools for designing electronic devices. In the

low-frequency range, various system modeling methods are used [1]. They are mainly based on

circuit models and lumped elements described by Kirchoff’s or Ohm’s laws [2], [3]. In many cases,

especially in high-frequency systems, the approximation by classical circuit theory becomes insuf-

ficient [4]. In order to understand the behavior of modern microwave systems, it is necessary to

consider electromagnetic phenomena at the macroscopic level as well as quantum phenomena

occurring inside the materials used. Therefore, the design of microwave devices and even optical

systems enforces electromagnetic analysis involving the direct solution of a system of Maxwell’s

equations [5]–[10]. It boils down to solvingmore or less complex differential-integral equations [11],

[12] depending on the assumptions constructed. In order to simplify the analysis, some physical

quantities are described using phasor algebra and complex numbers [13], [14].

Electromagnetic analysis is an essential step in the design of passive high-frequency devices

such as waveguides [15], antennas [16], resonators [17], couplers [18], filters [19], and the like.

Electromagnetic simulations create mathematical models describing the physical phenomena in

such systems. There are many methods for designing and optimizing devices operating in the

microwave or optical spectra. Depending on the problem statement, electromagnetic analysis

may require analytical [8], [20], quasi-analytical [21]–[23], discrete [24]–[26], or hybrid [27], [28]

methods.

Analytical determination of electromagnetic field distribution is possible only in uncomplicated

or exceptional cases (e.g., assuming appropriate simplifications or boundary conditions) [29].

Many times, due to the high complexity of existing microwave systems, it is necessary to use

computer-aided design (CAD) techniques [30], especially if the analysis involves nonlinear prob-

lems [31]. Typical methods used to solve electromagnetic problems include the finite element

method (FEM) [32]–[35], finite difference method (FDM) [25], [36]–[38], or method of moments

(MoM) [26], [39]. Analyses can be done in the time or frequency domain [9]. The results may

differ depending on the selection of a particular computation method. Determining which method

to use could be challenging, and simulations may always be subject to some numerical error. The
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implementation of numerical methods, in general, is a complex process. Engineers designing spe-

cific devices can use commercial electromagnetic simulators, e.g., ADS [40], HFSS [41], QWED

[42], and InventSim [43], which allow full-wave analysis of systems operating at high frequencies.

They often allow one to choose an analysis method or use several to solve a given problem. The

main advantage of the simulators is their flexibility, while the disadvantage is the high numerical

cost, which results in low efficiency in the design and optimization of electromagnetic structures.

In conclusion, in-depth knowledge of electrodynamics and related fields of science, especially

the appropriate mathematical instruments for solving differential problems in complex space, is

fundamental to the development of modern high-frequency electronics.

1.1 State-of-the-art review

Modeling electromagnetic structures using analytical as well as numerical methods very often

leads to the formulation of more or less complicated eigenvalue problems:

M(λ)u = 0 (1.1)

where:

λ ∈ C - eigenvalue,

u ∈ C - right eigenvector,

M ∈ Cm×m - operator matrix.

In electromagnetic issues (as shown in later chapters), the eigenvalue can represent, for example,

the resonant frequency, propagation coefficient, or material parameters. The eigenvector is often

related to the field distribution in the structure. The elements of the M matrix may linearly or

nonlinearly depend on the eigenvalue. For linear eigenproblems, the matrix has the form M(λ) =

A−λB, whereA andB are matrices of constant entries. These problems often occur in the modal

analysis [44] using discrete techniques such as FDM or FEM. In general, the solution of equation

(1.1) boils down to finding the roots of the determinant of the matrix M. For matrices of large

dimensions (e.g., obtained in FEM), the calculation of the determinant is numerically inefficient

or even unworkable. Classical methods to calculate the determinant require significant memory

and processor resources. In that case, iterative methods for determining vectors and eigenvalues

are used [45]. Unfortunately, these methods fail when the problem becomes nonlinear. There

are relatively few techniques in the literature to solve large nonlinear eigenproblems, for example,

Beyn’s method [46]. Hence, it is necessary to use alternative approaches, including effective and

efficient algorithms for finding the roots of complex functions.

For simple quasi-analytical techniques such as a mode-matching method [47], [48], nonlinear

problems result from the formulated basis functions (specified field distributions). The matrixM is

constructed by determining the appropriate boundary conditions in the analyzed system. Typically,

the size of the problems (matrix dimension) is relatively small, and it is possible to obtain solutions
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using appropriate algorithms for finding zeros of the determinant [49]–[57]. In some cases, one

variable analysis (purely real or imaginary) is adequate. For more sophisticated approaches, such

as spectral methods [58], [59], the function M(λ) is obtained using Green’s function [38], [60]–

[62]. Nonlinearity in the case of discrete methods [35], [63] is often due to various material models

whose parameters may vary, e.g., in a function of frequency. However, as mentioned earlier,

solving such problems is very complicated. In general, numerical methods lead to problems of

huge size, especially when the geometry structure is inhomogeneous and complicated. In the

case of hybrid methods [64], nonlinear problems are created by combining discrete and analytical

domains, e.g., with radiation boundary conditions. In contrast to discrete methods, an appropriate

problem formulation in hybrid approaches can lead to a relatively small nonlinear problem [17],

[22].

It is worth noting that currently available commercial full-wave software does not support these

problems. For instance, in simulators based on FEM (e.g., HFSS, CST [65], InventSim), the

modal analysis is possible only when material parameters are independent of frequency. Thus,

advanced techniques for solving nonlinear eigenproblems have become essential for electromag-

netic analysis. Similarly formulated eigenproblems are also common in other fields of science and

engineering, such as optics [66], [67], control theory [68], [69], spectroscopy [70], acoustics [71],

[72], materials engineering [73], quantum mechanics [74]–[77], and even astrophysics [78].

1.1.1 Methods for solving eigenvalue problems

For linear eigenproblems, the algorithms based on matrix transformations and iterative techniques

[79] can be distinguished. One of the oldest iterative techniques for finding the eigenvalues of a

matrix is the power method [80]. In its assumptions, it is to find the largest absolute eigenvalue

and the corresponding eigenvector. The method convergence strongly depends on the spectral

properties of the matrix. This procedure is sufficient only for a narrow class of problems and is part

of more complicated algorithms. Other methods for solving linear eigenproblems are algorithms in

Krylov subspace, the Arnoldi algorithm [81], the Jacobi algorithm [82] (intended only for symmetric

matrices), or the Lanczos method [83]. Among the algorithms based on matrix transformations,

the most popular is the QR factorization method [84].

Theoretical analysis and numerical methods for polynomial eigenvalue problems of the form

M(λ) = A0 +A1λ+A2λ
2 + ...+Anλ

n (An are matrices of constant entries, n ∈ N) usually seek

linearization, i.e., embedding the nonlinear eigenvalue problem into a larger linear problem [85]. It

is not a perfect approach because the size of the problem increases, which may result in a degen-

eration of the matrix conditions. Moreover, depending on the available computational memory,

the matrix size may be limited for dense matrices. Despite these limitations, such methods are

used in practice, especially in the case of sparse matrices [86]–[89].

For problems with strong nonlinearity and a relatively small size of the matrixM , algorithms for

root finding of the determinant can be used. Nevertheless, in some cases, the size of the nonlinear

problem is large. As a result, the numerical calculation of the determinant may be inefficient and
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ineffective. There are alternative integral methods [90] and iterative techniques (discussed in

detail in [31]), although their effectiveness and efficiency may still be improved. Hence, one of

the critical aspects of modern computational engineering is creating and developing stable and

efficient algorithms for finding eigenvalues for dense and large sparse matrices.

1.1.2 Root finding approaches

Frequently, the eigenproblem can be generalized by introducing a holomorphic function defined

on a subset of the complex plane. Problem (1.1) boils down to determining the zero of a complex

function and can be written in the following form:

F (z) = det(M(z)) = 0 (1.2)

where:

z ∈ C - the zero of the function F (z), representing the eigenvalue λ.

There are many methods to solve the abovementioned equation [53], [67], [91]–[93]. These

algorithms find functions’ roots (zeros) and poles (singularities) in an assumed search region be-

longing to the function’s domain F (z). They differ in efficiency and effectiveness depending on

the class of the investigated function and the analyzed area’s dimensions. There are two ap-

proaches: local methods, based on sampling functions only in a slight part of the domain, and

global methods, which investigate the entire region and aim to determine all roots and poles in

this area. Both kinds have their advantages but also limitations. The local ones are more effi-

cient than global algorithms, but global ones guarantee greater control over the convergence and

accuracy of the solutions found. The most popular local techniques are Newton’s method [52]

and Mueller’s method [51]. In general, verifying the zero of a function is based on Cauchy’s ar-

gument principle (CAP) [13], according to which the appropriate investigation region is integrated.

When there are an equal number of zeros and poles in the domain under consideration, it may not

be easy to differentiate them, especially if the roots are close to each other. Therefore, the final

verification of the results is complicated, and no algorithms can fully guarantee effectiveness.

When a single root is found, knowledge of its behavior in a function of extra parameters t ∈ R

is often also required. In such case, the investigated function can be written as a function of two

variables:

F (z, t) = 0 (1.3)

where:

z = ξ(t) - the curve in space C× R represents the roots value.

In electromagnetic wave propagation problems, z can represent the propagation coefficient γ, for

example, and an additional parameter can be the frequency f (to determine dispersion charac-

teristics). On the other hand, in resonators, t may be a structure dimension or extra parameter

describing some material properties. The primary way to solve equation (1.3) is to carry out sep-

arate analyses for different values of the additional parameter. This approach is the so-called
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”slicing method,” using any standard global algorithm applied independently for different values of

the discretized parameter in the range from tmin to tmax. Although this method guarantees correct

results, its efficiency is very low (especially for a very dense discretization of the t parameter). In

addition, the disadvantage of this solution is the lack of knowledge of the direct relation between

the following roots. An alternative approach is to use root tracing algorithms as a function of an

additional parameter t in the real domain [94] and the complex domain [60], [61], [95]. Such meth-

ods are much more efficient than the ”slicing method,” but the solution is limited to only a single

curve ξ.

Local methods of finding zeros or poles

There are many methods for finding the zero of a function of a real variable [96]–[101]. Most of

these approaches are based on iterative approximation to the root. When the investigated function

is continuous, and the zero is a single multiplicity, the root location can be easily determined by

checking the change in the sign of the function value in zero close vicinity. However, this method

of solution requires prior knowledge of the search range. Subsequent iterations of the algorithm

provide amore accurate root approximation until the assumed accuracy is achieved. By evaluating

consecutive values of the function, it is possible to determine the algorithm’s convergence. Algo-

rithms of this type are also known as local, as the investigation domain is limited. It is undoubtedly

a disadvantage because it requires appropriate initial conditions to ensure the algorithm’s conver-

gence. The advantages include short procedure and low computational cost, especially when the

search domain is sufficiently small.

The basic local methods include bracketing methods (bisection) [99], methods based on the

derivative (Newton-Raphson method) [96], [97], or interpolation methods (regula falsi, Muller’s

method) [101], [102]. Generally, all these algorithms use the intermediate value theorem. It as-

sumes that if a continuous function has values of opposite signs at the endpoints of an interval,

there is at least one zero within that interval. Therefore, the value of the function must take on

opposite signs at the extreme points of the assumed interval. When the investigated function is

rational, other alternative methods, such as Descartes’ rule of signs [102], Sturm’s theorem [103],

or Fourier-Budan theorem [100], yield information about the number of zeros in the given interval,

ensuring finding all the roots of real polynomials with guaranteed accuracy.

Generally, in the case of local methods, determining all real zeros in the investigated domain

is possible but requires dividing the search area into subdomains. The root finding is more com-

plicated for the complex function. The imaginary part of the function’s argument can be consid-

ered an additional real variable. Thus, the analysis boils down to solving a two-variable problem

F (z) = F (Re(z) + jIm(z)) = 0. Although there are more or less compiled techniques for finding

complex roots, they are usually only utilized for a particular class of functions or are limited to a

specific analysis area (e.g., Newton’s or Muller’s method).
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Global methods of complex roots finding

Global algorithms aim to analyze the entire area Ω ∈ C and find all zeros in it. Since this ap-

proach requires discretization of the entire region, global methods are more reliable than local

and interpolation algorithms. Thus, these methods allow for better accuracy control but at an in-

creased numerical cost. An example of such algorithms is the Global Complex Roots and Poles

Finding Algorithm [104] (GRPF), as well as its variants [55], [57], [60], based on separate analysis

(tracing) of the sign of the real and imaginary parts of the function. In comparison, interpolation

algorithms based on discretization of only the region’s boundary are very efficient for simple poly-

nomial functions [105], [106]. Many procedures based on rational approximation have also been

proposed [107]–[109]. Although the obtained zeros may strongly depend on changes in the values

of the polynomial coefficients, especially of higher orders [110], methods based on the polynomial

approximation can be used successfully. However, it is not possible to set the parameter that

controls the accuracy of the obtained result. There may also be artificial solutions of zeros and

poles (Froissart doubles [111]), which require additional verification. It has been shown that in

the general case, the roots of any considered function may have no relation with its polynomial

approximation [49].

One of the more efficient algorithms using polynomial interpolation is ratdisk [53]. In the stan-

dard version of the algorithm, the computational domain must be a unit circle, which usually forces

the use of some additional transformations. The AAA (adaptive Antoulas–Anderson) algorithm

[54], another version of ratdisk, allows using a domain with any contour. Despite the improvement

of the algorithm, AAA for more complicated functions still does not guarantee finding all roots and

does not eliminate artificial solutions. The increasing number of samples does not directly fac-

tor into the accuracy of the results. The obtained roots require further validation. Therefore, the

results can be used, for example, as initial values for additional local procedures.

Root tracing techniques

Most of the methods proposed above require iterative execution of global and local root finding

algorithms to enhance the precision of the zero location. Another class of algorithms is called

root tracing, also referred to as the tracking method in the literature. This method was initially

introduced in [94] to analyze the functions of two real variables. For continuous real functions, it

is well established that changing the sign of the function value is both necessary and sufficient for

the existence of a root. Thus, the basic idea of tracing is to systematically evaluate new points

and iteratively check the sign changes in the function value. As noted earlier, in practical electro-

magnetic applications (and other fields as well), the goal is to find the position of a zero or pole

on the complex plane as a function of some extra parameter. Consequently, this approach was

expanded to the complex domain, leading to the development of many root tracing methods [57],

[60], [95]. Typically, the problem then boils down to the three-dimensional space C × R, where

the sign change of the real function-based method turns out to be ineffective, as demonstrated in
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[61]. It was demonstrated that different signs of the real and imaginary parts of the function are

necessary but not sufficient for the existence of roots or poles within the considered region. There-

fore, verifying the existence of zeros (or poles) in a fixed region is a far more challenging task in

the complex domain. There is a more effective method called Simplex Chain Vertices Searching

(SCVS) presented in [60], which has a low numerical cost and an extension in [57], [95], [112]

However, the region close to the root location must be known to execute these methods. It can

be achieved using Complex Border Tracking (CBT), which tracks the complex border between

two regions where the function changes sign for real and imaginary parts at two vertices of an

equilateral triangle. The candidate regions, where the function yields values with different signs

at all three triangle vertices, are considered potential locations for zeros and poles.

On the other hand, using the CAP calculation procedure, whether zeros, poles, or regular points

are present in specific regions can be determined. The root tracing algorithm can also be based

on CAP [61], a technique commonly used in electromagnetics and control theory. This method

is generalized to the C × R space and is discretized with the small number of points (function

evaluations) needed to confirm roots’ existence. This approach allows for an efficient analysis of

the entire root characteristics of an additional parameter. However, the tracing process requires

initial points from the global root finding algorithm for a fixed extra parameter value.

In summary, determining the zeros of functions is one of the fundamental elements of linear

algebra. Despite being a purely theoretical problem, it has practical applications in various science

branches, particularly electromagnetism. Even though many efficient and effective algorithms for

global root finding of complex functions have been developed in recent years, this issue is still an

open research problem.

1.2 Scope and goal of the thesis

The development of efficient and stable algorithms for finding the roots of complex functions and,

consequently, for solving nonlinear eigenproblems remains a considerable challenge. The existing

solutions still have not reached sufficient quality and flexibility. The need for further development

of current global algorithms, especially regarding their stability and efficiency, has been discerned.

There is also a deficiency in implementing proper software packages similar to those available for

linear eigenproblems [113]–[115]. These essential tools are inadequate for nonlinear eigenvalue

problems. In response to this requirement, this dissertation aims to develop numerical tools to

study the properties of waveguides and resonators applicable in microwave and terahertz

technology. In order to complete this goal, the following theses were put forward:

• The proper generation of the initial mesh and the optimal process of its densification in the

GRPF algorithm [104] will improve the efficiency of the procedure and increase the probability

of finding all roots in a fixed search region;
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• The use of self-adaptive discretization of the CAP condition will reduce the number of function

calls in the tracing algorithm [61] without impacting the achieved accuracy of the results;

• Generalization of the GRPF [104] to C × R space will allow us to obtain a full picture of the

distribution of zeros and poles of the function F (z, t) in the entire analyzed region C × R,

eliminating the limitations existing in tracing and the ”slicing methods.”

The proof of each of the above theses can be found in Chapters 3, 4, 5, and JCR (Journal Citation

Reports) publications by the author of this dissertation, respectively [116]–[118].

1.3 Description of the research methodology

The following is a short description of the contents of each chapter.

Chapter 1

In the first chapter, the aim and description of the research problem are presented, with a justifi-

cation of the subject matter undertaken in the current state of knowledge.

Chapter 2

This theoretical chapter presents a set of example problems (mainly electrodynamic). It will be

handy for numerical verification of newly developed or modified algorithms. The fundamental

electromagnetic methods are presented for analysis of the waveguides, resonant structures, and

other systems presented in the literature, utilizing various functions (analytical and numerical).

They boil down to determining the roots of more or less complicated complex functions. It should

be emphasized that the presented eigenproblems are not limited to computational electrodynam-

ics.

Chapter 3

The next chapter examines the effectiveness and limitations of currently available global algo-

rithms for finding roots of complex functions, particularly GRPF. Further improvements to the

GRPF algorithm [116], [119], which are the result of the author’s research, are presented. Nu-

merous numerical tests are presented to confirm the effectiveness of the proposed approaches

and modifications.

Chapter 4

This chapter proposes the improvement of the tracing method achieved during the implementation

of this work [117], along with the numerical results. The algorithm’s limitations and the proposed

solution to the multi-curve ξ(t) problem are also shown [120].
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Chapter 5

This chapter describes a new approach to determining the ξ(t) curves representing zeros and

poles as a function of an extra parameter throughout the analyzed space C × R [118]. A new

algorithm is presented along with numerical results confirming the efficiency and stability of the

proposed method.

Chapter 6

The final chapter of the thesis includes a summary, conclusions, and possible directions for further

research.

All developed algorithms were implemented in the Matlab environment and have open-source

code. They are publicly available on the GitHub platform under an Open Source Software License

(MIT):

• Self-Adaptive Mesh Generator for GRPF https://github.com/PioKow/SAGRPF

• Self-Adaptive Complex Root Tracing Algorithm https://github.com/PioKow/SACRTA

• GRPF in C× R Domain https://github.com/PioKow/GRPF3D

Numerical tests presented in this thesis were carried out using the Matlab R2021a environment

(Windows 10 64-bit) [115] on the Intel(R) Xeon(R) X5680 3.33GHz CPU (Central Processing Unit)

and 12GB RAM machine.
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Chapter 2

Complex analysis in electromagnetic problems

Electromagnetic analysis is one of the critical aspects in the design of modern high-frequency

electronic devices. The circuit, wave, and material parameters of the analyzed microwave and

optical engineering systems are usually defined in the complex domain. This notation facilitates

the analysis and interpretation of basic physical phenomena and properties of systems. Problems

related to propagation, radiation, and resonance are most often represented by propagation coef-

ficient [22], [121]–[125], resonance frequency [26], [58], material parameters or input impedance

[126], and the like.

2.1 Complex parameters

The parameters describing any electromagnetic structure’s propagation and radiation properties

are typically defined in the complex domain. Electromagnetic analysis includes investigating pa-

rameters such as propagation coefficient, resonance frequency, antenna input impedance and

permittivity. They describe the operating of systems, including materials, and their behavior in

electromagnetic fields. In the main, these parameters express variation of a signal’s amplitude

and phase as an electromagnetic wave. The complex parameters allow a clear understanding of

the effects of polarization, dispersion, and material losses, which are fundamental in many practi-

cal applications.

Propagation coefficient

The propagation coefficient γ [1/m] is one of the most important parameters of electromagnetic

analysis. It determines the propagation properties of an electromagnetic wave in a given medium.

In general, γ is a complex number representing guided, leaked, complex, or hybrid modes. This

coefficient determines the variation of the complex amplitude A of the wave along the direction of

propagation z [m] according to the following relation (suppressing time dependence ejωt):

A(z) = A(z0)e
−γz (2.1)

22

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


where, γ can be written by two components:

γ = α+ j β (2.2)

where:

α - attenuation constant Re(γ) [Np/m],

β - phase constant Im(γ) [rad/m].

The propagation coefficient is a dimensionless change in magnitude or phase per unit length.

Both the attenuation and phase constant are important quantities in describing the propagation of

an electromagnetic wave in a given medium. The attenuation coefficient represents the rate at

which the wave amplitude decreases as it propagates through the medium. It depends on a mate-

rial’s complex magnetic permeability µ and permittivity ε (refractive index n in optics), particularly

dielectric losses defined as tan δ. In contrast, the phase constant represents a phase variation

during the wave propagation and is expressed as β = 2π
λ . Therefore, its value is related to a given

medium’s wavelength and phase velocity.

Resonant frequency

The complex resonant frequency fr [Hz] is another critical parameter commonly used when de-

scribing resonant systems. For example, resonators are integral components of filters or are uti-

lized in the investigation of material parameters. These structures involve the existence of stand-

ing waves resulting from wave reflections. The resonant frequency can be written in the following

form:

fr = Re(fr) + Im(fr) (2.3)

This notation considers the actual operating frequency of the device Re(fr), that is, the length

of the propagated electromagnetic wave and the attenuation of its amplitude, included indirectly

in Im(fr). The signal attenuation results from energy loss, e.g., from utilizing lossy materials. In

other words, this coefficient determines the periodic variability of electromagnetic field or radiation.

Permittivity

The scalar quantity known as permittivity ε [F/m] characterizes the electrical properties of a given

medium. It is determined by dividing the electric displacement field by the electric field strength

for isotropic materials. However, the frequency-dependent nature of this parameter in inhomoge-

neous media can create nonlinear difficulties. Typically, permittivity is a complex number and can

be expressed as follows:

ε = ε′ + j ε′′ (2.4)

where:

ε′ = εrε0 [F/m] - lossless permittivity expressed by the product of the permittivity in free space ε0
and the relative permittivity εr,
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ε′′ [F/m] - the imaginary part of the permittivity that results from dielectric loss (scatter of heat

energy) and the existence of free charges, which are expressed by the conductivity σ [S/m].

The real component of the permittivity ε′, also known as the dielectric constant, characterizes

the polarization properties of the medium and the material’s ability to store electric charge. The

relative permittivity εr is a dimensionless quantity that determines how many times the permittivity

of a given medium is more than the permittivity of a vacuum (physical constant ε0). The loss

tangent tan δ expresses the relation between the real and imaginary parts of the permittivity. It is

the ratio of ε′′ and ε′ (i.e., the angle on the complex plane) that depends on the angular frequency

ω and conductivity σ:

tan δ =
ωε′′ + σ

ωε′′
(2.5)

Both parameters, tan δ and εr, are fundamental in developing materials for electromagnetic appli-

cations and analyzing antennas, waveguides, transmission lines, and so on.

Antenna input impedance

The antenna input impedance Zin [Ω] is a crucial factor in studying electromagnetic structures.

It signifies the impedance of the antenna as viewed by the radio receiver in a high-frequency

electronics system. This parameter is a complex number and can be expressed in the following

manner:

Zin(ω) = Rin(ω) + j Xin(ω) (2.6)

where:

R - resistance [Ω],

X - reactance [Ω],

ω - angular frequency [rad/s],

The real part is related to the power radiated by the antenna resulting from heat losses. The

antenna input impedance’s imaginary part corresponds to a series resonant circuit. It is related to

the energy stored in the electric and magnetic fields in the near-field region antenna. A resonance

condition must arise for the antenna to receive or emit a signal in the form of an electromagnetic

wave. It is met for pulsations (related to the wavelength) at which the resultant reactance X(ω)

equals zero. In such a case, the impedance has only a real part. In general, the value of an an-

tenna’s input impedance is affected by such factors as the antenna’s geometry, the properties of

the materials from which it is constructed, and the operating frequency. A mismatch between the

antenna’s input impedance and the transmitting (receiving) circuit impedance can result in reflec-

tion and signal loss. Therefore, understanding and optimizing the input impedance is essential for

efficient and effective wireless communications.
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2.2 Overview of electromagnetic analysis methods

Electromagnetic analysis uses various methods to investigate the behavior of electromagnetic

fields and their relations with objects. The first fundamental stage is to define the problem by

constructing appropriate mathematical equations. Next, depending on the complexity of the prob-

lem and the method of describing physical phenomena, analytical, quasi-analytical, and discrete

methods can be distinguished. There are also hybrid methods that merge them. This chapter will

discuss the most important ones used to solve propagation and radiation problems.

Analytical methods

The basic analytical method used to solve electromagnetic problems is the separation of vari-

ables. This method assumes that the solution of a differential equation (e.g., Laplace, Helmholtz

equations) can be expressed as a product of functions of various variables. This reduces the dif-

ferential equation to a set of simpler equations that can be solved independently. This method is

valuable for solving partial differential equations where the variables can be separated. The other

method is the method of integral equations. This method involves transforming the differential

equation into an integral equation. The method of integral equations is practical for solving bound-

ary value problems and can be used to derive Green’s function [38], [60]. Green’s function is a

solution to the differential equation with a point source. Another alternative method is the series

expansion approach. This method uses a series of known functions to solve a differential equa-

tion. It is handy for solving boundary value problems, where the boundary conditions are known

at the boundaries of a region. By expanding the solution of the differential equation in a series,

the boundary conditions can be used to determine the coefficients of the series.

There are a variety of analytical methods available, each with its own unique strengths and

limitations. The choice of method depends on the problem’s nature and the differential equation’s

complexity. However, it is important to note that these methods are not universally applicable

and are typically limited to structures with simple geometries. Analytical techniques work well

for analyzing objects such as rectangular prism, cylinders, ellipses, or spheres and for modeling

unbounded space. Depending on geometry, the electromagnetic field is described using Bessel,

Hankel, or Mathieu functions. Individual field components can be determined using the mode-

matching technique [47], [48] or the field-matching method [22] based on determining appropriate

boundary conditions. Despite their usefulness, these methods are inflexible and require significant

effort to implement specific problems.

Extensions of analytical methods are quasi-analytical procedures, such as the method of mo-

ments [26], [39] and spectral domain approach [58], [59]. They follow the assumption of local

convergence to an analytical function within a narrow domain range, which is achieved through

numerical techniques. In practice, they are used when the problem can be approximated by a

simpler problem that can be solved analytically. They prove to be especially handy for problems

with more complicated geometries or nonlinearities. Nevertheless, they can be computationally
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expensive and require significant computing resources. Moreover, they do not perform well when

modeling inhomogeneous and anisotropic media.

Discrete methods

With the increase in computer resources, discrete methods have become an alternative to an-

alytical methods. It is used in electromagnetic analysis to solve systems with complex geome-

tries or problems with strong nonlinearity. This class of techniques is based on dividing the an-

alyzed structure (computational domain) into small regions. In each element, the differential or

integral equations derived most often directly from Maxwell’s equations are solved using numeri-

cal methods. The resulting electric or magnetic fields are combined to produce the final approx-

imate solution. Various numerical methods are available for solving electrodynamic problems.

Numerous numerical methods exist for solving electrodynamic problems, including the finite differ-

ence method (FDM), finite element method (FEM), boundary element method (BEM), and method

of moments (MoM). In numerical electromagnetic methods, time-domain (FDTD, TDFEM) and

frequency-domain (FDFD, FEM, MoM) approaches are used to solve electromagnetic problems.

This time domain approach helps analyze transient phenomena like the propagation of electro-

magnetic waves in a dispersive medium or the response of particular excitation. On the other

hand, the frequency domain approach is useful for analyzing steady-state phenomena, such as

the behavior of the systems’ resonance structures, antennas, or scattering parameters.

Finite difference methods transform differential equations, which may also be nonlinear, into

a system of linear equations resolved by standard linear algebra approaches. This technique is

based on the approximation of derivatives through finite value differences. A specific grid dis-

cretizes the computational domain (space and time), and the field’s value at these discrete points

is approximated by solving linear equations (e.g., the Gauss-Jordan method) containing function

values from nearby points. Although this method is very efficient, the resulting field vectors electric

E⃗ and magnetic H⃗ are shifted from each other in the discretization grid, making it difficult to set

appropriate boundary conditions.

The finite element method is a numerical technique used to solve differential equations. It in-

volves approximating the field vectors electric E⃗ and magnetic H⃗ in a discrete set of points called

nodes by linear interpolation. To discretize the computational domain, a mesh is created using tri-

angular elements for two-dimensional structures and tetrahedral elements for three-dimensional

structures. Higher-order curvilinear elements can also be used to improve accuracy. The problem

is solved by solving a system of equations created from a linear combination of functions that ap-

proximate the differential equations. Next, the boundary conditions are defined, and the Galerkin

method can be utilized to obtain a solution in terms of the mean value at the nodes. The solution’s

accuracy improves as the number of elements increases.

FEM is a versatile computational method that is widely used in commercial software such as

HFSS. However, it requires significant computational costs for the optimal discretization of the

computational domain. Therefore, it is better suited for solving small and medium-sized struc-
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tures. Unlike analytical methods, modeling open spaces using FEM is problematic. While it is

possible to use a perfect matching layer (PML) [127] to solve this issue, it comes with additional

difficulties. PML is based on placing an absorption layer at the boundaries of the computational

domain through a lossy medium that absorbs incident waves. This approach increases the size

of the computational domain, and selecting anisotropic parameters is not straightforward.

Another type of discrete method is based on solving integral equations. The boundary element

method reduces the analysis to a boundary problem that can be solved directly without discretiz-

ing the whole domain. It can result in computational complexity reduction, especially for large

problems. The obtained electric or magnetic fields are combined to produce a final approximate

solution. BEM applies to problems for which Green’s functions can be computed.

The method of moments is a discrete technique that relies on quasi-analytical field representa-

tion. It involves a sum of basic functions, which are either charges or currents, and these functions

are defined on the surface of the structure being analyzed. The solution to the problem is achieved

by satisfying the boundary conditions for the electric and magnetic fields at each point on the sur-

face. To determine the unknown coefficients of the basis functions, a system of linear equations is

solved. This method is computationally efficient and requires less memory than other numerical

methods. However, it may not be ideal for problems involving a large number of unknowns or very

thin structures.

Discrete methods offer various advantages but can be computationally expensive and time-

consuming. Additionally, they require a careful focus on numerical errors and convergence. The

selection of a particular method depends on the geometry of an object, the type of problem, and

the desired level of accuracy. For instance, FDM suits problems with simple geometries and

uniform materials. In contrast, FEM is better suited for problems with more complex geometries

and heterogeneous materials. BEM is useful for problems with infinite boundaries, while MoM is

commonly used for problems involving metal and dielectric structures.

Hybrid methods

Hybrid techniques represent a method of modeling electromagnetic structures that capitalizes on

the benefits of commonly used approaches while minimizing their drawbacks. They involve divid-

ing the computational domain into a few sub-domains (it may also be an infinite open space) and

analyzing them separately using methods adjusted to a given sub-region. Through appropriate

modeling of boundary conditions, it is possible to connect sub-domains analyzed by various meth-

ods, e.g., analytically and discrete based on the impedance matrix [28], [128]–[130]. The smaller

parts of the domain analyzed using discrete methods, the more efficient the procedure is.

The examples of a hybrid procedure are demonstrated in [130], [131]. It involves analyzing the

scattering parameters of single or multiple objects using a multimode impedance matrix. The in-

vestigated structure, such as a resonator, a waveguide segment, or any other arbitrary scattering

system, is assumed to be replaced by an n-port network, the so-called ”black box.” Its parame-

ters are determined by the corresponding scattering or impedance matrix. In this approach, the
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analysis is based on the definition of the electromagnetic wave relations between the input and

output of the system. In other words, a multi-port is formed and expressed using an impedance

matrix. It is defined in theoretical regions such as a cylinder or sphere (generalizing in any con-

vex volume) surrounding the analyzed structure [47]. The impedance matrix is the relationship

between the electric and magnetic fields inside the system without considering the external inci-

dent wave. This approach allows for the analysis of propagation in various variants, e.g., closed

waveguides and resonators, but also scattering in open regions, e.g., antenna structures. This

solution makes it possible to use different analysis methods for individual parts of the system [28],

[132]. For example, geometries with curvilinear shapes can be analyzed by discrete techniques

and other parts by analytical methods, significantly reducing analysis time and computational re-

source requirements. Furthermore, after calculating the impedance matrix, the structure’s rotation

or arbitrary shift can be performed without needing discrete analysis again [28]. In addition, the

hybrid technique can be applied to multi-object analysis that considers reciprocal coupling be-

tween elements, which can be modeled using iterative procedures [133]. Another notable benefit

of using impedance matrices in hybrid methods is the ability to study open structures. Unlike other

solutions that require radiation boundary conditions and encounter related issues, the approach

employing connecting impedance matrices (discrete and analytical parts) takes place outside of

the structure.

2.3 Example problems

This section contains example structures in which the fundamental issue is wave propagation,

mainly electromagnetic. Therefore, the essence is determining the propagation coefficient or its

variability resulting from the analysis parameters, e.g. material properties. The following issues

are analyzed:

• a lossy multilayered waveguide [20]

• a coaxially loaded cylindrical waveguide [8]

• a graphene transmission line [134]

• an anti-resonant reflecting acoustic waveguides [72]

• a triangular dielectric fiber [22]

• a cylindrical-rectangular microstrip resonant structure [58]

• a Fabry-Pérot open resonator [17]

• a dual-band cross-coupled eighth-order microwave filter [135]

The functions describing the problems are defined analytically (mode-matching technique) or nu-

merically for the above structures, e.g. the determinant obtained from the spectral domain ap-

proach, FEM or field matching method.
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2.3.1 Lossy multilayered waveguide

Multilayered lossy structures are widely used in microwave applications [56], [136]. They are

components of various high-frequency systems, such as couplers or optical devices like lasers.

As an example, a planar waveguide is analyzed [15]. Its structure consists of three layers: air,

polystyrene, and silver, as shown in Figure 2.1.

d n
1

nc

ns

x

y

z

Figure 2.1: The cross section of the structure. It is assumed that electromagnetic wave propagates in the z

direction.

For such a structure, the analysis boils down to the analytical solution of the wave equation

assuming specific boundary conditions. It is already a well-known linear problem, and many in-

vestigations have been made to solve it [20], [137]. The objective is to determine the normalized

complex propagation coefficient γ for a set propagation frequency f (related to the wavelength λ0)

associated with mods: TE and TM. Hence, it is essential to calculate the roots of the following

determinant:

F (γ) = det

 1 − cos(k0dκ1)− γc sin(k0dκ1)
κ1

jγs −jκ1 sin(k0dκ1) + jγc cos(k0dκ1)

 (2.7)

where:

k0 = 2π
λ0

- free-space wavenumber [1/m],

κ1 =
√
n21 − γ2 - [·],

γs =
√
γ2 − n2s - [·],

γc =
√
γ2 − n2c - [·].

The analysis used typical material parameters according to [20]. The refractive indices ns =

0.065 − j4, n1 = 1.5835, nc = 1, define dielectric layers. The thickness of the central layer is

d = 1.81 µm. It is assumed that the length and width of the other layers go to infinity (see Figure

2.1).
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2.3.2 Coaxially loaded cylindrical waveguide

A coaxial cylindrical waveguide loaded with a dielectric is analyzed in the following example. The

structure is shown in Figure 2.2, and it is a well-known electromagnetic problem [8], [29] that aims

to determine the normalized propagation coefficient γ. In this structure, the propagating complex

modes are described by Bessel functions. The distribution of the electromagnetic field in such a

line can be determined analytically using the mode-matching technique. In order to ensure the

continuity of the fields at the dielectric-air boundary, the following determinant must be equal to

zero:

F (γ) = det





−J1 0 J2 Y2 0 0

0 J1 0 0 −J2 −Y2
−γmJ1

aκ2
1

−j η0J
′
1

κ1

γmJ2

aκ2
2

γmY2

aκ2
2

j
η0J

′
2

κ2
j
η0Y

′
2

κ2

− jεrJ
′
1

κ1η0
−γmJ1

aκ2
1

j
J′
2

κ2η0
j

Y ′
2

κ2η0

γmJ2

aκ2
2

γmY2

aκ2
2

0 0 J3 Y3 0 0

0 0 γmJ3

bκ2

γmY3

bκ2
j
η0J

′
3

κ2
j
η0Y

′
3

κ2




(2.8)

where:

J1 = Jm(k0κ1a), J2 = Jm(k0κ2a), J3 = Jm(k0κ2b),

Y1 = Ym(k0κ1a), Y2 = Ym(k0κ2a), Y3 = Ym(k0κ2b),

Jm(·) - Bessel functions of order m (prime denotes their derivatives),

Ym(·) - Neumann functions of order m (prime denotes their derivatives),

m - angular varability of the modes [·],

κ1 =
√
γ2 + εr - [·],

κ2 =
√
γ2 + 1 - [·],

k0 = 2πf
c - free-space wavenumber [1/m],

η0 = 120π - impedance of free space [Ω].

2a2b

ε
0

εr

x

y

z

Figure 2.2: The cross section of the structure. It is assumed that electromagnetic wave propagates in the z

direction.

The following parameters are used during the numerical tests: core radius a = 6.35 mm, outer

dielectric radius b = 10 mm, dielectric layer permittivity εr = 10, and transverse field distributions

for mode m = 1.
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2.3.3 Graphene transmission line

Another example involves the analysis of a simple transmission line. It comprises a thin graphene

layer, air, and a silicon substrate (homogeneous medium). For the structure shown in Figure 2.3,

the propagation of surface waves and dispersion relations for theTM andTEmodes are analyzed.

A model describing the propagation properties in tensor conductivity of graphene is presented in

[134]. It is derived from the semi-classical Boltzmann transport equation [138].

ε
r1

ε
r2

graphene

x

y

z

Figure 2.3: The cross section of the structure. It is assumed that electromagnetic wave propagates in the z

direction.

The normalized propagation coefficient γ for the TMmodes can be obtained by calculating the

zero of the following function:

F (γ) =
εr1

η0
√
εr1 + γ2

+
εr2

η0
√
εr2 + γ2

+
[
σlo − γ2k20(αsd + βsd)

]
(2.9)

In addition, the conductivity tensors depend on the frequency as follows:

σlo = j
q2ekBT

πℏ2(2πf − jτ−1)
ln

[
2

(
1 + cosh

(
µc

kBT

))]
αsd =

−3v2Fσlo
4(2πf − jτ−1)2

βsd =
αsd

3

(2.10)

where:

k0 = 2πf
c - free-space wavenumber [1/m],

η0 = 120π - impedance of free space [Ω],

qe - elementary charge 1.602176634 · 1019 [C],

kB = 1.380649 · 10−23 - Boltzmann’s constant [J/K],

T = 300 - temperature [K],

τ = 0.135 - [ps],

µc = 0.05qe - [C],

vF = 106 - [m/s].

This model is accurate for low propagation constant values and considers spatial dispersion and

substrate effects for low THz ranges. Therefore, analysis will be performed for such frequency

ranges. The dielectric layers are air εr1 = 1 and silicone with εr2 = 11.9.
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2.3.4 Anti-resonant reflecting acoustic waveguide

Another example is an acoustic waveguide. According to [72], ARRAW (Anti-Resonant Refecting

Acoustic Waveguides) inholds with core and anti-resonant outer and inner cladding. A schematic

of the cylindrical structure of alternating silicon/silica/silicon layers is shown in Figure 2.4. The

core of radius a = 1µm is made of the same material as the outer cladding and allows propagation

of longitudinal (P ) and shear (S) waves with velocities higher than the inner cladding. The silica

thickness d can be changed as an additional parameter in the analysis. In this example, the purely

torsional modes are investigated, dependent only on shear velocity. Propagation along the z-axis

is characterized by a constant propagation coefficient throughout the waveguide structure.

2a d

(silicon) fast

slow (silica)

x

y

z

μ
1

μ
2

μ
3

Figure 2.4: The cross section of the structure. It is assumed that accustic wave propagates in the z direction.

The elastic equation of motion describes the waveguide modes for such a structure:

ρ
d2

dt2
u⃗ = ∇ ·T (2.11)

where:

ρ - density [kg/m3],

u⃗ - displacement field [m],

T - stress tensor [N/m2].

The problem (2.11) is solved analytically using cylindrical coordinates (r, θ) and time-harmonic

dependency:

u⃗z(r, θ, z, t) = Uz(r, θ)e
j(βz−Ωt) (2.12)

The displacement field is analyzed as a function of the longitudinal wavenumber for only shear

mods:

k2s =
Ω2

v2s
− β2 (2.13)

where:

ks - transverse wavenumber [1/m],

β - longitudinal wavenumber [1/m],

Ω - angular frequency [rad/s],
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vs - shear velocity [m/s].

In each layer i = {1, 2, 3}, outgoing and incoming waves can be determined ûi =
[
ui+ ui−

]T
.

The appropriate matrices of coefficients describe them as follows:

Mi
r =

 −H1 −J1
µiksH2 µiksJ2

 (2.14)

where:

µi - shear modulus of the material for layer i [Pa],

H1 = H
′

0(k
i
sr), H2 = 2H

′′

0 (k
i
sr) + 2H0(k

i
sr),

J1 = J
′

0(k
i
sr), J2 = 2J

′′

0 (k
i
sr) + 2J0(k

i
sr),

Jm(·) - Bessel functions of order m,

H
(1)
m (·) - Hankel functions of order m (prime denotes their derivatives).

By taking into account the boundary conditions of each of the layers and the symmetry of the

system, the matrix equation is constructed:

û3 = (M1
r1M

1
r2

−1
M2

r2M
2
r3

−1
)û1 = Sallû1 (2.15)

For the resonance condition to be met, the fields in the first and last mediummust only be outgoing:

û1− = û3+ = 0, this condition will be fulfilled when:

F (β) = Sall
22 (β) = 0 (2.16)

This example shows that a universal and efficient algorithm for root finding of complex functions

can be applied not only in electrodynamic problems, but also in various fields of modern engineer-

ing.

2.3.5 Triangular dielectric fiber

Another investigated structure is a dielectric waveguide as a triangular fiber. The cross-section of

the inner dielectric layer consists of an equilateral triangle with rounded corners, as shown in Figure

2.5. For such a structure, it is possible to analyze the propagation of electromagnetic waves using

the field-matching technique [22]. This quasi-analytical method is described in detail in [63]. It does

not require using the Green function, discretizing the computational domain, and implementing

absorbing boundary conditions. Only the continuity condition for the tangential components of

the field on the surface of two areas i = {1, 2} is necessary. The longitudinal components of the

electric and magnetic fields, respectively, Fz = {E,H} in both regions, have the following form

(suppressing time dependence ejωt):

F 1
z =

M∑
m=−M

AF
mJm(k0κ1ρ)e

jmϕe−γz

F 2
z =

M∑
m=−M

BF
mH

(2)
m (k0κ2ρ)e

jmϕe−γz

(2.17)
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where:

(ρ,ϕ,z) - coordinate in the cylindrical system ρ = ϱ(s) and ϕ = φ(s) [m],

s - curvilinear coordinate that follows the surface [m],

AF
m, BF

m - unknown fields coefficients in the first and second regions respectively [·],

Jm(·) - Bessel functions of order m,

H
(2)
m (·) - Hankel functions of order m,

k0 = 2πf
c - free-space wavenumber [1/m],

κi =
√
γ2 + εri - [·]

The other field components, Fϕ, and Fρ, can be determined directly from Maxwell’s equations.

Through specifying the boundary conditions of these regions, the following matrix equation is ob-

tained:

ME,1 −ME,2

MH,2 −MH,2

A
B

 = 0 (2.18)

A detailed expansion of the individual elements of the matrix M can be found in [22]. In the

proposed approach, the solution is to determine the roots of the determinant F (γ) = det(M(γ)),

representing the normalized propagation coefficients for leaky and complex modes. The TE01,

TM01, and HE11 modes are analyzed, for which the parameters are assumed following [22]. The

dielectric materials have permittivity: εr1 = 8.41 and εr2 = 2.4025, respectively. The analysis is

performed at frequencies f = 1014 Hz and M = 5. The triangle dimensions are a = 1.3471 µm

and r = 0.01a.

ε
r1

ε
r2

a

r

x

y

z

Figure 2.5: The cross section of the structure. It is assumed that electromagnetic wave propagates in the z

direction.

2.3.6 Cylindrical-rectangular microstrip resonant structure

Another example is a cylindrical-rectangular microstrip resonator. It is a conformal structure [58],

[126], which can find application in systems having curved surfaces, such as airplanes and building

facades. The geometry of the structure is shown in Figure 2.6. It consists of a cylinder of radius

r = 200 mm, a conductive patch, and three dielectric layers. These are an air gap of thickness

s = 5 mm, a substrate of permittivity εr = 2.3 and thickness h = 2.4 mm, and open-air spaces
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outside the structure. The resonant element is the patch of a perfect conductor placed on the

cylindrical surface of the dielectric. The patch has length L = 80 mm (along the z-axis) and width

W = 168 mm (along the ϕ-axis).

r s h

W

L

W

y

z

x

ε
0

εr

ε
0

y

x

z

Figure 2.6: The geometry of an investigated cylindrical-rectangular microstrip antenna.

The problem is solved numerically using the spectral domain approach [139]. The analysis

is carried out in a cylindrical coordinate system (ρ, ϕ, z). The longitudinal components of electric

and magnetic fields, respectively Fz = {E,H}, in region i = {1, 2, 3} and have the following form

(suppressing time dependence ejωt):

Fz(ρ, ϕ, z) =
1

2π

M∑
m=−M

ejmϕ

∫ ∞

−∞
dkze

jkzz ×


(Hρ

m1 − βF
1 J

ρ
m1)A

F
m1, r ≤ ρ ≤ r + s

Hρ
m2A

F
m2 + Jρ

m2B
F
m2, r + s ≤ ρ ≤ r + s+ h

Hρ
m3A

F
m3, r + s+ h ≤ ρ

(2.19)

where:

(ρ, ϕ, z) - coordinate in the cylindrical system [m],

AF
mi, BF

mi - unknown fields coefficients of the harmonic order m and layer i,

βE
1 = Hr1

v1/J
r1
v1 , βH

1 = H ′r1
v1 /J

′r1
v1 ,

Jρ
mi = Jm(k0κiρ),

Hρ
mi = H1

m(k0κiρ),

Jm(·) - Bessel functions of order m,

H
(1)
m (·) - Hankel functions of order m,

k0 = 2πf
c - free-space wavenumber [1/m],

κi =
√
εri − k2z - [·].

It is assumed that the patch is an ideal conductor. Therefore, the tangential components of the

electric field on its surface are zero. By utilizing this fact, the surface currents can be determined:

M∑
m=−M

ejmϕ

∫ ∞

−∞
dkze

jkzzGm(kz)J̃m(kz) = 0 (2.20)
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where:

Gm(·) - Green matrix of the harmonic order m,

J̃m(·) - vector of the patch surface current densities of the harmonic order m ,

M = 30 - number of harmonic order used for matrices.

As can be seen, the problem is formulated as an integral equation in the frequency domain

using the vector Fourier transform. A detailed description of the method and the expansion of

matrix coefficients can be found in [126]. In order to solve equation (2.20), the Galerkin method

of moments can be used, according to which the surface current density on the patch is a linear

combination of known basis functions [59], obtaining the following matrix equation:

(Zϕϕ + Zϕz + Zzϕ + Zzz)I = 0 (2.21)

where:

Z(·) - submatrix of equations (2.20),

I - vector of coefficients of the basis functions.

Considering that the wave vector kz depends on frequency, the problem concerns solving the

eigenproblem F (fr) = Z(fr) = 0, whose roots are the complex resonant frequencies fr. It should

be noted that due to the orthogonality of eigenfunctions ejmϕ, this problem can be solved for any

eigenvalue separately.

2.3.7 Fabry-Pérot open resonator

Another example is the Fabry-Pérot open resonator (FPOR). This structure is commonly used to

determine the parameters of dielectric materials [17], [140]. The system consists of twomirrors, for

which the resonant frequency fr can be calculated, related to the resonator’s dimensions. When

a dielectric plate is placed between the mirrors, this resonant frequency shifts depending on the

permittivity εr of the placed sample. The structure can be analyzed in two configurations: a plane

mirror, one spherical mirror (see Figure 2.7), and two spherical mirrors (see Figure 2.8). In both

versions, the structure can be divided into three parts described by separate scattering matrices

S(·). From the point of view of the resonator analysis, only axial modes (propagating along the z-

axis) are considered. It can be assumed that the resonator walls (along the y-axis) are far enough

away and do not influence the field distribution. The scattering parameters SFEM of the section

with a spherical mirror can be calculated using the finite element method. The waveguide section

SWG between the mirror and the sample can be described analytically using the mode-matching

method.
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Configuration with the plane mirror

The last section can also be expressed analytically. It is a section of waveguide with a dielectric

plate t = 2 mm thickness. The sample center is a distance of ds = 9.6 mm from the plane mirror.

The further analysis parameters are the radius of the spherical mirror R = 150 mm, the distance

between the planar mirror and the farthest point of the spherical mirror D = 100 mm, the diameter

of the aperture of the spherical mirror (at the same time, the diameter of the waveguide)Dap = 200

mm. The length of the section with the spherical mirror is LFEM = 40 mm. For the FEM analysis,

N = 4365 elements are used (the maximum edges length of a triangle in the mesh is 1.2 mm).

The lengths of individual sections can be written as LP = 2ds and LWG = D − LP − LFEM ,

respectively.

z

x

y D

R

LP

Dap

SFEMSWGSP

SR

t

LFEM

ds

LWG

εr

Figure 2.7: The geometry of investigated the resonator with the plane mirror and its divide into sections

described by appropriate scattering matrices.

The analysis boils down to finding the roots of the following determinant, dependent on the reso-

nance frequency fr:

F (fr) = det(I− SP (fr)SR(fr)) (2.22)

where:

SR - scattering matrices cascade: waveguide section SWG and spherical mirror SFEM ,

SP - scattering matrix for plane mirror with plate,

I - identity matrix.

Configuration with two spherical mirrors

The second configuration has a symmetrical layout. The dielectric plate is set at the center of the

resonator. In this case, the section expressed analytically by the scattering matrix SS consists of

half of the sample with a thickness t = 1003 µm placed in a waveguide of length LS = 2t. The

investigated structure has the following dimensions: radius of the spherical mirror R = 150 mm,

distance between the center of the sample and the farthest point of the spherical mirrors D = 100

mm, diameter of the spherical mirror aperture (simultaneously the diameter of the waveguide)
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Dap = 180 mm. The length of the section with a spherical mirror is LFEM = 40 mm. N = 5887

elements are used for FEM analysis (the maximum length of the triangle edges in the mesh is 1

mm). The lengths of the empty waveguide section can be written as LWG = D − LS − LFEM .

z

x

y
D

R

L
S

Dap

SFEM SWG SS

SR

t

LFEM LWG

εr

Figure 2.8: The geometry of investigated the spherical resonator and its divide into sections described by

appropriate scattering matrices.

The investigation resonant frequency, fr, can be sought by determining the roots of the determi-

nant resulting from the following matrix equation:

F (fr) = det(I− SR(fr)SR(fr)) (2.23)

where:

SR - cascade of the scattering matrices: SFEM , SWG, SS ,

I - identity matrix.

In both configurations, the relative permittivity of the dielectric εr can be swept during the anal-

ysis as an additional parameter. The resonant frequency is a complex number when the dielectric

plate is made of a lossy material.
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2.3.8 Dual-band cross-coupled eighth-order microwave filter

The last structure involves the analysis of the transfer function of an example microwave filter,

defined by the following coupling matrix M:

M =



0 0.8024 0 0 0 0 0 0 0 0

0.8024 0 0.8467 0 0 0 0 0 0 0

0 0.8467 0 0.4142 0 0 0 −0.29 0 0

0 0 0.4142 0 0.2754 0 −0.4170 0 0 0

0 0 0 0.2754 0 0.2832 0 0 0 0

0 0 0 0 0.2832 0 0.2754 0 0 0

0 0 0 −0.4170 0 0.2754 0 0.4142 0 0

0 0 −0.29 0 0 0 0.4142 0 0.8467 0

0 0 0 0 0 0 0 0.8467 0 0.8024

0 0 0 0 0 0 0 0 0.8024 0



(2.24)

This model was initially presented in [135] (page 210), and its roots were also analyzed in [57].

The two-band characteristic is obtained by applying a symmetric frequency transformation, de-

rived taking into account suitable boundary conditions. The matrix is created utilizing appropriate

rational functions obtained by standard methods such as polynomial factorization. During the anal-

ysis, the general function describing the filter scattering parameters S11(s) (reflection) and S21(s)

(transmission) obtained from the coupling matrix M is used according to the following relation:

S11(s) = 1 + j2
[
M− jR+ sIN

]−1

11

S21(s) = −j2
[
M− jR+ sIN

]−1

(N+2)1

(2.25)

where:

R - zero matrix with non-zero elements in R11 = R(N+2)(N+2) = 1,

IN - identity matrix with zero elements in IN11 = IN(N+2),(N+2)
= 0.

The analysis aims to find the normalized cutoff frequency for a low-pass filter implicit in s = σ+ jω

by finding the roots of the function F (s) = S11(s).
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Chapter 3

Global complex roots and poles finding algorithm

The Global Complex Roots and Poles Finding Algorithm [104] (abbreviation GRPF) is a technique

that allows finding the zeros or poles of a complex function F (z) in a region of arbitrary shape

Ω. This method is capable of analyzing a wide range of functions, including those with branch

cuts [141] and essential singularities. This approach is based on function phase analysis, initially

proposed in [55]. Although this algorithm works efficiently and has many advantages, some im-

perfections in this procedure are nevertheless seen during various numerical tests. Successive

versions and improvements of the algorithm [116], [119] are the result of research, which will be

presented in the subsections of this chapter. Improvements have been made on several levels,

including generating the initial mesh, modifying the final stages for better efficiency, and improv-

ing the accuracy of the results. The final version of the algorithm evolved the ground for other

approaches. It can be used to set a starting point for local and tracing methods or as a ”slicing

method” for comparing results relative to the new approach in C× R (see Chapter 5).

The initial section of this chapter will provide a comprehensive explanation of the algorithm’s

fundamental principles and working procedures. The following subsections will delve into the

limitations of the standard version and the general issues experienced in its application, which

served as the basis for the research questions. The study’s primary objective was to assess the

dependability and efficacy of the latest algorithm addressing nonlinear eigenproblems.

3.1 Formulation of the problem

The destination of any global algorithm is to find all zeros and poles of the function F (z) (see

equation 1.2) in the considered search area Ω ∈ C. The set of points belonging to the domain

z ∈ Ω is called the input space and can be written as a superposition of the real domain Re(z) and

the imaginary domain Im(z). On the other hand, the output space is the set of complex values of

the function F (z) ∈ C. Utilizing Euler’s formula for complex numbers, the analyzed value of the

function can be expressed in the exponential form F (z) = |F |ejϕ, taking into account separately

the absolute value |F | and the phase ϕ referred to as arg(F (z)).
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3.1.1 Visualization of the complex space

Assigning an input space to an output space is the classic definition of a function. There are many

representations of mathematical functions. In addition to algebraic expression in the form of a

numerical set, the function can be represented in the graph, which is the most common form.

The graphical form of expressing mathematical relationships is crucial for understanding specific

theories. In the case of scalar functions of one variable, the situation is relatively straightfor-

ward. However, function composition or adding another dimension to the analysis makes such

visualization challenging, even using three-dimensional computer graphics. It is no different with

complex functions, which, as already mentioned, have a two-dimensional input space and a two-

dimensional output space, resulting in a four-dimensional space. Domain coloring [142] is the

most popular and practical visualization method for complex functions. In this dissertation and

related publications, a modified version of the phase portrait presented by Wegert is utilized.

In order to provide comprehensive information on the complex function, an additional graphi-

cal representation in the form of colors should be introduced to the two-dimensional graph (Re(z),

Im(z)). This approach will enable the use of appropriate colors illustrating the phase of the func-

tion, and the absolute value can be represented in the third dimension. Nevertheless, from the

point of view of the visualization of zeros and poles, the argument of the complex function is most

important (which will be explained in detail in the following subsections); hence, the so-called

phase portrait can be used. All phase portraits presented in this dissertation have a discrete form

containing four colors: {red, yellow, green, blue}. It is assumed that in the output space, individual

quadrants of the coordinate system {I, II, III, IV} are marked with appropriate colors, as shown

in Figure 3.1. For each point z from the input space, the so-called quadrant Qn can be assigned

according to the following rule:

Qn =



I, 0 ≤ argF (zn) < π/2

II, π/2 ≤ argF (zn) < π

III, π ≤ argF (zn) < 3π/2

IV, 3π/2 ≤ argF (zn) < 2π

(3.1)

I 0 ≤ arg( )) < /2F z( π

3 /2 ≤ arg( ( )) < 2π πF zIV

π π≤ arg( ( )) < 3 /2F zIII

π π/2 ≤ arg( ( )) <F zIIRe( ( ))F z

Im( ( ))F z

Output space F z( )

root

Figure 3.1: The output space of any function F (z). In each quadrant of the coordinate system, the argument

of the function arg(F (z)) is within the given above intervals.
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In the real domain, according to the geometric interpretation, the zero of the function F (x) = 0,

x ∈ R is called the point of intersection graph of the function with the abscissa (OX in the Cartesian

coordinate system) see Figure 3.2. However, things get slightly more intricate when it comes to

complex numbers. The zero exists only when the real and imaginary parts of the function take

the value zero. Such a scenario is only possible at the origin of the coordinate plane of the output

space, see Figure 3.1. Based on the value of the function (in particular arg(F (z))), the output

space can be mapped onto the input space, thus obtaining a phase portrait (see Figure 3.2). As

can be seen, this way of visualizing the complex function allows for an ”estimated” determination

of the roots of the function.

Re )(z

Im( )zF x( )

x

I 0 ≤ arg( )) < /2F z( π

3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIII

π π/2 ≤ arg( ( )) <F zII

roots

xr-xr

zr

-zr

Figure 3.2: The graphical representation roots of example functions. On the left is graph of a real function

F (x) = (x+ xr)(x− xr) on the right is a phase portrait of the complex function F (z) = (z + zr)(z − zr).

3.1.2 Cauchy’s argument principle

Complex functions F (z) ∈ C can be integrated along curves defined in the complex plane. In

general, the value of the function changes along some curve C ∈ C from point z = z1 to point

z = z2, see Figure 3.3. Thus, the value of the integral could depend on both the line of integration

(shape of the curve) and the function itself. However, suppose F (z) is a holomorphic function

along the integration curve. In that case, the value of the integral is constant. It is analogous to

the behavior of the potential of a field for two-dimensional real functions. In the case of an integral

along a closed Cc curve, its value becomes zero if the function is holomorphic over the entire

region enclosed by this curve, according to the following formula:

∫
Cc

F (z)dz = 0 (3.2)

In order to confirm the existence of a zero or a pole in the complex space, it is necessary to

meet Cauchy’s argument principle [13] (abbreviation as CAP), according to which the number of
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all zeros and poles inside any curve C is represented by the following integral:

q =
1

j2π

∮
C

F ′(z)

F (z)
dz (3.3)

where:

q ∈ Z - parameter that is the difference between the sum of the number of all existing zeros with

their multiplicities and the sum of the number of all existing poles with their multiplicities.

Im( )z

Re( )z

z
a

C
r

r

z

z0

Im( )z

Re( )z

C

z1

z2

a) b)

Figure 3.3: On the left is an example of a curve C in complex space. On the right is a closed curve (circle)

Cr ∈ C.

In Figure 3.4, an example of a CAP verification is shown. Inside curve C, there are three zeros

and one pole. In this case, the parameter q = 3 − 1 = 2. Suppose a region contains only one

essential point (zero or pole). In that case, q denotes the multiplicity (of the root or singularity), a

consequence of the theorem included in the equation (3.2).

Re )(z

Im( )z

roots

poles

I 0 ≤ arg( )) < /2F z( π

3 /2 ≤ arg( ( )) < 2π πF zIV

π π≤ arg( ( )) < 3 /2F zIII

π π/2 ≤ arg( ( )) <F zIIC

za

zb zc

zd

Figure 3.4: The phase portrait of an example rational function F (z) = (z−za)(z−zb)(z−zc)
(z−zd)

with curve C plotted

on it. Zeros are marked with magenta dots, and the poles are marked with cyan.

The formula (3.3) presents an integral that, at first glance, may seem trivial to solve due to

its derivative of the logarithmic function. However, in complex space, the logarithm function does

not have a unique form, as pointed out by reference [13] (see equation (3.4)). It complicates the
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solving process of the integral and requires a more sophisticated analysis and approach.

log(z) = log |z|+ j(arg(z) + 2kπ) (3.4)

where: z ∈ C, k ∈ Z.

Therefore, the result of integration (3.3) is also not trivial. In practice, it is possible to use the

split of the curve C intoM smaller segments, for which the integrals can be calculated separately,

obtaining:

q =
1

2π

M−2∑
m=1

|Θm|

Θm =

 argF (zm+1)− argF (zm), m = 1, ...,M − 1

argF (z1)− argF (zm), m =M

(3.5)

However, it should be noted that the increase in the |Θm| phase cannot exceed π (as shown in

[143], [144]). For this reason, the division into sections is not a straightforward and apparent

process.

If the value of q obtained from the integral (3.3) is equal to zero, then there may be no roots

inside the curve C, or there may be the same number of zeros and poles. To minimize such

potential situation and the possibility of overlooking any roots, CAP can be extended to higher

moments m : [145]:

1

j2π

∮
C

F ′(z)

F (z)
zmdz =

∑
k∈{roots}

(
z(k)

)m

−
∑

k∈{poles}

(
z(k)

)m

(3.6)

The utilization of the moment m = 1 effectively resolves the issue for a singular pair of roots, as

detailed in [146]. Furthermore, any higher moment can further reduce this problem of a higher

order of roots. This technique is especially practical when the analytical expression of the function

is known.

3.1.3 Bisection on a complex plane

The Discrete Cauchy Argument Principle (abbreviation DCAP) requires neither the computation of

the function’s derivative nor its integration over the contour. In practice applications, the parameter

q can be evaluated by sampling the function along the contour C as outlined in [143], [147], [148].

q =
1

2π

P∑
p=1

arg
F (zp+1)

F (zp)
(3.7)

where:

points z1, z2, ..., zP , and zP+1 = z1 are obtained through discretizing curve C.

To ensure the accuracy of the discretization, it is essential that the phase change of the function

F (z) along curve Cp (C =
⋃P

p=1 Cp), from point zp to point zp+1, satisfies the following condition:

∣∣[argF (z)]z∈(zp,zp+1)

∣∣ ≤ π (3.8)
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Re( )z

Im( )z

I

II

III

IV

Re( )z

Im( )z

I

II

III
IV I

II

III

IV

Re( )z

Im( )z

I

II

III

IV

I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

F z( ) = ∞Re( ( )) = 0F z Im( ( )) = 0F zF z( ) = 0

a) b) c)

Figure 3.5: Examples of the Discrete Cauchy Argument Principle: a) single root q = 1 b) double root q = 2

c) singularity q = −1.

In order to confirm the existence of a single root within a small area, only four points located in

different quadrants of the coordinate system are sufficient (the remaining points can be omitted),

as shown in Figure 3.5 a), c). The CAP discretization allows for extending the standard bisection

method on the complex plane. It involves creating a closed quadrilateral region using the four

points. Each successive step of this process adds a new point at the center of the longest edge

(see Figure 3.6). The value of the function at this new point must be from the same quadrant

as one of the ends of the segment under consideration. Then, one of the points with the same

quadrant is removed. As a result, the region is reduced. The process can be repeated for the

longest edge of the new contour until the desired level of accuracy (distance between points) is

reached.

Re( )z

Im( )z

Re( )z

Im( )z

Re( )z

Im( )z

Re( )z

Im( )z

I

II

III

IV

I

II

III

IV

I

II

III

IV

I

II

III

IV

iteration 1 iteration 2 iteration 3 iteration 4

I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

Re( ( )) = 0F z Im( ( )) = 0F zF z( ) = 0

Figure 3.6: The four steps of the generalized bisection method on the complex plane for an example function

with a single zero.

The rate of convergence of the process above is comparatively lower than that of the three-point

technique, such as Muller’s method [51]. Nevertheless, the method presented herein has one

significant advantage - it determines the region where the root is located (in each procedure step).
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3.2 Introduction to the algorithm

TheGRPF algorithm presented in [104] can be segmented into two distinct phases (independent of

each other): the Preliminary Estimation and Mesh Refinement. During the preliminary estimation

process, the roots and poles are estimated by sampling the function at regular triangular mesh

nodes and utilizing DCAP. The second phase of the algorithm seeks to attain the necessary level

of accuracy by reducing the length of long mesh edges accordingly.

3.2.1 Preliminary estimation

This stage is further broken down into smaller steps, such as Initial mesh, Function evaluation,

Candidate edges, and Candidate regions.

Initial mesh

The starting point for the GRPF algorithm is the discretization of the defined domain Ω. A regu-

lar mesh consisting of N0 nodes (zn ∈ Ω, n = 1, 2, ..., N0), and P0 edges ∈ Ω is created for this

purpose. The division of the domain into triangular elements and the definition of edges is ac-

complished by a well-established approach using Delaunay triangulation [149] in the R2 domain.

Its origins are rooted in the multi-dimensional bisection method [150] (see subsection 3.1.3). The

mesh shape based on equilateral triangles provides the highest efficiency of the algorithm. Figure

3.7 shows an example mesh constructed with N = 14 nodes and P = 28 edges. The normalized

length (for the size of the domain Ω) of the longest edge is r = 0.5. Any other arbitrary mesh

configuration is also possible; it is crucial to ensure that the length of the longest edge is smaller

than the adopted resolution r. This parameter will be discussed in more detail in subsection 3.3.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

1

2

3

4

5

6

7

8

9

10

11

12

13 14

Figure 3.7: The example mesh with the numeration of nodes (labeled red) and edges (labeled black), con-

sisting of evenly distributed equilateral triangles (or their halves on the boundary) created using Delaunay

triangulation.
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Function evaluation

The subsequent stage involves calculating the function values at each node of the mesh Fn =

F (zn), where n = 1, 2, 3, ..., N . This step tends to be the most time-consuming part of the algo-

rithm, especially for complex functions, because the number N usually reaches large values. In

general, parallel computation can be applied in multithreading computer architecture, significantly

improving process efficiency for extensive problems. As mentioned earlier, the argument holds

more importance for the algorithm than the absolute value of the function. Thus, the phase of the

function at the nodes is analyzed instead of a straightforward sign change, as in [55], for example.

It is the fundamental difference between these approaches. At this stage, the argument of the

function arg(F (z)) is discretized into four levels of values depending on the quadrants marked as

Qn according to equation (3.1).

Candidate edges

In order to perform a discrete analysis of the phase change along each edge p, the initial step

involves calculating the quadrant Qn for every vertex n on the mesh. Afterward, an additional

parameter representing the difference of quadrants between the vertices defining the edge must

be introduced:

∆Qp = Qnp2
⊖Qnp1

(3.9)

where:

∆Qp ∈ {−2,−1, 0, 1, 2},

⊖ - the difference in value may be greater than 2, but∆Qp = −3 reduces to∆Qp = 1 and∆Qp = 3

to ∆Qp = −1,

np1 i np2 - nodes attached to the edge p.

The algorithm is based on the dependence that each zero or pole is found in a region where the

phase of the function is included in four different quadrants. To illustrate this more precisely, Figure

3.8 provides the mesh with a phase portrait of an example function:

F (z) =
(z − j)(z − 1)3

(z + 1)

in region:

Ω = {z ∈ C : −2 < Re(z) < 2 ∧ −2 < Im(z) < 2}

This function contains a single zero at z(1) = j1, a triple zero at z(2) = 1, and single pole at

z(3) = −1. It is worth noting that each triangulation of four nodes located in four different quadrants

requires at least one edge with |∆Qp| = 2. Therefore, all edges for which the parameter |∆Qp| is

equal to two should be considered probable zero or pole neighborhoods, and these edges will be

referred to as ”candidate edges” in further analysis.
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Figure 3.8: The illustration of the idea of the algorithm, with an example of a rational function with a phase

portrait set in the background. The ”candidate edges” are depicted in magenta. The boundary of the ”candi-

date regions” is marked with a solid cyan line.

Candidate regions

All triangles joined to ”candidate edges” can be collected into one set of candidate triangles E =

{p : |∆Qp| = 2}. This set can be broken down into subsets, i.e., the so-called ”candidate regions”

containing only triangles tangential with at least one ”Candidate Edge.” The boundaries of these

subsets are formed by the edges, which create curves C(k) that enclose the ”candidate regions”.

In Figure 3.8, one can observe three ”candidate regions” surrounded by closed curves C(1),C(2),

and C(3).

Extracting such curves is a straightforward and efficient process. It involves identifying edges

tangent to the ”candidate edges” that connect only once. Collecting these edges into a ”boundary

edges” set for all ”candidate regions” is simple and convenient. These edges form the boundaries

of all regions because inner edges are attached to at least two ”candidate edges.” To construct

the boundary of a separate region, one can start from any edge in the set of ”boundary edges”

(removing it from this set). Then, it finds a connected edge and attaches it to the set that forms

the C(k) curve (removing it from the set of ”boundary edges”). The edge should close the curve if

it is not connected to a new one in the ”boundary edges” set. In this way, the region’s boundary

is determined as a C(k) curve. If unused edges are still in the ”boundary edges” set (the set is

not empty), one starts building the next edge of the region C(k). The procedure again begins by

selecting any edge from the remaining ”boundary edges,” removing it from the set, finding the

next edge connected to the previous one, and so on. The ”candidate regions” boundary must be

constructed only from edges |∆Qp| ≤ 1, according to the DCAP condition (see equation (3.8)).
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In some cases, regions may be defined ambiguously because their boundary may be open, e.g.,

the ”candidate edge” is on the domain’s boundary Ω. To resolve this issue, the domain can be

modified, or shorter edges of the initial mesh can be applied.

3.2.2 Verification with discretized Cauchy’s argument principle

In this approach to DCAP, the minimum number of nodes at which function values are evaluated

is used. Generally, a minimum of four nodes are required to verify a single root or pole. The shape

of the ”candidate regions” is determined by the edges of the mesh. Let us consider the example

from Figure 3.8, where there is a single root, a triple root, and a singularity. For each of these three

”candidate regions,” the function’s argument changes along the contour by a integer multiplicity of

|2π|, taking values from the four quadrants. Since the quadrant difference along a single edge is

|∆Qp| < 2, the discretization of the region boundary is sufficient to estimate the total phase change

at the region boundary. Adding up all the changes (increments) in the quadrants along contours

C(1), C(2), and C(3) in the counterclockwise direction, one gets values ∆QC(1) = 4, ∆QC(2) = 12,

and ∆QC(3) = −4 for regions containing z(1), z(2), and z(3), respectively. Taking into account

the fact that the increase in the number of quadrants along the edges represents changes in the

argument of the function by a minimum of π/2, the parameter q can be calculated by transforming

equation (3.7) to the following form:

q =
1

4

P∑
p=1

∆Qp (3.10)

Hence, it is confirmed that the parameters qC(1) = 1, qC(2) = 3, and qC(3) = −1 correspond to

a single root, a triple root, and a singularity in their respective regions. Additionally, it is worth

mentioning that the change of quadrants along ”candidate edges” |∆Qp| = 2 is not unambiguous,

as it is not always possible to determine whether the phase is increasing or decreasing (only

a change of two quadrants is distinguishable). Consequently, verifying condition (3.8) can be

problematic in some cases, as demonstrated in [144], [147].

3.2.3 Mesh refinement

In order to improve the accuracy of the results, any local (e.g., iterative) root finding algorithm can

be used. However, as mentioned earlier, such methods can be unreliable, potentially resulting

in missed zeros or poles if the initial value is not precise enough. Unlike other techniques (such

as Newton’s or Muller’s), a process that starts at a given initial point may converge to a different

root, especially if the zeros or poles are near each other. The presented approach uses simple

iterative mesh refinement within predefined ”candidate regions.” In order to ensure the correct

convergence of the algorithm and the reliability of the obtained results, the algorithm must include

all of the initially found roots or poles, even if they are not precisely in the ”candidate regions.”

In subsequent iterations, new nodes are added to the mesh at the centers of each edge in

the ”candidate regions,” as illustrated in Figure 3.11. This results in a new mesh created using
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Delaunay triangulation. Function values are then evaluated at these new points, and the newmesh

is analyzed just as in the initial analysis. New ”candidate regions” for a locally denser mesh are

determined. Of course, the new ”candidate regions” are smaller, improving the result’s accuracy.

This process can be repeated as often as assumed until the user’s chosen accuracy δ is achieved.

Unfortunately, in subsequent iterations, mesh refinement can lead to ill-conditioned geometry

and so-called ”skinny” triangles. The ”skinny” triangles are triangles with a huge disproportion

in edge length. It requires creating additional zones surrounding the ”candidate regions” and

introducing additional points. A detailed analysis of this issue and how to solve this problem will

be arranged in the following sections of this chapter.

3.3 Effectiveness and limitations of the algorithm

Increasing the discretization level in each global method of finding zeros and poles raises the

likeliness of finding all roots in the investigated region. GPRF, in its main assumptions as one

of the few algorithms in this group, has direct control over the results’ accuracy. It is expressed

as the δ parameter, defined as the length of the ”candidate edges.” Theoretically, the condition

for GRPF to accurately find all zeros and poles is simple and clear-cut. The initial mesh must be

dense enough, translating into a short edge of the initial mesh marked by r. However, this can

turn out challenging in practice; it can mean the number of nodes will go to infinity N0 → ∞. It

is difficult to realize due to limited computational resources, especially when there are so-called

”islands” in the region under consideration. These are fragments of the domain in which zero-pole

pairs are very close to each other. They are challenging to detect and locate using CAP-based

integral methods, confirmed by the research presented in [112]. To further illustrate the issue of

”islands,” consider the rational function expressed by the following formula:

F (z) =
(z − za)(z − zb − ϵ)

(z − zc)(z − zb + ϵ)

za = 1
2 −

√
3
6 j, zb =

√
3
3 j, zc = − 1

2 −
√
3
6 j

(3.11)

The points za, zb, and zc are the vertices of an equilateral triangle with side lengths a = 1 located

at the origin of the coordinate system. The rational function (3.11) contains a zero at za, a pole at

zc, and a zero-pole pair near the point zb. The points zb − ϵ and zb + ϵ are some distance apart,

denoted by the parameter ϵ. In geometric terms, the distance between them is 2ϵ. For simplicity

of designations, we will assume that ϵ means the size of the ”island” because it only analyzes the

symmetric case concerning the separation for a specific point; in this case, it is zb. Phase portraits

of the function (3.11) with different example ”island” sizes are shown in Figure 3.9 in the following

area:

Ω = {z ∈ C : −1 < Re(z) < 1 ∧ −1 < Im(z) < 1}

It is noticeable that a decrease in the ϵ value results in a reduction in the size of the ”island,”

leading to a change in the phase of the function within a smaller region. Typically, identifying
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these differences necessitates the use of more refined algorithms. Unfortunately, this type of

function (with ”islands”) is frequently encountered in microwave-related problems, such as filters,

waveguides, and resonators (see Chapter 2).
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I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

Figure 3.9: The phase portrait for function from (3.11) in assumed region Ω for three different values of the

epsilon parameter (ϵ = 0.16, ϵ = 0.08, ϵ = 0.04 ).

For the above function (3.11), the influence of the dimension of the triangle edges, and therefore

the density of the regular initial mesh, on the detection of the ”island” of size ϵ = 0.01 by GRPF

will be analyzed. Table 3.1 presents the investigation results wherein the value of the r parameter

is decreased, thus increasing the level of discretization and the number of nodes N0. In addition,

Figure 3.10 depicts the selected initial meshes for N0 = 68, 232, 795, 3038.

Table 3.1: The comparison of the analysis results of the initial mesh for the function (3.11) with a constant

parameter ϵ = 0.01 for different edge lengths r, i.e., discretization parameters (c. abbreviation of candidate).

r N0 no. of ”c. edges” no. of ”c. regions” is ”island” detected?

0.32 68 3 2 no

0.16 232 2 2 no

0.08 795 2 2 no

0.04 3 038 8 3 yes

The outcomes shown in Figure 3.10 indicate that if the initial mesh does not have ”candidate

edges” in the investigated area, the refinement process will not start. Consequently, the algorithm

will not detect zero or pole in a given region, which is also confirmed by the data in Table 3.1.

For instance, if for function (3.11) one uses an initial discretization with N0 = 104 nodes, only

two ”candidate regions” will be determined: around the zero in za and the pole in zc, while the

”island” around zb will not be located. The refinement process will concentrate only on the area

around za and zc. Ultimately, GRPF will find only one zero and one pole with the given δ accuracy.

At the same time, the mesh around the ”island” will not be refined, and the zero-pole pair will

be undetected during the analysis. Generally, the algorithm may locate this ”island” around zb.
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However, discretizing requires a significantly greater number of samples, such as N0 = 3038 (see

Figure 3.10 and Table 3.1) or fortunate distribution of edges.

In general, determining the proper sampling density appears impossible a priori for any func-

tion. As shown in example (3.11), when ϵ decreases to 0.001, over a million points are needed

to locate the ”island,” for even smaller ϵ values, N0 would have to increase by billions. In special

cases, the algorithm can detect any ”island,” no matter how small, using only a few nodes. How-

ever, this outcome relies on chance, as it is related to the lucky alignment of the mesh. Sometimes,

a slight shift of the domain or a change in its size may affect the results obtained (success of the

algorithm).
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„island”

Figure 3.10: The initial triangulation and visualization of function evaluations for the rational function from

(3.11) with the constant parameter ϵ = 0, 01 for a different number of points N0 (i.e., different lengths of the

edges see Table 3.1). Bold magenta lines represent ”candidate edges.”
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To summarize, observation of a too sparsely sampled function may not provide indications that

a zero-pole pair is present in investigated regions. Classical integral methods based on CAP also

fail because the phase around the ”islands” changes slightly, and the integral in CAP equals zero.

For the GRPF algorithm, a fit of the initial mesh may effectively find all zero-poles, but it is not a

necessary condition. In fact, the r parameter may be larger than the distance between the roots

(or poles) of the function. Unfortunately, as in the case of other well-established methods (e.g.,

based on interpolations [53] or discrete techniques [50], [55], [151]), there are no clear guidelines

on how to select the initial discretization conditions for any function and area. As a result, users

solve this issue through trial-and-error experiments. One can also conduct an initial verification

for the whole boundary of region Ω using the DCAP idea. However, this still does not guarantee

finding all the roots and poles.

3.4 The improvement of the algorithm

The following part of the work is a continuation and expansion of the research discussed in pub-

lication [104]. A simple modification and improvement of the mesh refinement stage is proposed.

In the method presented in subsection 3.2 (hereinafter referred to as standard GRPF), new nodes

are added at the center of each edge in ”candidate regions.” However, it is discovered that adding

new points only at the centers of ”candidate edges” is sufficient. This modification leads to a sig-

nificant reduction in computation time by minimizing function calls in successive iterations. For

more sophisticated functions, calculating its value can be the most time-consuming part of the

algorithm, so the improvement presented can significantly reduce the overall computation time.

Despite the similarities of both approaches, regular and modified, it has been shown that reducing

the number of nodes added in subsequent iterations can significantly improve the convergence of

this process. Also, with the proposed solution, the mesh condition should be monitored by adding

additional points in the centers of ill-conditioned (”skinny”) triangles (in both zones), but their num-

ber is insignificant. Moreover, an extra node is added in the center of the edges of the ”candidate

regions” if it is located on the boundary Ω. An example of how this algorithm modification works

is shown in Figure 3.11. In this case, the regular approach would require evaluating the function

in 17 new nodes in the first three iterations, while the modified algorithm would only need 7.

3.4.1 Numerical examples

Both standard and modified versions of the algorithms are tried regarding the number of function

calls, computation time, and the convergence and accuracy of the obtained roots. The numerical

tests are carried out on selected examples fromChapter 2 by determination of the roots of functions

defined analytically as well as numerically. The results are cross-verified with the reference values

noted in [20], [126], [139].
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standard improvment

iteration 3

iteration 2

iteration 1
15 (10+5) points

20 (15+5) points

2 (20+5+2)7 points

11 (10+1) points

12 (11+1) points

17 points(12+1+4)

I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

|∆Q | =p 2

Figure 3.11: Three successive steps of an example mesh refinement process for two versions of the GRPF

algorithm, regular and improved, are shown. The number of nodes in each iteration is presented with the

number of new points in brackets. Bold magenta lines represent ”candidate edges.” The ”candidate regions”

boundary is marked, including a solid cyan line. The black solid bold line represents the boundary of the

additional second zone. The remaining edges on the mesh are marked with a lightweight black dashed line.

The new node is labeled with a black dot. In the third interaction, extra new nodes are added in the centroid

of the ”skinny” triangles.

Cylindrical-rectangular microstrip resonant structure

The first example includes the structure described in subsection 2.3.6. The investigated parameter

z is the frequency f in the following range:

Ω = {z ∈ C : 1.4 < Re(z) < 1.5 ∧ −0.1 < Im(z) < 0}
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The initial mesh shown in Figure 3.12 contains N0 = 7 nodes at the r = 0.1 parameter.

1.4 1.45 1.5

Re( ) [GHz]f
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-0.05
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(

) 
[G

H
z]

f

|∆Q | =p 0

|∆Q | =p 1

|∆Q | =p 2I 0 ≤ arg( )) < /2F z( π

3 /2 ≤ arg( ( )) < 2π πF zIV

π π≤ arg( ( )) < 3 /2F zIII

π π/2 ≤ arg( ( )) <F zII

Figure 3.12: The initial mesh setup is identical for both the standard and improvement approach.

In both procedures, the determined zero (with δ = 10−12 precision) has the value:

f
(1)
r = 1.469084230386− j 0.071068929057 GHz

The outcomes of both analyses align with the reference. However, Table 3.2 indicates a notable

difference in the algorithms’ efficacy. It is manifested in the number of nodes resulting from the

final mesh form (see Figure 3.13). It is worth noting that the time to evaluate a single function is

about 1.8 s; hence, the reduced number of nodes in the modified method directly impacts the total

analysis time.
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I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

|∆Q | =p 2 |∆Q | =p 1 |∆Q | =p 0

Figure 3.13: The comparison of the resulting final meshes for the standard and improvement versions of

GRPF.
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Table 3.2: The comparison of results obtained from analysis using the improvement and standard algorithms

(standard approach in brackets [104])

accuracy δ time [s] no. of function calls no. of iterations

10−3 57.7 (90.1) 32 (50) 11 (7)

10−6 122.0 (225.4) 68 (125) 27 (18)

10−9 188.6 (324.5) 104 (180) 43 (27)

10−12 249.0 (443.6) 138 (246) 60 (37)

Triangular dielectric fiber

Another example is a triangular dielectric fiber, the structure of which is presented in subsection

2.3.5. The domain of the analyzed function is:

Ω = {z ∈ C : 1.25 < Re(z) < 1.35 ∧ −0.4 < Im(z) < −0.35}

The initial mesh shown in Figure 3.14 contains N0 = 7 nodes at the r = 0.1 parameter.

1.25 1.3 1.35

-0.4

-0.35

|∆Q | =p 0

|∆Q | =p 1

|∆Q | =p 2I 0 ≤ arg( )) < /2F z( π

3 /2 ≤ arg( ( )) < 2π πF zIV

π π≤ arg( ( )) < 3 /2F zIII

π π/2 ≤ arg( ( )) <F zII

Figure 3.14: The initial mesh setup is identical for both the standard and improvement approach.

A leaky mode characterized by a normalized propagation coefficient z = γ (with δ = 10−12 preci-

sion) is obtained:

γ(1) = 1.260551725649− j 0.38483851254

Again, the end outcomes are the same for both procedures. As in the previous example, efficiency

is enhanced. The number of nodes, analysis time, and iterations executed are listed in Table

3.3. Figure 3.15 contains the final mesh obtained from both algorithms. This example is also

numerically complicated (the time to call a single function is about 0.1 s), by which the reduction

in total analysis time is due to the smaller number of nodes in the modified GRPF.
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Table 3.3: The comparison of results obtained from analysis using the improvement and standard algorithms

(standard approach in brackets [104])

accuracy δ time [s] no. of function calls no. of iterations

10−3 16.6 (28.8) 161 (281) 17 (8)

10−6 25.8 (48.0) 249 (467) 37 (18)

10−9 34.8 (67.7) 336 (658) 58 (28)

10−12 45.1 (85.1) 437 (829) 82 (38)

1.25 1.2833 1.3167 1.35

-0.395

-0.375

-0.355

standard

1.25 1.2833 1.3167 1.35

-0.395

-0.375

-0.355

improvment

I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

|∆Q | =p 2 |∆Q | =p 1 |∆Q | =p 0

Figure 3.15: The comparison of the resulting final meshes for the standard and improvement versions of

GRPF.

Lossy multilayered waveguide

As the last example to verify the improved version of the algorithm, the multilayer lossy waveguide

presented in subsection 2.3.1 is considered. In this problem, the investigation for the normalized

propagation coefficient z = γ (for the wavelength λ0 = 632.8 nm) is carried out in the range:

Ω = {z ∈ C : 1.25 < Re(z) < 1.75 ∧ −0.25 < Im(z) < 0.25}

1.25 1.5 1.75

-0.25

0

0.25

|∆Q | =p 0

|∆Q | =p 1

|∆Q | =p 2I 0 ≤ arg( )) < /2F z( π

3 /2 ≤ arg( ( )) < 2π πF zIV

π π≤ arg( ( )) < 3 /2F zIII

π π/2 ≤ arg( ( )) <F zII

Figure 3.16: The initial mesh setup is identical for both the standard and improvement approach.
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The initial mesh shown in Figure 3.16 containsN0 = 45 nodes at the r = 0.1 parameter. The result

of the analysis is the finding of the propagation coefficient for five modes (obtained with δ = 10−12

precision):

γ(1) = 1.353140429183− j 0.000086139194

γ(2) = 1.439795544245− j 0.000052001665

γ(3) = 1.504169866405− j 0.000028029437

γ(4) = 1.548692243882− j 0.000012101013

γ(5) = 1.574863045753− j 0.000002974624

The final results are identical in both approaches. However, in contrast to previous instances, for

such a relatively simple function, the efficiency of both algorithms is similar (see Table 3.4). Nev-

ertheless, the final mesh in the modified approach is less regular than in the previous procedure,

as evidenced in Figure 3.17. Since the function is not compiled (the time of evaluating a single

value of the function is about 0.04 ms), the difference in total analysis time is negligible. Even if the

number of function calls in the modified algorithm is much smaller. From a practical perspective,

considering the total CPU use in this case, the choice between these two approaches for simple

functions holds no importance.

1.3 1.4 1.5 1.6 1.7

-0.2

-0.1

0

0.1

0.2

improvment

1.3 1.4 1.5 1.6 1.7

-0.2

-0.1

0

0.1

0.2

standard

I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

|∆Q | =p 2 |∆Q | =p 1 |∆Q | =p 0

Figure 3.17: The comparison of the resulting final meshes for the standard and improvement versions of

GRPF.
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Table 3.4: The comparison of results obtained from analysis using the improvement and standard algorithms

(standard approach in brackets [104])

accuracy δ time [s] no. of function calls no. of iterations

10−3 0.07 (0.05) 321 (461) 24 (8)

10−6 0.11 (0.09) 528 (769) 40 (19)

10−9 0.17 (0.15) 730 (1 060) 53 (29)

10−12 0.24 (0.22) 948 (1 388) 69 (39)

Comments

In summary, the modified algorithm effectively decreases the number of nodes, leading to a no-

tably shorter analysis time. With fewer function calls required, the new approach can be up to

three orders of magnitude faster. Notably, the numerical results are identical to the references,

confirming the thesis: ”The optimal process of mesh densification in the GRPF algorithm [104] will

improve the efficiency of the procedure and increase the probability of finding all roots in a fixed

search region”.

3.4.2 Difficulties with ”skinny” triangles

The initial mesh in the regular approach assumes the division of the investigated domain Ω into

equilateral triangles inside (and half triangles on the boundary) of the given region using the De-

launay triangulation algorithm, as shown in Figure 3.7. The following steps of the algorithm add

new points in the centers of the suspected edges, i.e., between nodes where the phase differs by

two quadrants, as outlined in subsection 3.4. This results in a new mesh being created. However,

suppose subsequent iterations add new nodes only in specific regions of the domain that are very

close to each other. In that case, it may lead to a significant disproportion between the lengths of

the sides of the triangles. In subsequent iterations, the mesh refinement may lead to the formation

of an ill-conditioned layout, i.e., ”skinny” triangles (see Figure 3.18). It is adverse from the point

of view of triangulation stability and may result in the creation of duplicate nodes. Therefore, a

fundamental research problem related to the meshing algorithm can be distinguished:

• How can one control the ”health” of the mesh (ideally, elements are identical), i.e., how to

add new nodes to prevent deformation of the mesh (formation of ”skinny” triangles)?

The standard and improved GRPF (refer to subsection 3.4) only conducts a mesh condition

analysis in the first and second zones of the ”candidate edges”. The first zone includes triangles

with edges (at least two vertices) that are tangent to the ”candidate edges”. The second zone

consists of triangles with only one vertex tangent to the ”candidate edges” (see Figure 3.18). Con-

sequently, for all triangles in the first and second zones, the lengths of each side are investigated
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to determine their mutual ratio. If this ratio exceeds an assumed value, typically, this value is three

based on prior experience and tests; the triangle is supposed to be ”skinny.” To handle this dis-

proportion and ensure edge length uniformity, an additional node is added to the centroid of this

triangle. The solution limits the increase in disproportions between the edges to some extent but

does not eliminate the formation of ”skinny” triangles.

I
I

I

II
II

II

|∆Q | =p 2

I 0 ≤ arg( )) < /2F z( π

3 /2 ≤ arg( ( )) < 2π πF zIV

π π≤ arg( ( )) < 3 /2F zIII

π π/2 ≤ arg( ( )) <F zII

Figure 3.18: The example of ”skinny” triangles (filled in gray) occurring on the mesh for an example function.

Bold magenta lines represent ”candidate edges.” The first zone, i.e., the ”candidate regions” boundary, is

marked as a solid cyan line. The black solid bold line represents the additional second zone. The remaining

edges on the mesh are marked with a lightweight black dashed line.

The new solution for ”skinny” triangles

After analyzing the possible difficulties resulting from occurring ”skinny” triangles, a new approach

to this issue is proposed. Firstly, there is a change in determining which triangle is ”skinny.” Sim-

ilar to the regular approach, only the first and second zones around the ”candidate edges” are

analyzed. The difference is that the ratio of the longest edge to the lowest height is checked in all

triangles from the first and second zones. The larger this ratio, the more ”skinny” the triangle is.

Typically, a triangle is assumed to be ”skinny” when this parameter has a value of 5 (for the first

zone) and 10 (for the second zone). One meaningful change is adopting a new technique to add

new nodes in ”skinny” triangles. In order to control the stability of the mesh [152] and its correct

distribution, it is assumed that new nodes can only be added by splitting existing edges. From

the point of view of triangulation, adding new points in unrestricted areas is not recommended

as it requires more direct control over the distances between new nodes. Therefore, a new point

should be added at the midpoint of its longest edge in each ”skinny” triangle.

The idea of the formation of ”skinny” triangles, their detection, and the method of eliminating

them for both the regular approach (i.e., improvement - see subsection 3.4) and the new one is

presented in the first few iterations. Figure 3.19 shows noticeable differences in how new points

are added and the mesh is created.
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standard modified

iteration 2

iteration 1

iteration 3

I 0 ≤ arg( )) < /2F z( π

3 /2 ≤ arg( ( )) < 2π πF zIV

π π≤ arg( ( )) < 3 /2F zIII

π π/2 ≤ arg( ( )) <F zII
|∆Q | =p 2

Figure 3.19: Two types of approaches (standard and newly proposed) for ”skinny” triangle problems are

compared in three successive steps of an example mesh refinement process. Bold magenta lines represent

”candidate edges.” The black solid bold line represents the ”skinny” triangles. The remaining edges on the

mesh are marked with a lightweight black dashed line. The new nodes are labeled with a magenta dot (by

split ”candidate edges”) and a black dot by nodes added in the ”skinny” triangles.

In the case of the regular approach, adding new nodes does not eliminate the problem with

the ”skinny” triangle. The presented numerical tests will show how the applied change affects the

number of points, the final mesh, and the analysis results of example problems. The outcomes

will be compared with the regular GRPF in the proposed improvement version.
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Triangular dielectric fiber

In the first example, a triangular dielectric fiber is considered (see subsection 2.3.5), which is

already tested in subsection 3.4. The investigated domain is the same:

Ω = {z ∈ C : 1.2 < Re(z) < 1.3 ∧ −0.45 < Im(z) < −0.35}

The initial mesh shown in Figure 3.20 contains N0 = 18 nodes at the r = 0.04 parameter.

1.2 1.25 1.3

-0.45

-0.4

-0.35

|∆Q | =p 0

|∆Q | =p 1

|∆Q | =p 2I 0 ≤ arg( )) < /2F z( π

3 /2 ≤ arg( ( )) < 2π πF zIV

π π≤ arg( ( )) < 3 /2F zIII

π π/2 ≤ arg( ( )) <F zII

Figure 3.20: The initial mesh setup is identical for both the standard and modified approach.

In both approaches, the GRPF algorithm finds a leaky mode characterized by a normalized prop-

agation coefficient z = γ (with δ = 10−12 precision):

γ(1) = 1.260551725649258− j 0.384838512540439

I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

|∆Q | =p 2 |∆Q | =p 1 |∆Q | =p 0

1.2 1.22 1.24 1.26 1.28 1.3

-0.45

-0.43

-0.41

-0.39

-0.37

-0.35
modified

1.2 1.22 1.24 1.26 1.28 1.3

-0.45

-0.43

-0.41

-0.39

-0.37

-0.35
standard

Figure 3.21: The comparison of final meshes for the standard and modified solution of the ”skinny” triangle

issue.
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Table 3.5: The comparison of the number of points, analysis times, and the number of iterations performed

using the modified and standard algorithms (the standard approach for ”skinny” triangles in brackets).

accuracy δ time [s] no. of function calls no. of iterations

10−3 20 (24) 150 (181) 39 (31)

10−6 30 (36) 232 (269) 45 (39)

10−9 42 (48) 315 (363) 69 (61)

10−12 52 (62) 394 (467) 90 (83)

Lossy multilayered waveguide

As another example, the lossy multilayered waveguide presented in subsection 2.3.1, as also

analyzed in subsection 3.4, is considered. Again, the found roots of the function F (z) represent

the normalized propagation coefficients z = γ. This problem is analyzed in the region of:

Ω = {z ∈ C : 1 < Re(z) < 1.6 ∧ −0.25 < Im(z) < 0.25}

The initial mesh shown in Figure 3.22 contains N0 = 12 nodes at the r = 0.25 parameter.

1 1.3 1.6

-0.25

0

0.25

|∆Q | =p 0

|∆Q | =p 1

|∆Q | =p 2I 0 ≤ arg( )) < /2F z( π

3 /2 ≤ arg( ( )) < 2π πF zIV

π π≤ arg( ( )) < 3 /2F zIII

π π/2 ≤ arg( ( )) <F zII

Figure 3.22: The initial mesh setup is identical for both the standard and modified approach.

Table 3.6: The comparison of the number of points, analysis times, and the number of iterations performed

using the modified and standard algorithms (the standard approach for ”skinny” triangles in brackets).

accuracy δ time [s] no. of function calls no. of iterations

10−3 0.31 (0.35) 337 (368) 22 (19)

10−6 0.38 (0.43) 522 (657) 39 (36)

10−9 0.45 (0.53) 749 (956) 54 (51)

10−12 0.54 (0.62) 973 (1 288) 72 (66)
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The standard GRPF and modified ”skinny” triangle approach for this algorithm found (with an

accuracy of δ = 10−12) five guided modes characterized by normalized propagation coefficients:

γ(1) = 1.353140429034829− j 0.000086139366031

γ(2) = 1.439795543998480− j 0.000052001476288

γ(3) = 1.504169866194328− j 0.000028029233217

γ(4) = 1.548692244042953− j 0.000012100934982

γ(5) = 1.574863045538465− j 0.000002974495292

1 1.12 1.24 1.36 1.48 1.6

-0.25

-0.15

-0.05

0.05

0.15

0.25
modified

1 1.12 1.24 1.36 1.48 1.6

-0.25

-0.15

-0.05

0.05

0.15

0.25
standard

I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

|∆Q | =p 2 |∆Q | =p 1 |∆Q | =p 0

Figure 3.23: The comparison of final meshes for the standard and modified solution of the ”skinny” triangle

issue.

Comments

Upon careful analysis of the mesh presented in Figure 3.21 and Figure 3.23, as well as the data

outlined in Tables 3.5 and 3.6, it becomes apparent that the resulting roots are identical for both

techniques. The divergence lies in the efficiency of the approaches. The decreased CPU time is

attributed to the reduced number of nodes in the proposed implemented ”skinny” triangle solution.

Nevertheless, these differences are minor, and the computation times are similar for relatively

simple functions. The essence of the change, however, is the shape of the mesh, which is more

regular and stable. It again proves the thesis: ”The optimal process of mesh densification in the

GRPF algorithm [104] will improve the efficiency of the procedure and increase the probability

of finding all roots in a fixed search region”. In the further part of this dissertation, the algorithm

utilizing the proposed modifications, i.e. an improved method of mesh refinement and a modified

approach to ”skinny” triangles, will be called ”regular” GRPF.
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3.5 Initial mesh generation

As explained in the previous section, the GRPF algorithm has a main limitation in its initial mesh.

The current version of the algorithm assumes a specific initial resolution r, i.e., the longest edges

of the triangle. This parameter sets a particular number of initial mesh nodes N0. As discussed

earlier (see subsection 3.3), the accuracy of finding the roots of the function depends largely on this

parameter. However, selecting an appropriate initial mesh requires detailed preliminary analysis,

and there is still no guarantee that all zeros and poles will be located. These challenges highlight

fundamental research issue related to the meshing algorithm:

• How can one choose the number of points (preferably automatically without user interven-

tion) and the shape of the initial mesh (without knowing the analyzed function) so that the

GRPF algorithm works efficiently and stably?

Properly addressing these questions is crucial to avoiding improper algorithm convergence. In

some cases, in the first iterations of regular GRPF, the triangles are so large that the condition

|∆Qp| = 2 does not meet for any mesh edge. Consequently, certain regions will not be dense

enough, and zeros or poles may be missed. However, every root has to be found, even if it is

not exactly inside the ”candidate region.” A number of tests were performed, and several meth-

ods were developed, proposing various solutions for initial mesh generation. Simple refinement

techniques have been used, interpolations, or even attempts have been made to use machine

learning. The following subsections will present the research results related to creating the initial

mesh.

3.5.1 Proposed methods

This section provides a short overview of the proposed solutions to the issue of initial mesh gen-

eration, which can overcome a limitation of the regular GRPF approach. The research focused on

developing a stable mesh algorithm by closely examining the uneven refinement process, where

some edges on the mesh are more critical than others. Accurately determining the significance of

these edges is crucial to resolving the refinement issue. As part of the work below, several meth-

ods are proposed, including a simple mesh refinement algorithm, a more complex and extensive

interpolation approach, and a final self-adaptive technique based on isophases and their gradients

(explained in more detail in subsection 3.6).

In the beginning, a simple algorithm is proposed in which the edge importance is determined

by a standard DCAP approach-based analysis of increasing the function’s argument at the mesh

nodes. To evaluate an edge’s significance, the difference in quadrants and distance (edge length)

between the nodes is analyzed. The algorithm is developed based on trial and error methods, and

the entire procedure, along with a numerical example, is presented in Appendix A.1. The algorithm

is based on seven irregular iterations. It starts with five points and divides edges unevenly from

two to four parts in the first four iterations. After the sixth iteration, it refines the mesh like the stan-
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dard GRPF algorithm. The method identifies ”candidate regions” and adds points at the centers of

the ”skinny” triangle on the entire domain. The process involves detecting all ”candidate regions”

first and focusing on the density of regions around the ”candidate edges.” Refinements are made

in each iteration to create a more refined mesh. However, there is no theoretical or mathematical

evidence supporting the described scheme. Although the results initially seemed promising, fur-

ther attempts to develop this approach were discontinued due to too many parameters and little

universality. However, the tests showed that the method based merely on the phase-quadrant

approach generates insufficient information about the function’s variability and character. This

conclusion led to a change in technique, and subsequent algorithms used other information, such

as correlations between points.

The next algorithm is based on rational interpolation, and its operating guide and a numerical

example are presented in Appendix A.2. It is a combination of classical interpolation with GRPF.

Generally, there are many algorithms for finding the zeros of complex functions based on interpo-

lation methods [105], [106]. One of the most popular is the raddisk [53] and its improvement AAA

[54]. Detailed numerical tests for these methods will be presented in subsection 3.6.5, where the

results will be compared to the final version of the adaptive meshing algorithm.

A new adaptive approach for generating an initial mesh is introduced using local rational in-

terpolation. The algorithm consists of three stages: mesh nesting, validation of the accuracy of

the interpolation, and the selection of a densified edge. The initial mesh generation is an iterative

process of selecting four points and evaluating function values. If no correct interpolation exists,

additional points are used in successive iterations. Nodes are divided into ”training” and ”valida-

tion” points to ensure accurate interpolation. The algorithm identifies the most accurate rational

type and calculates its coefficients. The rational with the smallest error is selected. If the error

is significant, the domain is recursively split, and points are added based on the variability of the

function.

Generally, the proposed technique is effective mainly for function classes that a rational (or

polynomial) function can represent. The algorithm depends heavily on the degree of the inter-

polating polynomials (in the numerator and denominator), especially for investigating the large

domain Ω and rapidly varying functions. In addition, because of the finite number of mesh nodes

(”training” and ”validation” points), this approach does not guarantee finding all zeros and poles.

Another disadvantage of the described solution is the problem with procedure convergence. It

manifests itself by looping the algorithm and lowering its efficiency. The level of recursion may

be very high, increasing computational complexity. This results in an increase in the total time of

the analysis 1 even though the total number of added nodes is not significant (in one iteration, it is

added from 5 to 9 points).

1It is particularly noticeable for simple functions, where the execution time of a single iteration of the interpolation

procedure takes longer than evaluating a single function value.
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As part of the solution to the issue of generating the initial mesh, an algorithm based on ma-

chine learning of phase portraits was also initially attempted. As a result, the interpolation algo-

rithm presented includes a process of dividing nodes into ”training” and ”validation” points, which

is inspired by machine learning concepts. Attempts were also made to extend the interpolation

algorithm with the concept of the harmonic function. Such an approach is based on the assump-

tion that if a function is harmonic, the average value of the function for boundary nodes in a given

region should be equal to the function value in the center of this area. Nevertheless, testing in-

dicated that this method may not be as precise and effective as desired. Finally, another issue

regarding the interpolation algorithm is the large number of parameters. Even their minor changes

can significantly affect the algorithm’s operation. Some of these coefficients are selected experi-

mentally, such as the accuracy percentage in the error matrix. Hence, the algorithm in this form

is considered unsuitable for the initial mesh generation, and attempts to develop it further were

discontinued. However, it is believed that interpolative methods can be applied as an add-on to

standard CAP approaches (not as a stand-alone algorithm). Using a smaller number of points

due to interpolation, the phase character of the function can be predicted to some extent and, for

example, used to create an approximate phase portrait.

In summary, the aforementioned methods have their limitations, resulting in their discontinua-

tion. However, the conducted tests opened the way for new research ideas, such as the isophase

concept, which will be discussed in the next subsection. Overall, utilizing any adaptive algorithms

provides valuable information about the investigated function, enhancing the success of root find-

ing of complex functions.

3.6 Self-adaptive mesh generator

This subsection will present the final version of the algorithm for a self-adaptive initial mesh gener-

ator for GRPF. As outlined in [116], the result of the proposed technique is a triangular initial mesh,

which becomes the starting point for the regular approach. A significant benefit of this method is

its ability to automatically refine the most critical regions in the mesh from the point of view of root

finding.

As described more than once before, the starting point for a regular GRPF algorithm is to

discretize the investigated function using a unified mesh composed of N0 nodes. In general, a

larger number of points decreases the stake of missing zeros or poles and improves the precision

of the results. In the proposed new technique, similarly to regular GRPF, the user establishes the

search domain Ω ⊂ C, the expected precision of results δ, and the number of discretization points

of the function in the initial mesh (in the condition of the Nmax parameter). It should be noted

that the maximum edge lengths are not defined in this case. The basis of the operation of the

presented algorithm is the analysis of the behavior of curves representing a constant level of the

function arguments, i.e., isophases in the considered domain (see Figure 3.24). This concept will

be discussed in more detail in the next subsection. In particular, the investigation of their density
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and their curvature. The proposed solution analyzes the fastest raises of phases in a specific

direction (gradient) to identify areas requiring mesh refinement where zero and pole are close to

each other.
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Figure 3.24: The phase portraits of the function F (z) = z−1
z

multiplied by ejϕ (for several example values of

the angle ϕ from 0 to π/4). The change of ϕ represents a constant isophase level (shift of the argument of

the function F(z)).

3.6.1 Isophases and gradient analysis

The working principle of the new initial mesh generator for the GPRF algorithm will be demon-

strated using a simple, rational function as an example, see (3.12), in the following domain:

Ω = {z ∈ C : −1 < Re(z) < 1 ∧ −1 < Im(z) < 1}

already analyzed at the beginning of this chapter in the issue of ”islands” in subsection 3.3.

F (z) =
(z − za)(z − zb − ϵ)

(z − zc)(z − zb + ϵ)
(3.12)

where:

za = 1
2 −

√
3
6 j,

zb =
√
3
3 j,

zc = − 1
2 −

√
3
6 j,

ϵ = 0.01 - size of the ”island”.
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In order to present the grounds of the new algorithm more precisely, it is necessary to introduce

the concept of isophases. These are the curves that consist of points inside the search domain

for which the function’s argument (i.e., phase) takes a constant value. As shown in Figure 3.25,

between zero and the pole, there is an infinite number of isophases from −π to π. The above

property is utilized in the proposed technique.
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Figure 3.25: The phase portrait for the rational function from equation (3.12) and the ”island” zoom (ϵ = 0.01)

with the example isophases plotted (white curves).

Let us consider a mesh in which the argument of the investigated function at its nodes is known,

as shown in Figure 3.26. The phase increment along each side∆ϕAB = ϕB−ϕA,∆ϕBC = ϕC−ϕB
and ∆ϕCA = ϕA − ϕC can be analyzed in every n-th triangle ABC in the mesh. According

to CAP, if no zeros or poles are inside the triangle, the sum of the phase increments around the

circumference becomes zero. When there is a zero inside, the function’s argument changes about

2π or a multiple in the case of multiple zero. Similarly, poles and their multiplicities will be −2kπ.

However, when there is a zero-pole pair in a triangular space, the sum of the phases will also

be zero. Therefore, if the triangles on the mesh are too large, finding ”islands” becomes unlikely.

Nevertheless, essential deductions can be drawn by investigating the phase changes along the

edges and the mean phase increase over the entire element. To this end, the direction of the

fastest growth of the function argument (represented by the approximate gradient g⃗n) is evaluated

for each triangle (refer to Figure 3.26).
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Figure 3.26: The mean gradient defined as a vector g⃗n for the nth individual mesh element.

The differences between the phases of the function values along the edge of the triangle are

represented as ∆ϕζ , where ζϵ{AB,BC,CA}. Therefore, ∆ϕAB is the difference between the

phases of arg(F (zB)) and arg(F (zA)). Thus, the argument of the function in a triangle can be

approximated using the equation of a plane:

ϕ = ax+ by + c (3.13)

where:

a, b i c are unknown coefficients.

The following vector can express the gradient of the function argument (phase gradient) in two-

dimensional space:

g⃗n = [a, b] (3.14)

Thus, the coefficient c from equation (3.13) is negligible. From the point of view of the GRPF

algorithm, only the phase increase is crucial, and the exact function value is, in fact, non-essential.

Let us assume that the reference point is point A, and the phases at points B and C are ϕB =

ϕA + ∆ϕAB and ϕC = ϕA + ∆ϕAC . By substituting ∆ϕζ and the coordinates of the vertices, the

following system of equations is obtained:
ϕA = axA + byA + c

ϕA +∆ϕAB = axB + byB + c

ϕA +∆ϕAC = axC + byC + c

(3.15)

If c is determined from the first equation, the gradient can be obtained from the matrix equation:xB − xA yB − yA

xC − xA yC − yA

a
b

 =

∆ϕAB

∆ϕAC

 (3.16)
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It should be noted here that the determination of the gradient is possible only if the change of the

argument of the function along successive sides adds up to zero:

∆ϕAB +∆ϕBC +∆ϕCA = 0 (3.17)

Otherwise, for example, when there is a zero or a pole inside the triangle, the sum is +2π or −2π

and the gradient cannot be unambiguously determined.

Let us investigate the regular triangular mesh generated for the rational function from (3.12).

It consists of N0 = 104 nodes, as shown in Figure 3.27. It is worth noting that this discretization is

sufficient to determine the zero in za and the pole in zc (”candidate edges” with double quadrants

change are in these locations). However, this mesh is too sparse to find the zero-pole pair around

zb Regardless, an approximate phase gradient is determined for each triangle, representing the

direction of the fastest function’s argument increase. In that case, it is easy to see that the region

near the ”island” also stands out strongly.

-1 -0.5 0 0.5 1

Re( )z

-1

-0.5

0

0.5

1

Im
(

)
z

|∆Q | =p 0

|∆Q | =p 1

|∆Q | =p 2 I 0 ≤ arg( )) < /2F z( π

3 /2 ≤ arg( ( )) < 2π πF zIV

π π≤ arg( ( )) < 3 /2F zIII

π π/2 ≤ arg( ( )) <F zII

Figure 3.27: The black arrows represent normalized phase gradients, i.e., the direction of increments of the

function argument on each mesh element (triangle).

3.6.2 Algorithm details

The change in the direction of the gradient in adjacent elements is directly related to the modifica-

tion in the density or curvature of isophases. Taking advantage of this fact, for each inner edge in

the mesh, the angle between the phase gradients for two neighboring triangles can be determined

(while for edges from the border of the domain, this angle will be assumed to be zero):

αp = ∡{g⃗n1 , g⃗n2} (3.18)

where:

n - element number,

p - edge number.
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This angle will close in on zero value in the region where the function’s argument changes slightly,

which suggests no roots and poles. The nearest an edge is to zero or singularity, the greater the

variation between the gradients and the greater the angle between them. The edges of the most

significant angle αp should be split in successive steps. Such an approach, nonetheless, would

result in huge densification of the mesh only in the primarily found ”candidate regions” around zero

or the pole. Obviously, in these areas, the angles become more prominent the closer to zero or

the pole one gets.

Consequently, the algorithm may not analyze the other parts of the domain. So, when refining

the mesh, it is necessary to introduce the Ip indicator. This parameter determines the potential

possibility of a zero or pole occurring near a particular edge as the product of the mentioned angle

and the logarithm of the edge length normalized about the current resolution of the mesh:

Ip = αp · log
(
dp
D

)
(3.19)

where:

D - represents the minimum length of an edge in the mesh (ultimately D, should go to the δ).

This indicator goes to zero when the angle between phase gradients narrows, or the edge

length decreases to the smallest of the mesh. The proposed process for generating an adaptive

mesh involves iteratively determining the edges with the highest indices Ip and dividing them in

half - adding new nodes to the mesh. In this way, in successive iterations, a mesh will be formed

that is adjusted to the specific variability of the function. The process can be started from any

mesh (including a uniform one) and adaptively refined in subsequent steps. It is worth noting that

only a few points should be enough to start the procedure, e.g., defining the domain’s edge (four

points for a square or rectangular domain).

Another aspect the algorithm considers is analyzing the distribution and curvature of isophases.

Phase gradient analysis indirectly analyzes this property, but one can additionally check whether

some mesh edges intersect with the local extrema of such curves. When an edge based on the

nodes zA and zB is split in half, the value of the function f(zM ) = fM = |fM |eϕM is evaluated at

the midpoint point of this line segment. Thus, it can be easy to check whether the phase of the

function ϕM at the new node zM falls within the ambit of phase range defined by the argument of

the function at the ends of the edge, as described by the following relation:

min{ϕA, ϕB} ≤ ϕM ≤ max{ϕA, ϕB} (3.20)

If the above condition is not met, the isophases along the edge cross the edge at least twice,

see Figure 3.28 a). In this circumstance, additional mesh refinement in this region is necessary.

Therefore, in subsequent iterations, all edges attached to nodes for which condition (3.20) is not

met will be split in half by adding additional nodes.
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Figure 3.28: The conception of the analysis of the distribution and curvature of isophases. The isophases

along the example edge: a) condition (3.20) is met, b) condition (3.20) is not met.

In summary, the proposed algorithm’s procedure analyzes the gradients of the function’s argu-

ment describing isophase distributions. In addition, the length of the edges in the current mesh is

evaluated in each step. As in regular GRPF, edges with nodes between which the function argu-

ment differs by two quadrants (”candidate edges”) are split. Also, the longest edges in elements

with a significant disproportion of sides (”skinny” triangles) are reduced to improve mesh condition.

3.6.3 Algorithm steps

In order to organize the issues described in the previous section, let us illustrate the individual

steps of the adaptive mesh generation algorithm. According to the block diagram shown in Figure

3.29, the algorithm consists of the following seven stages:

1. The user sets the initial conditions:

• Defines the domain Ω - region of function analysis (N0 points defining the boundary of

the domain are defined by standard four points for a rectangular domain);

• Imposes the number of nodes Nmax (equivalent to the number of function calls) that

will be used to create the mesh;

• Specifies the accuracy with which the results are to be determined (in the form of the δ

parameter, similar to the regular GRPF algorithm);

2. The value of the function in the new nodes is evaluated (in particular, the phase of the func-

tion, i.e., arg(F (zn))), and Delunay triangulation is done;

3. The ”candidate edges” are determined (i.e., all edges for which |∆Qp| = 2) and edges for

which condition (3.20) is not met (it is not possible to check in the first iteration);

4. For each new element n (triangle), the phase gradient g⃗n is determined and, based on it, the

Ip indicator for each edge p;

73

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


5. The edges that will be divided in half to refine the adaptive mesh are selected - these are all

the edges from point 3 and the same number of edges from point 4 with the highest indicator

Ip (in the case of zero value of this parameter, the longest edges in the mesh are chosen).

If there were no edges in point 3, then a minimum of one from point 4 is selected;

6. The shape of the mesh is analyzed. In order to eliminate ill-condition elements, the longest

edges in each ”skinny” triangle are additionally split in half;

7. If the total number of nodes in the mesh does not exceed the assumed Nmax, then new

nodes are added to the mesh at the midpoint of the edges determined in points 5 and 6, and

it is returned to point 2;

8. The user can change the Nmax parameter during the process by observing (visualizing) the

iterative refinement of the mesh.

Please note that point five of this algorithm involves the experimental selection of the largest

Ip indicator’s represented edge count. The number of edges that fail to meet the condition (3.20)

reflects the current state of the mesh and indicates how many new nodes should be added to it.

Adding too few points can cause slow convergence with many iterations. Although a large number

of points guarantees proper mesh density, it may not be concentrated in critical regions. There-

fore, manually modifying the number of added points can improve the algorithm’s performance

for critical issues. This adjustment provides additional opportunities to enhance the algorithm’s

performance for specific problems as more information is known about the function under investi-

gation.

In summary, the proposed algorithm seems much more fitting and flexible than the regular

GRPF approach, which necessitates restarting the process for a denser mesh. Therefore, it is

unnecessary to perform several tests; only during one analysis can the number of iterations be

freely increased. Thus, the analyzed function’s complexity level can be observed in each iteration.

However, the ”candidate edges” in the initial mesh may be longer and require several additional

iterations to obtain higher precision results. Regardless, using the proposed initial mesh generator

does not significantly impact the number of function calls when employing the standard GRPF

technique to find zeros and poles in the final mesh refinement process.

The above description of the algorithm and the examples presented in the next subsection

are parts of the publication [116] of the author of this dissertation. This part of the work also

confirmed the thesis: ”The proper generation of the initial mesh in the GRPF algorithm [104] will

improve the efficiency of the procedure and increase the probability of finding all roots in a fixed

search region.” The source code of the Self-Adaptive Mesh Generator for GRPF can be found at:

https://github.com/PioKow/SAGRPF.
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Modifying mesh

Adding new nodes to eliminate
skinny triangles
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Any skinny
triangles?

Adding new nodes in centre of
selected edges to split

Increasing N
MAX

StartDefying and ,Ω δ N
MAX

Creating a uniform initial mesh

with nodesN
0

Calculating function values and
quadrants in nodes new nodes

Determining of candidate edges
based on double quadrant

change

Calculating gradient in each
new triangle
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m
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Selecting edges to split

Visualizing of the current mesh

Total number of nodes
(including new nodes)

greater than ?N
MAX
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NO

Increase ?N
MAX

YES

NO

End

Figure 3.29: Block diagram of operating the proposed adaptive mesh generator for the GPRF algorithm.

3.6.4 Numerical examples

This subsection of the dissertation presents several practical numerical examples of operating the

self-adaptive mesh generator for GRPF. Among the example problems presented in subsection

2.3, those containing ”islands” that are difficult to detect with standard CAP methods are tested.

For each example, the tables detail the number of nodes sufficient to find all zeros and poles

depending on the final δ accuracy. Furthermore, the adaptive and regular meshes are compared,

with a particular emphasis on critical regions that impact the functionality of the standard GRPF

algorithm (i.e., the ”islands”).
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Simple rational function

First, numerical results are presented for the example discussed in the theoretical part (see sub-

sections 3.3 and 3.6). The rational function from (3.12) for different values of the ϵ parameter is

analyzed in the domain Ω = {z ∈ C : −1 < Re(z) < 1 ∧ −1 < Im(z) < 1}. Figure 3.30 shows the

successive stages in forming an adaptive mesh for a function with an ”island” of size ϵ = 10−2.

The adaptive procedure starts with just N0 = 4 points defining the vertices of the square domain.
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Figure 3.30: The iterative process of self-adaptive mesh generation, for function from (3.11) with ϵ = 0.01

and δ = 0.001, a) chosen example stages, b) zoom of ”island” locations, respectively, in the demonstrated

iterations.
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Table 3.7 shows the number of nodes GRPF utilizes to find the assumed zeros and poles using

the adaptive and regular meshes. As the data show for large ”islands,” i.e., considerably spaced

between the zeros and poles, the benefit of using an adaptive mesh is slight. Nevertheless, for

smaller epsilon, an adaptive mesh can reduce the number of nodes required by up to a thousand-

fold compared to a regular mesh.

Table 3.7: The minimum number of nodes used by the GRPF (using a self-adaptive initial mesh generator) to

find all zero and poles (including ”islands” of different sizes ϵ) for various accuracies δ. The number of nodes

in the regular initial mesh is given in brackets.

”island” size ϵ accuracy δ total no. of function calls no. of initial nodes

10−3 704 (3 137) 673 (3 038)

10−6 862 (3 323) 673 (3 038)

10−9 1 036 (3 561) 673 (3 038)

10−3 922 (1 157 748) 919 (1 157 734)

10−6 1 054 (1 157 931) 935 (1 157 734)

10−9 1 210 (1 158 077) 935 (1 157 734)

10−6 3 287 (28 883 805) 3 248 (28 883 662)

10−9 3 817 (28 883 971) 3 715 (28 883 662)

10−2

10−3

10−4

Dual-band cross-coupled eighth-order microwave filter

As a first applicable numerical example, the transfer function of the microwave filter presented in

subsection 2.3.8 is investigated. The model concerns the function describing the filter scattering

parameter S11(s). The domain to be calculated is:

Ω = {z ∈ C : −0.4 < Re(z) < 0.2 ∧ 0 < Im(z) < 1.2}

Table 3.8: The minimum number of nodes used by the GRPF (using a self-adaptive initial mesh generator)

to find all zero and poles (including ”islands”) for various accuracies δ. The number of nodes in the regular

initial mesh is given in brackets.

accuracy δ total no. of function calls no. of initial nodes

10−3 1 344 (1 567) 1 262 (1 435)

10−6 1 656 (1 880) 1 262 (1 435)

10−9 1 918 (2 253) 1 262 (1 435)
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The investigated parameter z is s = σ+jω. The function is symmetric concerning ω, so only the

region ω ≥ 0 is analyzed. A similar analysis was also carried out in [112] as a problematic case

where an ”island” seemed, which is a limitation for that algorithm. The zeros and poles found,

enumerated below, make it possible to describe the S11 parameter from the scattering matrix of

the filter:

roots:

s(1) = 0.000000000 + j 0.720326852

s(2) = 0.000000000 + j 0.961957568

s(3) = 0.000000000 + j 0.491541700

s(4) = 0.000000000 + j 0.407949595

poles:

s(5) = −0.128689969 + j 0.408634135

s(6) = −0.324725457 + j 0.702182823

s(7) = −0.167916222 + j 1.095438413

s(8) = −0.022514110 + j 0.378089723

As can be seen in Table 3.8, the number of points required to find all zeros and poles is similar

for both methods - the adaptive mesh required 1 262 function calls, while the regular mesh required

1 435. This is mainly because the size of the ”island” is not small relative to the dimension of the

domain. However, it is worth emphasizing that finding all zeros and poles using a minimal regular

mesh required a series of tests with different mesh densities. Using a sparser mesh than shown in

Figure 3.31 does not ensure finding all zeros and poles in the domain. Such tests do not need to

be conducted in the adaptive approach. The user can observe the changing mesh in the following

steps and increase the number of points if necessary. In addition, as evidenced in Figure 3.31, the

essential region from the point of view of finding zeros and poles has shorter edges than regions

with more minor changes in the function’s argument. It results in speeding up the final refinement

step of the GRPF algorithm.
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Figure 3.31: The initial meshes utilized to find all zeros and poles (including ”island”) in the investigated

domain Ω with assumed accuracy δ = 10−3 for both approaches: regular and self-adaptive. On the right, a

close-up of the ”island” region.

Fabry-Pérot open resonator

Another example includes the structure of the Fabry-Pérot open resonator presented in subsection

2.3.7. The system in the configuration with a plane mirror is analyzed. This example assumes

material losses in the plate with permittivity εr = 5 − 10j. Therefore, the investigation region for

the frequency z = f contains a positive imaginary part. The real part of the domain is based on

the reference publication [17]:

Ω = {z ∈ C : 20 · 109 < Re(z) < 20.5 · 109 ∧ 0.05 · 109 < Im(z) < 0.55 · 109}
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Figure 3.32: The initial meshes utilized to find all zeros and poles (including ”island”) in the investigated

domain Ω with assumed accuracy δ = 10−3 for both approaches: regular and self-adaptive. On the right, a

close-up of the ”island” region.

Table 3.9: The minimum number of nodes used by the GRPF (using a self-adaptive initial mesh generator)

to find all zero and poles (including ”islands”) for various accuracies δ. The number of nodes in the regular

initial mesh is given in brackets.

accuracy δ total no. of function calls no. of initial nodes

10−3 4 569 (73 071) 4 534 (72 935)

10−6 5 104 (73 703) 4 605 (72 935)

10−9 5 616 (74 099) 4 605 (72 935)
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The following zeros and poles are found in the analysis domain:

eleven single zeros:

f
(1)
r = 20.007761298 + j 0.204952543 GHz

f
(2)
r = 20.021725063 + j 0.082217697 GHz

f
(3)
r = 20.053612145 + j 0.255719944 GHz

f
(4)
r = 20.107273419 + j 0.112345937 GHz

f
(5)
r = 20.146603314 + j 0.226088719 GHz

f
(6)
r = 20.214322143 + j 0.253186318 GHz

f
(7)
r = 20.241271881 + j 0.161733798 GHz

f
(8)
r = 20.349966603 + j 0.111563764 GHz

f
(9)
r = 20.437490478 + j 0.092512809 GHz

f
(10)
r = 20.477526173 + j 0.251887051 GHz

f
(11)
r = 20.499250678 + j 0.220886005 GHz

an additional single zero (see right side in Figure 3.32):

f
(12)
r = 20.200693325 + j 0.480861643 GHz

an additional single pole (see right side in Figure 3.32):

f (13) = 20.203665927 + j 0.479927477 GHz

The analysis is completed for three different δ accuracies, and the efficiency of the processes is

summarized in Table 3.9. Figure 3.32 shows the final meshes for both approaches. Notably, the

self-adaptive initial mesh generator for GRPF uses almost 20 times fewer nodes than a regular

mesh to find all zeros and poles of the resonator function in the considered Ω region.

Graphene transmission line

In the last example in this fragment of the work, a simple transmission line containing a graphene

layer is investigated as outlined in subsection 2.3.3. In this problem, the normalized propagation

coefficient z = γ for TM modes is determined in the following range:

Ω = {z ∈ C : −100 < Re(z) < 400 ∧ −100 < Im(z) < 400}

Table 3.10: The minimum number of nodes used by the GRPF (using a self-adaptive initial mesh generator)

to find all zero and poles (including ”islands”) for various accuracies δ. The number of nodes in the regular

initial mesh is given in brackets.

accuracy δ total no. of function calls no. of initial nodes

10−3 17 744 (4 510 733 668) 17 608 (4 510 733 255)

10−6 18 546 (4 510 734 734) 17 728 (4 510 733 255)

10−9 19 267 (4 510 735 232) 17 728 (4 510 733 255)
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The following zeros and poles are found in the analysis domain:

eight single zeros:

γ(1) = −32.101962251− j 27.430861936

γ(2) = 32.101962251 + j 27.430861936

γ(3) = −38.177725314− j 32.529521045

γ(4) = 38.177725314− j 32.529521045

γ(5) = 332.744888929 + j 282.243079954

γ(6) = 336.220287339 + j 285.191091014

γ(7) = 368.439467216 + j 312.522078059

γ(8) = 371.007570834 + j 314.700407677

two poles of the second order:

γ(9) = 0.000000000− j 3.449637662

γ(10) = 0.000000000 + j 3.449637662

additional single zeros (see ”island” in Figure 3.33):

γ(11) = −0.003206780− j 0.964810358

γ(12) = 0.003206780 + j 0.964810358

γ(13) = −0.004526720 + j 0.955901829

γ(14) = 0.004526720− j 0.955901829

additional poles (see ”island” in Figure 3.33:

γ(15) = 0.000000000− j 1.000000000

γ(16) = 0.000000000 + j 1.000000000

Similarly to the previous example, this calculation is performed for various δ accuracies. The

numerical results are listed in Table 3.10, and the final meshes are shown in Figure 3.332. By

utilizing a self-adaptive technique to the initial mesh, the proposed algorithm is able to detect

four additional zeros and two additional poles in the assumed domain. Detecting these regions

through a regular mesh for GRPF would require a huge number of function calls. Furthermore,

it requires additional primary information that particular regions have an ”island.” Without multiple

pre-analyses, the detection of such regions would not be possible. It is unsurprising, as it would

require amesh withmore than four billion nodes. In comparison, the adaptivemesh used hundreds

of thousands of times fewer nodes and pointed all ”candidate regions” with just one analysis.

2In the background is a phase portrait obtained from a very dense function sampling.

82

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


-0.05 0 0.05

0.92

0.96

1

1.04

-5 -2.5 0 2.5 5

-5

-2.5

0

2.5

5

-100 50 200 350

-50

100

250

400

-0.05 0 0.05

0.92

0.96

1

1.04

-5 -2.5 0 2.5 5

-5

-2.5

0

2.5

5

-100 50 200 350

-50

100

250

400

regular - number of nodes = 4 510 733 255

self-adaptive - number of nodes = 17 608

I 0 ≤ arg( )) < /2F z( π

3 /2 ≤ arg( ( )) < 2π πF zIV

π π≤ arg( ( )) < 3 /2F zIII

π π/2 ≤ arg( ( )) <F zII

|∆Q | =p 0

|∆Q | =p 1

|∆Q | =p 2

Figure 3.33: The initial meshes utilized to find all zeros and poles (including ”island”) in the investigated

domain Ω with assumed accuracy δ = 10−3 for both approaches: regular and self-adaptive. A double mag-

nification of the critical region of the ”island” is shown at the bottom and right.
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3.6.5 Comparison with other algorithms

The following subsection compares the numerical results of the AAA algorithm [54] (in the circu-

lar and rectangular domain versions) with GRPF (including a self-adaptive mesh generator and

improvement mesh refinement) for the same examples presented the previous subsection. The

analysis is performed on the domains with similar sizes and number of points (number of function

calls taken from subsection 3.6.4). The figures show the results obtained for the assumed number

of points (thick colored continuous line at the domain boundary) in the AAA algorithm where ”x”

denotes zero and ”o” denotes pole. The results are also gathered in the tables. The phase portrait

is placed in the background to visualize the function behavior and illustrate the zeros and poles

distribution.

Dual-band cross-coupled eighth-order microwave filter

As a first example, the transfer function of the microwave filter presented in subsection 2.3.8 is

re-calculated. The investigated parameter z ∈ C is s = σ+ jω. The analyzed rectangle is defined

by the following curve:

Cr =


z ∈ C :

−0.4 ≤ Re(z) ≤ 0.2 ∧ Im(z) = 0

−0.4 ≤ Re(z) ≤ 0.2 ∧ Im(z) = 1.4

Re(z) = −0.4 ∧ 0 ≤ Im(z) ≤ 1.4

Re(z) = 0.2 ∧ 0 ≤ Im(z) ≤ 1.4


and circle is described by the following curve:

Cc = {z ∈ C : |z − j 0.7| = 0.65}

Table 3.11: Overview of found roots and singularities for the proposed self-adaptive initial mesh generator

for GRPF and results obtained using the AAA method in two configurations.

zeros

z SA-GRPF AAA circle AAA rectangular

s(1) 0.000000 + j 0.407949 0.000000 + j 0.407949 0.000000 + j 0.407949

s(2) 0.000000 + j 0.491541 0.000000 + j 0.491541 not found

s(3) 0.000000 + j 0.720326 0.000000 + j 0.720326 0.000000 + j 0.720326

s(4) 0.000000 + j 0.961957 0.000000 + j 0.961957 0.000000 + j 0.961957

poles

SA-GRPF AAA circle AAA rectangular

s(5) −0.022514 + j 0.378089 −0.022514 + j 0.378089 not found

s(6) −0.128689 + j 0.408631 −0.128689 + j 0.408634 −0.128689 + j 0.408634

s(7) −0.324725 + j 0.702182 −0.324725 + j 0.702182 not found

s(8) −0.167916 + j 1.095438 −0.167916 + j 1.095438 −0.167916 + j 1.095438
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The visualization of the results is presented in Figure 3.34, and the summary of the found

zeros and poles is in Table 3.11. The 1 000 points located evenly spaced from each other along

the perimeter of the rectangle and circle are used for both analyses.
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I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

circular rectangular

number of points = 1 000

x - zeroo - pole

Figure 3.34: The results from the findings of zeros and poles using the AAA algorithm (circular domain on the

left and rectangular domain on the right). In the background is a phase portrait obtained from a very dense

function sampling.

One hundred points are enough for a circular domain in AAA to obtain the same results as

from GRPF. A higher number of points does not bring an improvement in root finding. In the case

of the rectangular domain in AAA, some of the zeros and poles are omitted.

Fabry-Pérot open resonator

The next example includes the structure of the Fabry-Pérot open resonator presented in subsec-

tion 2.3.7. The system in the configuration with a plane mirror is analyzed. This example assumes

material losses in the plate with permittivity εr = 5 − 10j. The investigated parameter z ∈ C is

frequency f [GHz]. The analyzed rectangle is defined by the following curve:

Cr =


z ∈ C :

20 ≤ Re(z) ≤ 20.5 ∧ Im(z) = 0.05

20 ≤ Re(z) ≤ 20.5 ∧ Im(z) = 0.55

Re(z) = 20 ∧ 0.05 ≤ Im(z) ≤ 0.55

Re(z) = 20.5 ∧ 0.05 ≤ Im(z) ≤ 0.55


and circle is described by the following curve:

Cc = {z ∈ C : |z − 20.25− j 0.275| = 0.275}
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The visualization of the results is presented in Figure 3.35, and the summary of the found zeros

and poles is in Table 3.12.

Table 3.12: Overview of found roots and singularities for the proposed self-adaptive initial mesh generator

for GRPF and results obtained using the AAA method in two configurations.

zeros

z SA-GRPF AAA circle AAA rectangular

f
(1)
r [GHz] 20.007761 + j 0.204953 20.084013 + j 0.140736 not found

f
(2)
r [GHz] 20.021725 + j 0.082218 not found 20.030878 + j 0.08804

f
(3)
r [GHz] 20.053612 + j 0.255720 20.010173 + j 0.264031 not found

f
(4)
r [GHz] 20.107273 + j 0.112346 20.118882 + j 0.080254 20.084013 + j 0.140735

f
(5)
r [GHz] 20.146603 + j 0.226089 20.114028 + j 0.177647 not found

f
(6)
r [GHz] 20.214322 + j 0.253186 not found not found

f
(7)
r [GHz] 20.241272 + j 0.161734 20.217773 + j 0.149273 20.209273 + j 0.183226

f
(8)
r [GHz] 20.349967 + j 0.111563 20.338619 + j 0.068928 not found

f
(9)
r [GHz] 20.437490 + j 0.092513 20.433241 + j 0.085308 20.463069 + j 0.085994

f
(10)
r [GHz] 20.477526 + j 0.251887 20.417040 + j 0.215997 not found

f
(11)
r [GHz] 20.499251 + j 0.220886 20.488543 + j 0.212953 20.498675 + j 0.220884

f
(12)
r [GHz] 20.200693 + j 0.480862 20.202756 + j 0.481418 not found

poles

SA-GRPF AAA circle AAA rectangular

f (13) [GHz] 20.203666 + j 0.479928 20.205040 + j 0.480290 not found

For this example, 20 000 points (evenly spaced from each other along the perimeter of the

rectangle) are taken for the analysis. In the case of the circular domain, more results are found

than in the case of the rectangular one. However, the results are not accurately evaluated. In

the case of circular and rectangular domains, the AAA algorithm finds only a few particular roots

(including the ”island”) with acceptable accuracy. In addition, as can be seen in Figure 3.35, there

are many artificial poles and zeros (especially at the boundary of the domain). The significant

impact of the shape of the domain on the results is worrying.
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number of points = 20 000
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Figure 3.35: The results from the findings of zeros and poles using the AAA algorithm (circular domain on the

left and rectangular domain on the right). In the background is a phase portrait obtained from a very dense

function sampling.

Graphene transmission line

In the last example, a simple transmission line containing a graphene layer is investigated as

presented in subsection 2.3.3. In this problem, the normalized propagation coefficient z ∈ C = γ

is determined. The analyzed rectangle is defined by the following curve:

Cr =


z ∈ C :

−100 ≤ Re(z) ≤ 400 ∧ Im(z) = −100

−100 ≤ Re(z) ≤ 400 ∧ Im(z) = 400

Re(z) = −100 ∧ −100 ≤ Im(z) ≤ 400

Re(z) = 400 ∧ −100 ≤ Im(z) ≤ 400


and circle is described by the following curve:

Cc = {z ∈ C : |z − 150− j 150| = 350}

The visualization of the results is presented in Figure 3.36, and the summary of the found zeros

and poles is in Table 3.13. The 20 000 points located evenly spaced from each other along the

perimeter of the rectangle and circle are used for both analyses.
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Table 3.13: Overview of found roots and singularities for the proposed self-adaptive initial mesh generator

for GRPF and results obtained using the AAA method in two configurations.

zeros

z SA-GRPF AAA circle AAA rectangular

γ(1) 0.004527− j 0.955902 not found not found

γ(2) −0.004527 + j 0.955902 not found not found

γ(3) 0.003207 + j 0.964811 not found not found

γ(4) −0.003207− j 0.964810 not found not found

γ(5) −32.101962− j 27.430862 not found not found

γ(6) 32.101962 + j 27.430862 not found not found

γ(7) −38.177725− j 32.529521 not found not found

γ(8) 38.177725 + j 32.529521 not found not found

γ(9) 332.744889 + j 282.243080 not found not found

γ(10) 336.220287 + j 285.191091 not found not found

γ(11) 368.439467 + j 312.522078 not found not found

γ(12) 371.007571 + j 314.700408 not found not found

poles

SA-GRPF AAA circle AAA rectangular

γ(13) 0.000000 + j 1.000000 not found not found

γ(14) 0.000000− j 1.000000 not found not found

γ(15)
0.000000 + j 3.449638 0.188613 + j 3.465189

not found
(second order) −0.188169 + j 3.466824

γ(16)
0.000000− j 3.449638 −0.188583− j 3.465199 0.188119− j 3.466744

(second order) 0.188139− j 3.466814 −0.188555− j 3.465267

In this case, the AAA algorithm found only some poles with debatable accuracy (at least one

in the case of a rectangular domain). The algorithm do not find any of the existing roots, and only

the artificial results are obtained (see the phase portrait in Figure 3.36). In order to analyze this

case in more detail, it is decided to decompose the domain into smaller subregions. The analyzed

rectangle is defined by the following curve:

Cr =


z ∈ C :

−5 ≤ Re(z) ≤ 5 ∧ Im(z) = −5

−5 ≤ Re(z) ≤ 5 ∧ Im(z) = 5

Re(z) = −5 ∧ −5 ≤ Im(z) ≤ 5

Re(z) = 5 ∧ −5 ≤ Im(z) ≤ 5


and circle is described by the following curve:

Cc = {z ∈ C : |z| = 6.5}
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Figure 3.36: The results from the findings of zeros and poles using the AAA algorithm (circular domain on the

left and rectangular domain on the right). In the background is a phase portrait obtained from a very dense

function sampling.
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Figure 3.37: The results from the findings of zeros and poles using the AAA algorithm (circular domain on the

left and rectangular domain on the right). In the background is a phase portrait obtained from a very dense

function sampling.
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The first one involves the vicinity of z = 0, where four poles and four zeros are located. The

visualization of the results is presented in Figure 3.37, and the summary of the found zeros and

poles is in Table 3.14. For a smaller domain, ten times fewer points are used.

Table 3.14: Overview of found roots and singularities for the proposed self-adaptive initial mesh generator

for GRPF and results obtained using the AAA method in two configurations.

zeros

z SA-GRPF AAA circle AAA rectangular

γ(1) 0.004527− j 0.955901 0.012542− j 0.978939 0.003490− j 0.954127

γ(2) −0.004527 + j 0.955902 −0.041528 + j 0.990652 −0.002948 + j 0.949466

γ(3) −0.003207− j 0.964810 −0.012860− j 0.942240 −0.002155− j 0.966510

γ(4) 0.003207 + j 0.964810 0.041862 + j 0.930490 0.001614 + j 0.971167

poles

SA-GRPF AAA circle AAA rectangular

γ(5)
0.000000 + j 1.000000 0.000538 + j 0.999760 0.000076 + j 0.999870

(second order) −0.000525 + j 1.000252 −0.000075 + j 1.000140

γ(6)
0.000000− j 1.000000 0.000414− j 0.999887 0.000040− j 0.999905

(second order) −0.000409− j 1.000121 −0.000039− j 1.000095

γ(7)
0.000000− j 3.449638 0.000001− j 3.449637 0.000000− j 3.449637

(second order) −0.000001− j 3.449639 0.000000− j 3.449638

γ(8)
0.000000 + j 3.449639 0.000002 + j 3.449637 0.000000 + j 3.449637

(second order) −0.000002 + j 3.449639 0.000000 + j 3.449638

Reducing the search region allows one to get correct results; however, their accuracy is still

questionable (and depends on the domain shape). In the next step, the focus is on the region

containing four zeros. The analyzed rectangle is defined by the following curve:

Cr =


z ∈ C :

200 ≤ Re(z) ≤ 400 ∧ Im(z) = 200

200 ≤ Re(z) ≤ 400 ∧ Im(z) = 400

Re(z) = 200 ∧ 200 ≤ Im(z) ≤ 400

Re(z) = 400 ∧ 200 ≤ Im(z) ≤ 400


and circle is described by the following curve:

Cc = {z ∈ C : |z − 300− j 300| = 140}
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Figure 3.38: The results from the findings of zeros and poles using the AAA algorithm (circular domain on the

left and rectangular domain on the right). In the background is a phase portrait obtained from a very dense

function sampling.

Table 3.15: Overview of found roots and singularities for the proposed self-adaptive initial mesh generator

for GRPF and results obtained using the AAA method in two configurations.

zeros

z SA-GRPF AAA circle AAA rectangular

γ(1) 332.744889 + j 282.243080 not found not found

γ(2) 3.362203 + j 285.191091 not found not found

γ(3) 368.439467 + j 312.522078 not found not found

γ(4) 3.710076 + j 3.147004 not found not found

The visualization of the results is presented in Figure 3.38, and the summary of the found zeros

and poles is in Table 3.15. For this example, 1 000 points are taken for the analysis. The AAA

algorithm could not calculate any zeros used for both circular and rectangular shape domains

(even if a hundred times more points were used).

In summary, there are circumstances in which the AAA algorithm is very efficient, especially

if the function is rational. In general, however, the results of the AAA algorithm are highly influ-

enced by the domain shape and size choice. The presence of artificial zeros and the omissions of

some results may raise some doubts about the algorithm’s reliability. The new self-adaptive GRPF

approach is free of these disadvantages, as it assumes analysis for any function and domain at

which the number of starting points will automatically be chosen.
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3.7 Final comments

The above chapter presented the idea of the GPRF algorithm and its improvements on various

levels, i.e., initial mesh, mesh refinement, or control of the stability of root finding (”skinny” triangle

issue). It is shown that by using appropriate mesh densification, it is possible to reduce the number

of nodes and, thus, the total number of function calls. Each reduction in the number of function calls

directly impacts the algorithm’s performance and efficiency, especially for more complex functions

(e.g., numerically complicated).

The main achievement is the proposed self-adaptive mesh generator for the GRPF algorithm.

As can be seen from the presented numerical examples, the proposed technique has low numer-

ical complexity. The benefit of using an adaptive mesh is insensible in straightforward models

and problems where the zeros and poles are well separated. However, the algorithm’s perfor-

mance can increase by several orders of magnitude in the case of zeros and poles located close

together. It was proved that the benefits of using the proposed approach can be huge with near-

located zero-pole pairs. In a situation where the roots are separated and evenly distributed within

the domain, using an adaptive mesh is not necessary, and its effectiveness is similar to using

a uniform mesh. Nevertheless, it is challenging to determine priori the distribution of zeros and

poles for any function, so regardless of the variant, it will be better to use the presented adaptive

algorithm.

In summary, the self-adaptive initial mesh generator for GRPF allows faster and more accu-

rate finding of zero and poles of complex functions. An excellent instance of this is the last of

the numerical examples - the graphene transmission line. The proposed technique reduced the

number of function evaluations by about 200 000 times. It allows the user to perform a faster, more

accurate, in-depth analysis of the investigated electromagnetics problem (not only but every root

finding issue). The above results and the supporting conference proceeding [119] and journal

publications [116] are proof of the first thesis of this dissertation: ”The proper generation of the

initial mesh and the optimal process of its densification in the GRPF algorithm [104] will improve

the efficiency of the procedure and increase the probability of finding all roots in a fixed search

region”.
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Chapter 4

Self-adaptive complex root tracing algorithm

In this chapter, the technique for tracing the complex roots z ∈ C as a function of the additional

parameter t ∈ R, presented in [61], will be introduced. This powerful method has successfully ad-

dressed electrodynamics, various engineering fields, and mathematical problems. Furthermore,

within the scope of this work, an optimization of this algorithm is proposed based on the self-

adaptive discretization of the CAP condition, also supported by the publication [117]. At the end

of this section of the thesis, a numerical experiment will be presented, confirming the reduced

number of function calls during analyses without affecting the achieved accuracy of the results. In

order to better understand the essence of the modifications, first, the features of the algorithm in

the basic version will be discussed.

4.1 Formulation of the problem

The root tracing technique presented in [94] was originally proposed for real functions of two vari-

ables. As it is well known for continuous real functions, changing the sign of the function value

is a necessary and sufficient condition for the existence of a root. Hence, the idea of tracing is

to iteratively check the changes in the sign of the function value at new systematically evaluated

points.

4.1.1 Root tracing of a real function of a two variables

Let us discuss an example of a two-dimensional tracing algorithm for a certain real function,

F (x, y), in the Ω = {x ∈ R, y ∈ R : x ≥ 0 ∧ y ≥ 0} region (see Figure 4.1). In order to start

the tracing procedure, it is necessary to determine the starting point, which is the zero of the ana-

lyzed function F (x0, y0) = 0. For the example shown in Figure 4.1, the tracing process starts from

the line segment on the y-axis, i.e., two points near (x0, y0) where the value function changes its

sign. In the first step, a new point is added at the vertex of the equilateral triangle. The value of

the function is evaluated there, and its sign is determined. Then, the difference in the sign of the

function between vertices is compared. One of the sides of the triangle becomes the new starting
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element for the next step. This procedure is repeated until the edge of the Ω domain is reached

or until there is no zero of the function in a given region.

x

y

x

y

x

y

x

y

( )x y0 0,

F x,y( ) < 0 F x,y >( ) 0F x,y( ) = 0

iteration 1 iteration 2 iteration 6 last iteration

Figure 4.1: Some example steps of the two-dimensional tracing procedure of a function of a real variables.

An effective technique of tracing the root of real functions became the ground for developing

global algorithms for finding the zeros and poles of complex functions [55], [60], [95]. Asmentioned

earlier, very often in practical electromagnetic applications (but also in other fields), the object of

study is to change the place of zero or pole on the complex plane as a function of an additional

variable. The problem then boils down to the three-dimensional space C×R, in which the method

based on changing the sign of the real function turns out to be ineffective, as proven in [61]. It

was shown that different signs of the real and imaginary parts of the function are a necessary but

not sufficient condition for the existence of roots or poles within the considered region. Therefore,

in the complex domain, verification of the existence of a zero in a fixed region is a much more

challenging task.

4.1.2 Generalization of the Cauchy’s argument principle to C× R space

As discussed in earlier chapters, the approach based on Cauchy’s Argument Principle is widely

used in global methods for finding complex roots and poles (refer to subsection 3.1.2). In the

article [61], a necessary modification of CAP-based methods (such as [60], [95]) is proposed,

which enables the correct application of the tracing algorithm in the complex domain. In order to

verify the existence of zero or singularity of the function in an assumed domain, the discretized

version of this principle is used (see subsection 3.2.2). Although DCAP was originally defined on

the complex plane, it turned out that its simple generalization can be derived from the C×R space,

as shown in Figure 4.2.

Let F (z, t) be a continuous holomorphic function in the Ω = {z ∈ C, t ∈ R} region. The root of

this function may depend on the parameter t if z changes as t changes, such that:

F (ξ(t), t) = 0 (4.1)

where:

ξ(t) - curve in the analyzed space C× R.
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In such a case, if a C ⊂ Ω curve of arbitrary shape surrounds ξ(t) - not necessarily being in

the t = const plane, then CAP (as well as DCAP) can be applied. The principles are identical to

those of the two-dimensional complex domain. Thus, the formulas presented in subsection 3.1.2

and their interpretation are valid. Consequently, the value of q (see equation (3.3)) represents the

sum of all zeros with their multiplicities minus the sum of all poles with their multiplicities inside the

curveC. According to the discrete version of CAP, q can be estimated by sampling the function and

changing the quadrant Qn (consistent with changing the function’s argument) around the curve C,

as illustrated in Figure 4.2.

t

Im( )z

Re( )z

I
I

II
II

III

III
IV

IV

C

C

ζ( )t

I 0 ≤ arg( )) < /2F z( π

3 /2 ≤ arg( ( )) < 2π πF zIV

π π≤ arg( ( )) < 3 /2F zIII

π π/2 ≤ arg( ( )) <F zII

Figure 4.2: The ξ(t) curve in the C× R space and the curve C confirm the existence of a root inside it.

4.1.3 Chain of regular tetrahedrons

The tracing algorithm aims to build a chain of regular tetrahedra (three-dimensional C×R space).

This chain will contain a curve ξ(t) representing the change in the place of the root as a function

of the parameter t. The solution will consist of a set of zeros or poles zn(tn) located at the center

of each internal face of the chain. In order to begin the tracing procedure, it is necessary to

determine the starting point (z0, t0), which is the root of a given function in the complex plane for a

fixed value of the initial parameter F (Re(z0), Im(z0), t0)) = 0, as shown in Figure 4.3. This value

can be obtained through various means, such as prior knowledge of the function, experimental or

numerical experimentation, or using global algorithms to determine the zeros of complex functions.

The tracing algorithm can be broken down into the following steps:

1. To begin, an equilateral triangle ABC is constructed with its centroid located at the starting

point ((z0, t0)). The length of the triangle’s side is equal to the r, the parameter that deter-

mines the resolution (accuracy) of the algorithm. At each of the vertex of A,B,C, the value

of the function is evaluated, and its quadrant is determined, as shown in Figure 4.4. Accord-

ing to DCAP, to confirm the existence of a root inside any closed curve, it must contain at
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least four points representing the value of the function being in four different quadrants of

the coordinate system, and they must be set in the correct order.

2. In the next step, new points are added at the midpoint of the edges of the triangle. A standard

bisection approach is applied until the DCAP condition (3.7) is met, i.e., q = 1 for zero, q = −1

for singularity. Fulfillment of this condition confirms the existence of a root or pole inside the

triangle and allows the move on to the next step.

3. A new pointD is added in this stage to form a regular tetrahedron (see Figure 4.4). This way,

triangles are created: ABD, BCD, and CAD enclosing the ξ(t) curve inside. Assuming its

continuity, if ξ(t) intersects the surface of triangle ABC, it must consequently intersect one

of the other faces of the tetrahedron. Determining this face requires, once again, the use of

DCAP. It is therefore necessary to determine the value of the function at vertex D and at new

points added on segmentsAD, BD, and CD of the tetrahedron until the condition (3.7) is met

on any of the faces ABD, BCD, or CAD. This procedure step is crucial to the algorithm’s

performance, especially if evaluating a single function value is time-consuming.

4. Once the proper face containing the root (or pole) is identified (ACD for the example in Figure

4.4), it becomes the bottom face of the new tetrahedron. This process is repeated, starting

from the face where the zero is located (intersecting with the ξ(t) curve). Once again, this

can be achieved by systematically increasing the density of points and adding new points in

the middle of current segments.

5. After several iterations, one gets a set of interconnected tetrahedrons representing the ξ(t)

curve. The process of tracing is repeated until no point has a coordinate t greater than tmax.

This procedure will result in a set of points (zn, tn) consisting of the centroids of all the inner

faces of the chain through which ξ(t) passes.

t

Im( )z

Re( )z
A

B

C

D

Im( )z0

Re( )z0

t

Im( )z

Re( )z

I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

F z t( , ) = 0

Figure 4.3: On the left, a single regular tetrahedron ABCD in C × R space with the root at point z0; on the

right, a chain of tetrahedra representing the investigated curve ξ(t) and a phase portrait in the background.
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The total number of new points (function calls) cannot be determined a priori. Nevertheless,

it depends on the length of the edge r and the complexity of the function. It also depends on the

arrangement of the initial triangle, which will be discussed in more detail in subsection 4.2.3.

t

Im( )zRe( )z

F

E

D

t

Im( )zRe( )z

A

E

D

t

Im( )zRe( )z

A

C

D

t

Im( )zRe( )z

A B

C

D

I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

F z t( , ) = 0

iteration 1 iteration 2

iteration 3 iteration 4

Figure 4.4: The forming of a chain of regular tetrahedrons in the first four example iterations of the tracing

algorithm; the phase portraits illustrated on individual faces.

4.2 The improvement of the algorithm

The Self-Adaptive Complex Root Tracing Algorithm [117] (SACTRA for short) is a proposed im-

provement to the tracing algorithm based on the technique presented in the previous section. As

mentioned above, the most important fragment of the tracing technique in terms of its efficiency

is the number of function calls needed to verify which face the curve ξ(t) passes through. In the

regular tracing algorithm [61], the DCAP condition is analyzed in each triangle (in each face of

the tetrahedron) see equation (3.7). A discrete change in the function phase along each side

containing the zp nodes is investigated. Generally, the phase value itself is unimportant, but the

Qn = {I, II, III, IV}, i.e., quadrant in the coordinate system in which the function value is. Suppose
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the discretization considers all changes of individual quadrants (by one, e.g., from I to II , from II

to III, from III to IV, from IV to I) along the circumference of the triangle. In that case, the DCAP

condition is met. As mentioned earlier, verifying a single root requires at least four points. Figure

4.5 shows two types of discretization (the base approach and the proposed modification [117]),

which confirm the existence of the root inside the triangle. In the regular tracing algorithm, new

points are added to the center of each triangle segment. However, this approach requires evalu-

ating the function value at a minimum of six points, which is redundant. A more efficient approach

is proposed to add a point only in the section with a double change of quadrants at terminal nodes.

I

II

II

III
IV I

regular self-adaptive

I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

Im( ( )) = 0F z

Re( ( )) = 0F z

F z( ) = 0

II

III
IV I

Figure 4.5: Two types of discretizations verify the existance of the root inside the triangle.

The example shown in Figure 4.5 is trivial, and the improvement in algorithm efficiency by

reducing the number of function calls is only 6 to 4 times. In practice, the angle of intersection of

the curves representing the zeros of the real and imaginary parts of the function with the triangle

side could be slight, or the root could be close to the edge of the triangle. Therefore, it may be

necessary to add multiple points along the sides of the triangle, requiring an iterative approach.

New points are added until the existence of a root is confirmed on any face of the tetrahedron.

Each of the four quadrants must occur in the correct order without changing the quadrant double

(i.e., |∆Q| = 2) along a single segment. In Figure 4.6, a comparison of iterative procedures in

regular tracing and the new algorithm using self-adaptive discretization is presented for an example

function. It clearly shows that the algorithm’s performance increases significantly with the number

of iterations, respectively: (3 ·2n) to (n+3) times, where n is the number of iterations. A summary

of the algorithm of the self-adaptive approach for the complex root tracing procedure is presented

in the form of a block diagram in Figure 4.7. The source code of the Self-Adaptive Complex Root

Tracing Algorithm can be found at: https://github.com/PioKow/SACRTA.
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4 (3+1) points

5 (4+1) points

6 (5+1) points

7 (6+1) points

6 (3+3) points

12 (6+6) points

24 (12+12) points

48 (24+24) points

regular self-adaptive

I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

Re( ( )) = 0F z Im( ( )) = 0F zF z( ) = 0

iteration 4

iteration 3

iteration 2

iteration 1

Figure 4.6: The example of four successive iterations of verifying a single root within a triangle. The tracing

algorithm is displayed on the left, while the proposed algorithm utilizing self-adaptive discretization is shown

on the right. The total number of points at each stage is depicted, reflecting the sum of both current and

added nodes (in brackets). Empty circles with black borders indicate the new points added in each iteration.
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End

Setting new face to base of
tetrahedron

Veryfication of the DCAP

Calculating function values and
quadrants in center of

candidate edges

Searching for candidate edge
with double quadrants chage

Calculating function values and
quadrants in new vertex

t < tnew max ?

Adding new vertex to the chainVeryfication of the DCAP

TRUE

FALSECalculating function values and
quadrants in center of

candidate edges

Searching for candidate edge
with double quadrants chage

Calculating function values and
quadrants in new vertex

Creating a base of tetrahedron
- equilateral triangle with center

at z0

Defying starting point , rangez0

of parameter and resolutiont

Start

q = =1 q -1or

q = 0q = NaN

q = =1 q -1or

q = NaN

q = 0

Figure 4.7: Block diagram of operating the proposed Self-Adaptive Complex Root Tracing Algorithm.

4.2.1 Numerical examples

In order to validate the effectiveness of the new, self-adaptive approach for root tracing, the exam-

ples presented in the regular algorithm [61] are calculated. The accuracy of the results, the number

of function calls, and the analysis time are compared between the regular tracing algorithm and

the modified version. In each example, the starting point z0 for the initial value of the additional

parameter t0 is determined using the regular GRPF [104]. The examples shown here account for

the structures presented in subsection 2.3 and are the graphene transmission line, the coaxially

loaded cylindrical waveguide, and the cylindrical-rectangular microstrip resonant structure.
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Graphene transmission line

In the first example in this section, an analysis of the propagation coefficient γ(f) as a function of

frequency in a graphene transmission line (shown in 2.3.3) is carried out. The tracing is performed

in the f ∈ R : 1 ≤ f ≤ 7THz range. The procedure is run for two TMmods. At the initial frequency

f0 = 1 THz, the propagation coefficients are γ01(f0) = 336 + j 285 and γ02(f0) = 32 + j 27,

respectively. The resolution of the algorithm is set to r = 1 (the length of the side of the equilateral

tetrahedron). Fitting the domain to the investigated problem increases the algorithm’s efficiency,

so frequency normalization to 100 GHz is assumed. The resulting curve, ξ(t), is identical for both

approaches and is shown in Figure 4.8. Table 4.1 compares the number of function calls and

analysis times between the approaches.

f
[T

H
z
]

mode 1

mode 2

Figure 4.8: The obtained dispersion characteristics of two TM modes in the assumed frequency range (from

both approaches, results are identical).

Table 4.1: The obtained numerical effectiveness for the proposed self-adaptive approach, compared with

regular tracing (results in brackets).

mode no. of function calls time [s]

1 7 342 (269 767) 0.51 (2.82)

2 3 780 (102 670) 0.39 (1.51)

1+2 11 122 (372 437) 0.90 (4.33)

speed-up ratio 33.49 4.83

This example achieved an impressive reduction in function calls by over 33 times, resulting in a

speed-up analyzing time of almost five times. The difference between these values is due to the

short time of a single function evaluation because the line is modeled analytically.
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Coaxially loaded cylindrical waveguide

The second example pertains to the coaxial cylindrical waveguide loaded with a dielectric. Sub-

section 2.3.2 provides the parameters of this structure. As with the previous example, the propa-

gation coefficient of γ(f) is traced as a function of frequency in the range of f ∈ R : 3 ≤ f ≤ 7

GHz. Again, two separate mods, EH11 and HE11, are considered with propagation coefficients

γ0HE11(f0) = −2.93 and γ0EH11(f0) = 3.68, respectively, at f0 = 3 GHz. Also, in this case, the

resolution of the algorithm is set to r = 0.01 with frequency normalization to 1 GHz. Figure 4.9

presents the obtained characteristics, which are identical for both approaches. Table 4.2 compares

the number of function calls and analysis time between the approaches.

f
[G

H
z
]

mode HE11

mode EH11

Figure 4.9: The obtained dispersion characteristics of EH11 and HE11 modes in the assumed frequency

range (from both approaches, results are identical).

Table 4.2: The obtained numerical effectiveness for the proposed self-adaptive approach, compared with

regular tracing (results in brackets).

mode no. of function calls time [s]

HE11 5 381 (41 419) 0.85 (4.07)

EH11 7 115 (135 714) 1.11 (10.98)

HE11+EH11 12 496 (177 133) 1.96 (15.05)

speed-up ratio 14.18 7.66

In this example, the reduction in function calls is about 14 times, a speed-up time of more than

seven times. Again, the time for a single function evaluation is short because the analytical method

is used to solve the electromagnetic wave propagation equation in such a structure.
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Cylindrical-rectangular microstrip resonant structure

The last example involves a cylindrical-rectangular microstrip resonant structure (see subsection

2.3.6). The tracing concerned the change of the complex resonance frequency fr(s) as a function

of one of the dimensions of the structure, s ∈ R, in the range 0 ≤ s ≤ 10 mm. For the starting point

with an air gap thickness of s0 = 0mm the resonant frequency is fr0(s0) = 1.18− j 0.01GHz. The

resolution of the algorithm is set to r = 0.01 (without domain normalization). The obtained char-

acteristics are equivalent for both approaches and are presented in Figure 4.10. The comparison

of the number of function calls and analysis time is shown in Table 4.3.

s
[m

m
]

Im( ) [GHz]

f
r

Re( ) [GHz]
fr

Figure 4.10: The obtained resonance frequency characteristics, as a function of the air gap thickness (from

both approaches, results are identical).

Table 4.3: The obtained numerical effectiveness for the proposed self-adaptive approach, compared with

regular tracing (results in brackets).

no. of function calls time [s]

915 (6 792) 1 470 (10 045)

speed-up ratio 7.42 8.21

Opposite to the previous examples, evaluating a single function takes much longer because the

problem requires a numerical analysis. The reduction in function calls is approximately seven

times, which resulted in an eight-fold speed-up of time. As can be seen in the presented examples,

the longer the time of a single function call, the greater the acceleration in terms of analysis time

in relation to the reduction of function calls.
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4.2.2 Effectiveness and limitations of the proposed algorithm

The previous section presents a modified and efficient complex root tracing algorithm using self-

adaptive CAP discretization. The proposed modification features significantly fewer function calls

than the regular tracing algorithm. The result is faster analysis without affecting accuracy, which

can be utilized in design and optimization processes. Nevertheless, the tracing algorithm still has

its deficiencies. They are exact in both approaches (regular and self-adaptive). When considering

efficiency and limitations, the following few issues can be highlighted:

• Before starting the tracing process, it is problematic to estimate the number of function calls.

By analyzing the given examples, on average, there are about three function calls per tetra-

hedron. Nonetheless, the number of tetrahedrons in the chain strongly depends on the

nature of the curve ξ(t) being analyzed, making it difficult to provide general conditions. The

examples presented ranged from 6 to 40 tetrahedrons per unit ∆t/r, where ∆t is the size of

the domain relative to the extra parameter t.

• The appropriate setting of the r, i.e., the length of the edges, impacts the algorithm’s ef-

ficiency. A constant value of this parameter is assumed during one analysis. If it were

variable while building the tetrahedral chain, it would get a chain of irregular tetrahedrons.

In the case of irregular tetrahedrons, it is difficult to control the chain stability, which may

become ill-conditioned, e.g., the side face may consist of ”skinny” elements. Furthermore,

there is no evidence indicating a positive impact on the efficiency of the tracing algorithm

or the accuracy of the results obtained when the length of the edges is modified during the

analysis.

• The algorithm exhibits optimal efficiency when the traced characteristic follows a singular

path, ξ(t). However, the potential trouble occurs when the characteristic bifurcates or when

the curve representing the traced root is very close to the different curve. When another zero

(or singularity) is in the area surrounded by the tetrahedron, the algorithm should take this

possible path of characteristics into account.

Upon careful examination of the statement above, it can be deduced that the final point is of

utmost importance. To address this concern, there exist multiple solutions. One possible approach

involves initiating the tracing process from various initial points. By doing so, individual chains of

tetrahedrons can be obtained. Further elaboration on the topic of multipath root tracing can be

found in the subsequent subsection and the conference proceeding [120] authored by the writer

of this thesis.

4.2.3 Multipath complex root tracing

In the presented tracing algorithm (both regular and self-adaptive), new points are added iteratively

until a single root or pole is detected. The procedure then automatically moves on to the next

tetrahedron. In general, multiple zeros or poles can occur on the same or separate faces of
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a tetrahedron. The situation is relatively not complicated when, for a branching point, two or

more roots are found on different tetrahedral faces. The algorithm can remember this critical

place. It continues to trace a single root and may return to the second root after receiving the

first characteristic. Unfortunately, this strategy is impossible when multiple roots appear in one

tetrahedron due to the defined termination condition of analysis. After finding the first root on

a given face, the algorithm moves to the next face. Searching for further roots could result in

the procedure never leaving the first tetrahedron, and the single face would be refined to infinity.

Therefore, only a single root value existing in the one face is guaranteed. Searching for additional

roots would require adding an infinite number of points due to the lack of prior knowledge of their

existence (no termination condition for CAP verification). This problem is a different form of the

”islands” described in subsection 3.3 and [116], that is, zero-pole pairs located close to each other.

It is challenging to detect the diffraction of isophase in a small area. In addition, it is yet to be known

whether multipath characteristics are somewhere. Generally, there are no grounds to assume or

reject such circumstances. In critical situations, any global root finding algorithm, e.g., GRPF, can

be used to verify the plane t = const where the branch is possible. However, regardless of the

multipath problem, a reduced resolution r can also be used for the entire chain.

In the approach presented above, the initial point t0 is surrounded by an initial triangle (on the

complex plane), which is the bottom face of the initial tetrahedron. The orientation of this triangle

on the complex plane is fixed so that for t = t0, one of the edges is parallel to the real axis. Then,

three additional triangles are built to construct the initial tetrahedron (see Figure 4.11). In each

successive step, a new root value is determined on each new face of the tetrahedron. The face

on which the new root is found becomes the next bottom triangle, and three new triangles are built

to form a new tetrahedron. The procedure is repeated until the tetrahedral chain is obtained within

the assumed range of the additional parameter, forming the characteristic ξ(t) from the centroid

points of faces.

t

Im( )z

Re( )z

Im( )z0

Re( )z0

Im( )z

Im( )z0

Re( )z0 Re( )z

initial triangle

F z t( , ) = 0

Figure 4.11: On the left is a regular tetrahedron in C × R space; on the right is the orientation of the initial

triangle in the complex plane, defined by angle ψ.
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The shape of the result characteristic ξ(t) obtained in the tracing procedure may depend on

specific algorithm parameters. When tracing a single curve (ξ(t) has no branches), the initial

orientation of the triangle does not influence the form of the obtained characteristics. Only the

configuration of the tetrahedrons inside the chain may be slightly different. Therefore, it is recom-

mended to set the triangle with one edge parallel to the real axis (as applied in the examples in the

previous subsection). However, it turns out that this orientation can be crucial when bifurcations

appear on the traced path. In such a case, the algorithm may assume a different path after going

through a critical point. This is mainly because other nodes from the close vicinity of the roots will

be analyzed. Therefore, they may differ from each other in quadrants, resulting from a change in

the phase of the function in the C× R space. Hence, it is proposed to introduce an extra param-

eter to the algorithm in the form of the initial angle ψ (see Figure 4.11). Its appropriate selection

enables obtaining each possible solution. This parameter defines the rotation of the initial triangle

relative to the axis OX (real) within the range from 0 to 120 degrees.

To further support the earlier discussion, an example involving the structure of the coaxial

cylindrical waveguide loaded with a dielectric is subjected to additional analysis. The analysis is

carried out over a slightly more sweeping frequency range, from fmin = 1 GHz to fmax = 7 GHz.

The starting point for the tracing routine is also modified compared to the one investigated in the

previous subsection. In this example, the tracing is applied in the reversed direction, i.e., with a

decreasing t parameter. The initial point (determined employing the regular GRPF) corresponded

to the normalized propagation coefficient γ(f0) = 2.172 at the frequency f0 = 7 GHz.

-0.01 -0.005 0 0.005 0.01

2.165

2.168

2.171

2.174

2.177

2.18

4 = 120
o

3 = 90
o

2 = 60
o1 = 30

o

I 0 ≤ arg( )) < /2F z( π 3 /2 ≤ arg( ( )) < 2π πF zIVπ π≤ arg( ( )) < 3 /2F zIIIπ π/2 ≤ arg( ( )) <F zII

Figure 4.12: The examples of initial triangle configurations in the t = const plane, equal f = 7 GHz, are

used to analyze multipath problems in the coaxial cylindrical waveguide example. The phase portrait of the

function is displayed in the background, which shows that for different values of the angle ψ, the vertices of

the triangle are located in the different quadrants of the coordinate system.
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The tracing procedure is carried out with the resolution of the algorithm set to r = 0.01 and

frequency normalization to 1 GHz. By changing the value of ψ, that is, the orientation of the

initial triangle (see Figure 4.12), one obtains four separate characteristics, ξ(t), corresponding

to different modes, as shown in Figure 4.14. Figure 4.13 displays the projections of the final

characteristic generated by executing four separate tracing procedures.
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o

Figure 4.13: The normalized propagation coefficient is shown in the function of frequency. In the analyzed

example, the single modes are obtained by setting initial conditions for the triangle (ψ parameter). On the

left is the projection on the real axis (attenuation constant), and on the right is the imaginary axis (phase

constant).

To sum up, the proposed modification of the initial condition for the starting triangle expands the

possibilities of the algorithm. However, determining all possible paths requires multiple analyses

for different values of the ψ angle. The number of such algorithm calls depends on the complexity

of the path and the scope of the analysis. The above tests indicate that the bisection strategy

can help set a range of angles ψ: {0◦, 60◦, 120◦}, {30◦, 90◦}, {15◦, 45◦, 75◦, 105◦}, and so on.

Regardless, the results obtained may strongly depend on the lucky alignment of the chain to the

location of the bifurcations. In order to indicate the more possible paths, the additional analysis

should be carried out with any global complex root finding algorithm (such as GRPF) performed

for several planes (for fixed values of t = const). The above results and the supporting conference

proceeding [120].

107

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


f
[G

H
z
]

4 = 120
o

3 = 90
o

2 = 60
o

1 = 30
o

1 = 30
o

f
[G

H
z
]

2 = 60
o

f
[G

H
z
]

f
[G

H
z
]

3 = 90
o

4 = 120
o

f
[G

H
z
]

a)

b)

Figure 4.14: The characteristics of the normalized propagation coefficient for the analyzed example: a)

obtained from four separate analyses for individual ψ, b) merged results in one plot.
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4.3 Final comments

The proposed Self-adaptive complex root tracing algorithm effectively modifies the regular tracing

routine and significantly reduces the number of function calls. The fundamental difference is only

in changing the approach for discretizing the CAP condition using a self-adaptive method. It is a

slight change in the algorithm operations, but it gives an impressive growth in its performance. In

summary, for each of the above examples, a reduction in the number of function calls is obtained,

which is also confirmed by the theoretical analysis and proves the thesis: ”The use of self-adaptive

discretization of the CAP condition will reduce the number of function calls in the tracing algorithm

[61] without impacting the achieved accuracy of the results”.
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Chapter 5

Global complex roots and poles finding algorithm in

C× R domain

Although there are many methods for complex root finding as a function of the extra parameter t,

including the efficient global algorithms presented in the previous chapters (with all their improve-

ments), they do not have a direct generalization for the case of functions of multiple variables, i.e.,

for example, in C×R space. As part of this dissertation, a new technique is proposed to increase

the efficiency of finding zeros or poles for functions F (z, t) with an additional parameter. This ap-

proach takes advantage of the features of global algorithms and eliminates problems that occur

in tracing. Its goal is to obtain the full picture of zeros and poles of an investigated function F (z, t)

in the entire analyzed C × R space. It is done by iteratively discretizing the investigated region

(based on domain Ω) and using the generalization of the DCAP condition to the C×R space (see

section 4.1.2). The outcome is the determination of all ξ(t) curves in a given region representing

the roots of complex functions dependent on an additional parameter.

5.1 Formulation of the problem

One way to solve the problem of complex root finding as a function of extra parameters F (z, t) = 0

is to use the ”slicing method.” It involves looking for roots in the complex plane for the discredited

value of the additional parameter t. Such an approach requires multiple calls to a global algorithm,

e.g., GRPF, in a set number of planes t = const. Depending on the complexness of the function,

the discretization may be regular or require greater density (local) relative to t. In a given area

of analysis, there may be many ξ(t) curves; they may cross, intersect, branch, and have any

arbitrary distribution. The ”slicing method” is especially inefficient when the ξ(t) curve is parallel

to the t = const plane. Creating an autonomous and flexible method of discretization of the t

parameter is challenging due to the lack of a general rule. In addition, the ”slicing method” is an

iterative procedure in which repeatedly performing the same operations is time-consuming and

numerically expensive. In the case of complex numerical analyses, the time needed to evaluate

a single function value can be long, so the efficiency of the algorithms is crucial.
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As outlined in subsection 3.3, finding all zeros (and poles) with the minimal number of function

calls (in the assumed domain) cannot be guaranteed by any global algorithm. Sometimes, some

roots may be missed; in the case of the ”slicing method,” they may be in an adjacent plane (or

not). So, it is difficult in the preliminary analysis to estimate the number of points and ensure no

solution has been missed. For more efficient analysis, tracing techniques can be used. However,

this type of algorithm also has its limitations, as presented in subsection 4.2.2. Tracing algorithms

require a starting point and can only find one ξ(t) curve (multipath is possible but inefficient). When

the characteristic bifurcates or when the curves intersect, tracing algorithms may miss some of

the solutions. It can be minimized by reducing the tracing resolution (smaller edge length of the

tetrahedrons), but this leads to an increase in the number of function calls and more numerical

cost.

5.1.1 Algorithm concept

The proposed technique is an iterative method based on regular GRPF (refer to subsection 3.2)

and the generalization of DCAP to C × R space, which is also used in tracing (see subsection

4.1.2). First, a function is defined in the form F (z, t) and the domain Ω ⊂ C×R, where the root will

be searched. This area may be any geometry. Generally, the investigated region may be a range

set for each of the three independent variables Re(z), Im(z), and t, creating a definite shape in the

R3 space. Therefore, it is possible to discretize the entire Ω search area using a three-dimensional

mesh composed of tetrahedrons. It is the fundamental difference between regular GRPF. At each

of the mesh vertices, the value of the function is evaluated, and the argument of the function

arg(F (z, t)) at the nodes is analyzed. By analyzing the phase differences between each vertex

in edges, it is possible to determine ”candidate edges,” i.e., segments with a double change of

quadrants at their ends. In each subsequent step, new nodes (additional points) are added to

the mesh in the midpoint of the ”candidate edges” (analogous to the GRPF regular algorithm). A

set of ”candidate edges” is thus determined, and the points that are the centers of these edges

correspond to the found root of the function. Consequently, the calculated characteristic is a set

of points in the C×R space. To summarize, the algorithm can be presented in the following steps:

1. The first step involves the initial discretization of the Ω region. Based on the defined initial

edges length parameter r, a uniform three-dimensional initial mesh is created, constructed

from K0 tetrahedra based on nodes at N0 points (Re(zn),Im(zn),tn). For this purpose, De-

launay triangulation in the R3 domain is applied.

2. Then, the function values in each node of the initial mesh are evaluated Fn = F (zn, tn).

3. The edges of the mesh are based on points in the C × R space, so it is possible to apply

DCAP and determine the difference of the argument of the function arg(F (z, t)) along each

edge p. From this, the phase change ∆Θp = arg(Fnp2
)− arg(Fnp1

) or, in a discrete version,

the corresponding quadrant increment |∆Qp| is determined.
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4. Next, a set of ”candidate edges” is determined depending on the version of the algorithm

(see subsections 5.1.2 and 5.2). In the preliminary version (similar to regular GRPF), it is

defined by the condition of quadrant change (|∆Qp| = 2). In the final proposed version of

this approach, ”candidate edges” are determined by meeting the absolute change of phase

value (|∆Θp| > π/2).

5. Then mesh is refinement, i.e., all ”candidate edges” are split into two equal parts by adding

additional nodes in their centers. Adding new nodes requires adjusting the mesh and evalu-

ating subsequent function values. Therefore, in the following iterations, the mesh is refined

near the curves representing the zeros or poles of the function.

6. Finally, the ξ(t) curves expressing the results of a given problem are formed based on the

”candidate edges.” More specifically, a simple relation is used: the midpoint of the ”candidate

edges” represents zeros or poles in space C× R (without preliminary separation).

5.1.2 The primary version of the algorithm

The essential part of the proposed method is the shape of the mesh. Its appropriate refinement,

i.e., reducing the length of edges, especially ”candidate edges,” makes the algorithm close to the

true value of the root. The initial mesh is created fromN0 evenly distributed points (Re(zn),Im(zn),tn),

resulting from the initial edges length r. As it is done in the case of tracing, the normalization of

the domain (mainly extra parameter) allows for improved efficiency. It increases the algorithm’s

stability, especially in cases where the additional parameter t is in units of a larger order, e.g.,

GHz. In the algorithm, by default, the Ω domain is normalized to the cube (hereinafter referred to

as ”cubical” domain normalization). Nevertheless, the parameter t, but also the Re(z) and Im(z)

domain range, can be scaled separately to the required range so that all variables are of a similar

order of magnitude (hereinafter referred to as ”manual” domain normalization).

The primary version of the algorithm proposed that the condition for ending the analysis is to

reduce each ”candidate edges” length to the specific value (defined by the accuracy parameter

δ). In cases where the mesh is normalized, the edge length is normalized as well (δ also). It

is important to note that this algorithm does not establish the ”candidate regions” (and does not

analyze them) as typically found in GRPF. To ensure the validity of the proposed technique, nu-

merical tests are performed on the examples outlined in subsection 2.3, particularly the acoustic

waveguide and resonant structure. The objective is to confirm the effectiveness of the domain

normalization to cube and assess the impact of the δ parameter on the results.

Anti-resonant reflecting acoustic waveguide

To start, the correctness of the results and domain normalization is checked by investigating the

example of the ARRAW structure (depicted in subsection 2.3.4). An analysis of the complex lon-

gitudinal wavenumber β(d) as a function of the cladding thickness d [µm] is performed. The inves-
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tigation area aligns with that of reference [72]:

Ω = {β ∈ C, d ∈ R : 0.177 < Re(β) < 15.887 ∧ 0.177 < Im(β) < 15.887 ∧ 0.5 < d < 0.95}

Table 5.1: The comparison of the range in mesh for two types of analysis, ”cubical” and ”manual” normaliza-

tion of the domain Ω; x refers to Re(β), y to Im(β), and z corresponds to d.

normalization type x range y range z range

”cubical” 0 ≤ x ≤ 1 0 ≤ y ≤ 1 0 ≤ z ≤ 1

”manual” 0.177 ≤ x ≤ 15.887 0.177 ≤ y ≤ 15.887 5 ≤ z ≤ 9.5

Each point from Ω is recalculated for the mesh range and vice versa to evaluate the function value.

Table 5.1 shows the modified range of the domain from which the mesh is created. In the case

of ”cubical” mode, a cube is created. For the ”manual” normalization, the scopes of Re(β) and

Im(β) are not changed; only the thickness value d is multiplied by 10. The true points at which the

function value is evaluated are scaled relative to the coordinates of the nodes on the mesh.

Table 5.2: The comparison of analysis parameters used for two domain normalization approaches. The num-

ber of starting points results from the assumed edge length in the initial mesh and the size of the normalized

domain. The accuracy can not be compared directly because of the mesh volume (normalization), but the δ

affects the precision of the results.

normalization type accuracy δ no. of initial nodes N0 initial edges length r

”manual” 2 · 10−2 2 904 0.7

”cubical” 10−3 1 000 0.1

d
[μ

m
]

Re( )βIm( )β

„manual” „cubical”

d
[μ

m
]

Re( )βIm( )β

Figure 5.1: The obtained roots in the form of characteristics (after scaling to the initial Ω domain) of the

complex longitudinal wavenumber β as a function of the cladding thickness d for two types of analyses with

”manual” and ”cubical” domain normalization.
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Table 5.3: The comparison of the number of function calls, analysis times, and the number of iterations

performed using the ”manual” and ”cubical” normalization types. The number of ”c.edges” refers to the found

roots (number of points in characteristics).

normalization type no. of function calls no. of ”c.edges” time iterations

”manual” 79 526 23 656 116.3 s 18

”cubical” 71 888 25 431 114.6 s 18

According to Table 5.3, both normalization ”cubical” and ”manual” yield similar numerical ef-

fectiveness. It is due, among other things, to the fact that the algorithm parameters are selected

to be equivalent for both types. Although the sizes of the domains are different, they are propor-

tional to each other, as shown in Table 5.2. In general, setting the same number of initial nodes or

assumed accuracy (obtained after re-scaling to the Ω input domain) is not feasible. Nevertheless,

the advantage of normalizing to a cube is the more straightforward setting of parameters (no need

to recalculate the edge length for the initial mesh and accuracy) and the ability to directly com-

pare the results from various analyses. The obtained characteristics coincide with the references,

which confirms the correctness of the proposed technique. In addition, analyzing the results of

Figure 5.1, it can be noted that the characteristics obtained by ”manual” normalization of the do-

main include so-called ”noise,” i.e., fragments that are not the true solution. This is due to the

greater disproportion between long and short edges on the mesh. It is worth recalling that the pre-

sented results are only the centers of ”candidate edges.” So, the worse the edge distribution (the

mesh is ill-conditioned), the more artificial solutions or artifacts in the characteristics may appear.

A mesh with a cubic shape is not free of these limitations (due to local mesh refinement around

the ”candidate edges”). However, they are noticeable to a more secondary degree and are not a

significant issue.

Cylindrical-rectangular microstrip resonant structure

The second example involves a cylindrical-rectangular microstrip resonant structure (see subsec-

tion 2.3.6). The analysis concerns the behavior of the complex resonance frequency fr(s) [GHz]

in a function of the air gap thickness s [mm] in the investigated structure in the range:

Ω = {fr ∈ C, s ∈ R : 1 < Re(fr) < 1.5 ∧ −0.2 < Im(fr) < 0 ∧ 0 < s < 10}

.

In this instance, the computational domain is normalized to a cube using ”cubical” type. The initial

mesh contains N0 = 1000 nodes defined by the r = 0.1 parameter (normalized edges length).

Four independent calculations are carried out for varying accuracies (parameter δ is swept). The

results of the numerical tests are presented in Table 5.4. It is widely acknowledged that as the

accuracy increases, the number of function calls, as well as the total computation time, increases.
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Figure 5.2 shows the obtained characteristics (obtained after re-scaling to the Ω input domain)

for each tested accuracy. It is evident that a smaller delta parameter means a denser mesh with

shorter ”candidate edges,” and therefore, the obtained results are more continuous and expres-

sive.

s
[m

m
]

Im( ) [GHz]

f
r

Re( ) [GHz]
fr

s
[m

m
]

Im( ) [GHz]

f
r

Re( ) [GHz]
fr

s
[m

m
]

Im( ) [GHz]

f
r

Re( ) [GHz]
fr

s
[m

m
]

Im( ) [GHz]

f
r

Re( ) [GHz]
fr

accuracy δ = 0.001accuracy δ = 0.005

accuracy δ = 0.05 accuracy δ = 0.01

discontinuities

discontinuity

Figure 5.2: The obtained roots in the form of characteristics (after scaling to the initial Ω domain) of the

complex resonant frequency fr as a function of one of the structure dimensions s for four analyses with

different accuracies. Places where the characteristics show discontinuities are indicated.

Table 5.4: The comparison of the number of function calls, analysis times, and the number of iterations

performed for four analyses with different accuracies. The number of ”c.edges” refers to the found roots

(number of points in characteristics).

accuracy δ no. of function calls no. of ”c.edges” time iterations

0.05 1 149 87 36min 19 s 5

0.01 2 025 526 1 h 4min 1 s 12

0.005 2 918 894 1 h 31min 45 s 15

0.001 10 945 4 624 5 h 39min 10 s 22
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In general, due to the specific arrangement of edges in the mesh relative to the investigated

curve ξ, some areas will not be densified because the ”candidate edges” with a double quadrant

change will not appear there. As a result of such a situation, discontinuities appear in the outcome

characteristics. One way to eliminate such ”gaps” is to use post-processing. Missing parts of

the characteristics could be detected by creating chains of tetrahedrons (similar to tracing) and

discontinuities removed by refinement of these critical mesh parts. It requires additional analysis

and creating an appropriate condition for new analysis (domain range, initial edge length, accuracy,

and others). It is generally challenging to automate and decrease the efficiency.

5 5.25 5.5 5.75 6

s [mm]

-0.08

-0.0775

-0.075

-0.0725

-0.07

Im
(

)[
G

H
z]

f r

5 5.25 5.5 5.75 6

s [mm]

1.465

1.46625

1.4675

1.46875

1.47

R
e(

)[
G

H
z]

f r

accuracy δ = 0.005 accuracy δ = 0.001

Figure 5.3: The complex resonant frequency is shown in the function of one of the structure dimensions for

two accuracies. The zoom of the crucial domain fragment where there are discontinuities in the obtained

characteristics. On the left is the projection on the real axis, and the right is the imaginary axis.

In summary, the proposed technique provides a comprehensive view of the characteristics

(curves ξ(t)) and serves as a ground for potential in-depth analysis. Local algorithms may be

suitable for this purpose, as they can achieve high accuracy with minimal function calls and can

be applied to any plane (regardless of whether t = const). Nevertheless, the proposed algorithm

is highly efficient, as confirmed by the tabled results. The distribution of ”candidate edges” and

their lengths reflects the resolution and accuracy of the results obtained. When shorter edges are

in close proximity to each other, the distribution is more solid, leading to more precise outcomes

(refer to Figure 5.3).

5.2 The final approach

After careful analysis of the previous subsection’s conclusion and limitations, some modifications

are made to the primary version of the algorithm. The final version of the proposed approach,

outlined below, emphasizes the area of zeros and poles near ”candidate edges.” In the primary

approach, ”candidate edges” are assumed to be edges with double quadrant changes along their
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vertices. It is a discrete version of the general CAP condition, in which the function’s argument

changes more than π/2 in the vicinity of roots. Thus, to eliminate the problematic issue of discon-

tinuity in characteristics, the condition on ”candidate edges” is just modified formally. As a result,

in the proposed approach, an edge p is considered a ”candidate edge” if it satisfies the following

condition:

|∆Θp| > π/2 (5.1)

This notation is, in some special cases, equivalent to changing the argument by two quadrants,

but it works more generally. For example, when the phase change from 359◦ to 107◦, it is a

change about two quadrants. However, when the phase changes from 1◦ to 109◦, it is a change

of one quadrant, even though both cases have |∆Θp| = 3π/5 (108◦) > π/2. It is not necessary to

discretize the function’s argument with respect to the angles 0, π/2, π, 3π/2.. Hence, there is no

argumentation for applying such a discretization concerning another one shifted by any angle.

5.2.1 Operation of the algorithm

The primary version of the algorithm assumes determining the length of the edges (r) of the initial

mesh. This parameter is associated with the size of the domain and defines the number of starting

points (N0). The number of final points is not imposed in advance, but the higher the accuracy

δ, the greater the number of function calls. In order to simplify these two parameters, the new

approach introduces one input parameter that must be set and is the maximum number of function

calls Nmax. This value can vary depending on the complexity of the function and determines the

effectiveness and accuracy of the analysis performed. The numerical effort involved in evaluating

a single function value allows one to estimate in advance the running time of the whole algorithm.

If the obtained resolution of results is insufficient, the Nmax number can be increased in further

stages of the algorithm. The user observes the individual stages of the formation of the curves ξ(t)

and can decide during the process to increase the number of function calls to improve the quality

of the results.

The number of nodes in the initial mesh N0 depends on the total number of nodes Nmax and

is usually one percent of that number. The remaining part of the assumed number of nodes (99%

of Nmax) will be added during the mesh refinement in successive stages of the algorithm. In

special circumstances, the user can modify the ratio between the number of initial and final nodes

N0 = ηNmax, such as increasing N0 when Nmax is relatively low.

In the GRPF in C × R domain analogously to the regular GRPF procedure, according to the

new condition (5.1), edges along which the phase of the function changes by more than π/2 are

included in the set of ”candidate edges.” It is near these edges that the zeros or poles of the function

are located. However, detecting the roots in this domain region does not require the evaluation of

q. It should also be mentioned that, as in regular GRPF, if the mesh becomes ill-defined - ”skinny”

tetrahedrons may occur. To avoid such situations, all faces (triangles) in the mesh are verified as

”skinny” according to the condition described in subsection 3.4.2. If the ratio of the longest edge to
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the lowest height on the face exceeds an assumed value1, the triangle is supposed to be ”skinny,”

and a new node is added at the center of the longest edge of such a triangle.

Increasing N
MAX

Adding nodes in center of the
currently longest edges

Adding new nodes in centre of
candidate edges

Any skinny
triangles?

NO

YES

Adding new nodes to eliminate
skinny triangles

Modifying mesh

StartDefying andΩ N
MAX

Creating a uniform initial mesh

with nodesN
0

Calculating function values in
nodes (only for new nodes)

Searching for edge candidates

Visualizing centers of edge
candidates

Total number of nodes

greater than ?N
MAX

YES

NO

Increase ?N
MAX

YES

NO

End

Figure 5.4: Block diagram of operating the proposed GRPF in C× R domain algorithm.

The algorithm stops operating when the number of function calls reachesNmax. The entire pro-

cedure is shown in Figure 5.4. The above description of the algorithm and the examples presented

in the following subsection are parts of the publication [118] of the author of this dissertation. The

source code of the Global Complex Roots and Poles Finding Algorithm in the in C × R Domain

can be found at: https://github.com/PioKow/GRPF3D.

1Typically, this value is ten based on prior experience and tests.
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5.2.2 Algorithm details

To gain a better understanding of the proposed algorithm at hand, it is important to note the fol-

lowing details:

• If the value of a function at a particular node is calculated to be a numerical zero (below

machine precision) or infinity, the function argument becomes impossible to evaluate. In

such cases, every edge connected to this node is permanently designated as ”candidate

edges” (as in the regular GRPF).

• The algorithm accounts for a potential increase in Nmax following the analysis. If the user

decides to adjust this number, nodes equivalent to one percent of the total are evenly added

across the entire domain, just like in the initial mesh process. These nodes are added to the

middle of the longest edges, not just on ”candidate edges.”

The algorithm may seem computationally expensive at first peek. Nevertheless, the iterative

process itself, including triangulation, is relatively inexpensive in terms of CPU resources and

memory usage. The most significant numerical complexity lies in function evaluation. It is clear

that the size of the investigation domain Ω and the level of complexity of curves in this region

are also crucial in the context of the analysis time. It is these that directly affect the necessary

number of function calls. Like standard global algorithms (operating only in the complex plane),

this algorithm does not provide a hundred percent guarantee of finding all zeros and poles for

any complex function with a finite number of calls. However, when performing an investigation by

additional parameter t, the chance of skipping one of the results is lower (assuming continuity of

the function). This is due to the higher probability of convergence for a previous or next t value.

Furthermore, increasing Nmax during the analysis reduces the risk of missing one of the curves

ξ(t) while improving the resolution and accuracy of the obtained results.

5.2.3 Numerical examples

In order to confirm the stability and efficiency of the proposed approach, four various example

propagation and resonance problems are analyzed. Additionally, to prove the assumed thesis in

the first chapter (see subsection 1.2), the ”slicing method” is implemented to compare the results.

It involves calculating roots using the Self-Adaptive Mesh Generator for GRPF for different values

of the extra parameter t.

Anti-resonant reflecting acoustic waveguide

The first example in this fragment of work concerns the ARRAW structure described in subsec-

tion 2.3.4. As in the example for the primary version of this algorithm, an analysis of complex

longitudinal wavenumber β(d) as a function of the cladding thickness d [µm] is performed.
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However, in this case, the βn parameter is normalized such that:

βn = neff + j loss

neff =
Re(β)

k1s
loss =

Im(β)

k1s

(5.2)

where:

neff - effecitve mode index,

k1s - shear transverse wavenumber in the first layer [1/m].

The analysis is carried out setting Nmax = 100 000 (the number of initial nodes is N0 = 1 000) in

the domain:

Ω = {βn ∈ C, d ∈ R : 0.01 < Re(βn) < 0.9 ∧ 0.01 < Im(βn) < 0.9 ∧ 0.5 < d < 0.95}

d
[μ

m
]

neff

loss

iteration 3

d
[μ

m
]

neff

loss

iteration 7

d
[μ

m
]

neff

loss

iteration 1

d
[μ

m
]

neff

loss

iteration 5

Figure 5.5: The iterative process of the proposed algorithm: GRPF in C×R domain for the ARRAW example.

The normalized longitudinal wavenumber as a function of one of the structure dimensions is refined in each

step.
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Table 5.5: The number of nodes in the mesh and the number of ”candidate edges” in each iteration of the

proposed algorithm for the ARRAW example. The number of ”candidate edges” refers to the found roots

(number of points in characteristics).

iteration no. of nodes no. of ”candidate edges”

1 1 000 2 726

2 3 726 9 516

3 13 233 14 880

4 28 113 7 922

5 36 027 5 630

6 41 654 7 876

7 49 524 13 610

8 63 111 25 176

9 88 255 47 226

10 99 994 55 974

11 100 000 55 974

d
[μ

m
]

neff

loss

d
[μ

m
]

neff

loss

new approach GRPF slicing

Figure 5.6: The obtained roots in the form of characteristics of the normalized complex longitudinal wavenum-

ber β as a function of the cladding thickness d for two types of analyses; On the left are results from GRPF

in C× R domain; On the right is the ”slicing method” applying the Self-Adaptive GRPF in the ten planes.

Figure 5.5 shows the operation of the algorithm for selected stages of the analysis. Table 5.5

displays the total number of mesh nodes and the number of ”candidate edges” for all iterations.

After the 11th iteration, the assumed limit of Nmax function calls is reached. The final character-

istics obtained include nine modes (see Figure 5.6). In order to verify the results with reference

[72], the projections of the real and imaginary axes are illustrated in Figure 5.7. Furthermore, the

results from the ”slicing method” at ten regular distant planes (different thicknesses d) are added

for comparison. The analysis of each plane d = const is carried out with Self-Adaptive GRPF
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using about2 10 000 nodes, resulting in a total number of function calls equal to around 100 000 in

the assumed Ω.

d [μm]

n
e
ff

new approach GRPF slicing

d [μm]

n
e
ff

d [μm]d [μm]

lo
ss

lo
ss

Figure 5.7: The projections on the real axis (neff ), and on the imaginary axis (loss) of the obtained char-

acteristics. The imaginary part representing losses is shown on a logarithmic scale. On the left are results

from GRPF in C×R domain; On the right is the ”slicing method” applying the Self-Adaptive GRPF in the ten

planes.

Table 5.6: The comparison of the analysis times of the ARRAW example for equivalent the number of function

calls in two types of analysis: the proposed technique and the ”slicing method.”

algorithm no. of function calls time [s]

new approach 100 000 45

GRPF slicing 10× ≈ 10 000 173

2In the family of GRPF approach, it is not possible to set precisely a number of the function calls, only the maximum

number of nodes when the self-adaptive mesh generator is stopped; after that is done the regular mesh refinement where

the total number of points relies on the assumed accuracy.
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Analyzing the above results in the form of characteristics in the drawings and the times in-

cluded in Table 5.6, one can see a significant advantage of the proposed technique over the ”slic-

ing method.” GRPF in C×R domain gives a full picture of the curves ξ occurring in an investigated

region. In the ”slicing method,” the analysis time is significantly longer (with a similar number of

points as in the new approach). It results from repeated re-initializations of Self-Adaptive GRPF

with the new initial conditions. Additionally, although the results are correct, their resolution needs

to be higher to make the obtained characteristics interpretable. Using the ”slicing” approach re-

quires a large number of points (calculated redundantly). Increasing the accuracy would require

extra analyses in additional planes d = const. It increases the total number of points by several or-

ders of magnitude. The GRPF in C×R domain is free of these disadvantages and is very efficient

and effective.

Coaxially loaded cylindrical waveguide

The next example is coaxial cylindrical waveguide loaded with a dielectric. This structure is de-

scribed in the subsection 2.3.2 but also investigated in the tracing chapter. The normalized prop-

agation coefficient γ as a function of frequency f is analyzed. The analysis is carried out setting

Nmax = 100 000 (the number of initial nodes is N0 = 1000) in the domain (comparable to tracing

analysis):

Ω = {γ ∈ C, f ∈ R : −4.5 < Re(γ) < 4.5 ∧ −0.25 < Im(γ) < 2.25 ∧ 2 < f < 7}

The calculated dispersion characteristics are shown in Figure 5.8 as a three-dimensional graph.

Figure 5.9 shows the projections on the real and imaginary axes. Table 5.7 compares the analysis

times for the proposed technique and the ”slicing method.” As one can see, the new approach is

characterized by higher performance.

f
[G

H
z
]

new approach GRPF slicing

f
[G

H
z
]

Figure 5.8: The obtained roots in the form of dispersion characteristics of the normalized propagation coef-

ficient γ as a function of frequency f for two types of analyses. On the left are results from GRPF in C × R

domain; On the right is the ”slicing method” applying the Self-Adaptive GRPF in the ten planes.
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f [GHz]f [GHz]

f [GHz] f [GHz]

new approach GRPF slicing

Figure 5.9: The projections on the real axis (attenuation constant) and on the imaginary axis (phase constant)

of the obtained dispersion characteristics. On the left are results from GRPF in C × R domain; On the right

is the ”slicing method” applying the Self-Adaptive GRPF in the ten planes.

It is noted that the presented new approach provides a better overview of solutions in the

analyzed region as compared to the characteristics obtained in subsection 4.2.3 (see Figure 4.13

b)). The results obtained from the tracings are extended with additional mods. The limitations of

multipath tracing are eliminated, meaning one analysis gets the full picture, and the branches are

not a problem to find. Similar to the previous example, the results from the ”slicing method” at ten

regular distant planes (different frequencies f ) are also in Figures 5.8 and 5.9. The analysis of each

plane f = const is carried out with Self-Adaptive GRPF using about 10 000 nodes, resulting in a

total number of function calls equal to around 100 000 in the assumed Ω. The results obtained from

both algorithms are convergent. However, much denser discretization as a function of frequency

is required to obtain a full picture of the solutions by the ”slicing method.”
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Table 5.7: The comparison of the analysis times for equivalent the number of function calls in two types of

analysis: the proposed technique and the ”slicing method.”

algorithm no. of function calls time [s]

new approach 100 000 24

GRPF slicing 10× ≈ 10 000 102

Graphene transmission line

In the third example in this section, an analysis of the propagation coefficient γ as a function of

frequency f [THz] in a graphene transmission line (see subsection 2.3.3) is conducted. A similar

investigation is also performed using the tracing method, which is presented in subsection 4.2.1.

The analysis is done by setting Nmax = 100 000 (the number of initial nodes is N0 = 1000) in the

following domain:

Ω = {γ ∈ C, f ∈ R : −100 < Re(γ) < 350 ∧ 25 < Im(γ) < 300 ∧ 1 < f < 7}

Once more, the calculated dispersion characteristics are presented in Figure 5.10 as a three-

dimensional graph. In Figure 5.11, the projections on the real and imaginary axes are shown.

Table 5.8 compares the analysis times for two approaches: the GRPF in C × R domain and the

”slicing method” (at ten regular distant planes with different frequencies f ). The analysis of each

plane f = const is carried out with Self-Adaptive GRPF using about 10 000 nodes, resulting in a

total number of function calls equal to around 100 000 in the assumed domain. Likewise, the results

obtained from both algorithms are convergent. However, it can be observed that the proposed new

approach is more efficient than the other method.

f
[T

H
z
]

new approach GRPF slicing

f
[T

H
z
]

Figure 5.10: The obtained roots in the form of dispersion characteristics of the normalized propagation coef-

ficient γ as a function of frequency f for two types of analyses. On the left are results from GRPF in C × R

domain; On the right is the ”slicing method” applying the Self-Adaptive GRPF in the ten planes.
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Table 5.8: The comparison of the analysis times for equivalent the number of function calls in two types of

analysis: the proposed technique and the ”slicing method.”

algorithm no. of function calls time [s]

new approach 100 000 15

GRPF slicing 10× ≈ 10 000 82

f [THz]f [THz]

f [THz] f [THz]

new approach GRPF slicing

Figure 5.11: The projections on the real axis (attenuation constant) and on the imaginary axis (phase con-

stant) of the obtained dispersion characteristics. On the left are results from GRPF in C×R domain; On the

right is the ”slicing method” applying the Self-Adaptive GRPF in the ten planes.

As can be seen in Figure 5.10, the GRPF inC×R domain results contain some scattered points

that are not necessarily roots (i.e., artificial solutions). It is the so-called ”noise”, a phenomenon

already discussed in the primary version of this algorithm. In critical domain regions, such as mode

intersection, the mesh needs to be denser to separate the curves precisely. In order to improve
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the resolution of the obtained result, further analysis is carried out in the necessary subdomains:

Ω′
1 = {γ ∈ C, f ∈ R : 35 < Re(γ) < 70 ∧ 165 < Im(γ) < 180 ∧ 3.56 < f < 3.70}

Ω′
2 = {γ ∈ C, f ∈ R : 35 < Re(γ) < 70 ∧ 165 < Im(γ) < 180 ∧ 4.24 < f < 4.38}

For both subregions Ω′
1 and Ω′

2, the Nmax = 25 000 with the number of starting nodes N0 = 216 is

assumed for analysis. Figure 5.12 illustrates the roots found in the subregions Ω′ from the initial

analysis of the entire domain, as well as the results of an extra analysis that involves only the

critical region. The data from the full-domain analysis does not provide conclusive evidence as to

whether the curves intersect or merely come close to each other. Additional analysis is necessary

to obtain a clear understanding of the curve behavior.

f
[T

H
z
]

f
[T

H
z
]

results from the entire domain Ω results from the subdomain Ω’

Figure 5.12: The normalized propagation coefficient as a function of the frequency in the investigated sub-

regions. On the left is a zoom of the critical region of the intersection of characteristics from Figure 5.8. On

the right are results obtained from separate analyses of the two for the Ω′
1 and Ω′

2 subdomains.

One method to obtain a more accurate characterization in the indicated area is to increase

Nmax at the end of the analysis. Initially, this may seem like the obvious solution. Nevertheless,

the number of new nodes increases directly proportional to the number of ”candidate edges” in

each iteration. So, their quantity may quickly exceed even 1 000 000. New points are added in all

parts of the curves, which are already redundant in some fragments. Consequently, it seems a

reasonable solution to focus only on the ”critical” regions by re-analyzing the reduced part of the

domain.

Fabry-Pérot open resonator

The last example includes the structure of the Fabry-Pérot open resonator presented in subsection

2.3.7. The system in the configuration with two spherical mirrors is analyzed. According to refer-

ence [140], the real part of the permittivity of the investigated plate is εr = 5.1217 . In this example,

the subject of research is the impact of dielectric losses defined by the loss tangent tan δ on the

resonance frequency fr(tan δ)[GHz]. Since the dimensions of the structure are large relative to

the wavelength (resulting from the operating frequency), the discretization of the computational
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domain in the finite element method used is numerically demanding. Therefore, the search for

roots is limited to relatively narrow ranges of frequency and loss tangent. The analysis is done by

setting Nmax = 10 000 (the number of initial nodes is N0 = 125) in the following domain:

Ω = {fr ∈ C, tan δ ∈ R : 20.35 < Re(z) < 20.4 ∧ 0.05 < Im(z) < 0.1 ∧ 0.01 < tan δ < 0.1}

Based on the convergence analysis detailed in [17], the number of elements that should be used

in the finite element method equals 5 887. As shown in Figure 5.13, the level of discretization used

proved to be sufficient to obtain a clear overview of the three-dimensional characteristics.

new approach GRPF slicing

ta
n

δ

Re
) [

GHz]

(f rIm( ) [GHz]
f
r

ta
n

δ
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(f rIm( ) [GHz]
f
r

Figure 5.13: The obtained roots in the form of characteristics of the resonant frequency fr as a function of

loss tangent tan δ for two types of analyses. On the left are results from GRPF in C×R domain; On the right

is the ”slicing method” applying the Self-Adaptive GRPF in the ten planes.

Table 5.9 compares analysis times between two approaches: the GRPF in the C× R domain

and the ”slicing method” (at ten regular distant planes with different dielectric losses). For each

plane at a constant tan δ, the Self-Adaptive GRPF method is used with approximately 1 000 nodes,

resulting in a total of around 10 000 function calls in the given domain. In contrast to the previous

examples, evaluating a single function takes much longer because the problem requires a numer-

ical analysis. Hence, every improvement in the algorithm’s operation is directly expressed in the

total computational time.

Table 5.9: The comparison of the analysis times for equivalent the number of function calls in two types of

analysis: the proposed technique and the ”slicing method.”

algorithm no. of function calls time

new approach 10 000 78 min 42 s

GRPF slicing 10× ≈ 1 000 90 min 55 s

128

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Figure 5.14 displays the projections on the real and imaginary axes. As can be seen, the

increase in dielectric losses yields a linear shift (increases) in the imaginary part of the frequency

while the real part remains almost unchanged. The calculated values coincide with the measured

results published in [17], where Re(fr) = 20.372GHz for the resonant mode of TEM0,0,27.

new approach GRPF slicing
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Figure 5.14: The projections on the real axis and the imaginary axis of the obtained characteristics. On the

left are results from GRPF in C × R domain; On the right is the ”slicing method” applying the Self-Adaptive

GRPF in the ten planes.

5.3 Final comments

Summarizing the obtained numerical results, the proposed GRPF in C× R domain algorithm ex-

tends the possibilities of finding zeros of complex functions as a function of an additional parame-

ter. It is an effective and stable global method that gives a full picture of the characteristics in the

investigated C × R domain. Nevertheless, it has some limitations. The results provide a general

overview of the behavior of the curves rather than a precise solution. While it is an approximate

result, it is obtained quickly and efficiently, which can be seen as a benefit if it meets the user’s
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needs. Furthermore, the results obtained can be improved in further analysis or using other meth-

ods, such as tracing, ”slicing,” and local techniques.

An undeniable advantage of the proposed GRPF in C × R domain technique over tracing is

that a single employment of the algorithm allows one to obtain several curves representing zero

or poles in the investigated area. Moreover, the algorithm can handle multipath characteristics;

no a priori knowledge of these curves is needed, such as their number, beginning and end, the

distance between them, or potential intersection. Therefore, the user does not have to determine

the edge length of the mesh and perform preliminary analyses.

On the other hand, when comparing the new approach with an alternative ”slicing method” in

the proposed algorithm, there is no need to control the level of discretization of the t parameter,

which reduces the user’s involvement and allows for lower numerical costs. The algorithm can

find curves ξ(t) parallel to t = const (in the case of ”slicing,” this is problematic). Additionally, the

level of reliability in GRPF in C×R domain technique is more significant compared to ”slicing,” in

which the discontinuity of the domain (in the t variable) causes the risk of omitting any of the roots

in some plane.

Moreover, the final version of the algorithm largely eliminates ”noise” in the obtained results,

i.e., edges not being zeros or poles. Such artificial solutions are usually the effect of edges that

are too long in a specific part of the mesh. Thus, the main limitation of the proposed method is

the finite number of function calls. Generally speaking, precisely determining all ξ(t) curves in an

assumed domain Ω is possible, but Nmax must go to infinity.

To sum up, the above discussion confirms that generalization of the GRPF algorithm to C×R

space allows one to obtain a full picture of the distribution of zeros and poles of the function F (z, t)

in the entire analyzed region C × R, eliminating the limitations existing in tracing and the ”slicing

methods.” So, the last of the theses assumed at the opening of the dissertation is proven.
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Chapter 6

Summary

This dissertation underscores the significance of root finding problems for studying the properties

of waveguides and resonators applicable in microwave and terahertz technology. The primary

objective of the research was to improve existing algorithms and develop new numerical tools to

address these issues, and that goal has been accomplished.

The outcome of the work is to create a package of algorithms (free and available on the GitHub

platform) that can be utilized to investigate phenomena such as backward wave propagation com-

plex and leaking mods in waveguides. These methods are not limited to this; the proposed meth-

ods can also be used to determine resonant frequencies and parameters of materials, as well as

the propagation properties of, for example, conformal antennas.

Additionally, solving nonlinear eigenvalue and complex root findings problems is crucial when

designing microwave devices like couplers, baluns, phase shifters, circulators, isolators, beam

splitters, and multiplexers. Proposed techniques aid in analyzing the radiation and material losses

in these devices, providing a comprehensive understanding of their phenomena. This disser-

tation’s findings are expected to contribute significantly to knowledge of the theoretical basis of

electromagnetic wave phenomena. Notably, the tools created, specifically nonlinear eigenvalue

problem-solving methods, have practical applications beyond electrodynamic problems. The de-

veloped tool is flexible and can be used in various scientific fields, including acoustics, control

theory, quantum mechanics, and more.

6.1 Conclusion

The research conducted for this dissertation led to the attainment of the following novel outcomes:

• The proposed is a straightforward modification and improvement to the mesh refinement

stage of theGRPF algorithm. Themodification involves adding new points only at the centers

of ”candidate edges”, which leads to a significant reduction in computation time byminimizing

the number of function calls in successive iterations. This approach is sufficient and effective

in improving the performance of the algorithm.
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• In the GRPF algorithm, a new procedure for detecting and eliminating ”skinny” triangles is

implemented. It is accomplished by determining the ratio of the longest edge to the shortest

height. Whenever an ill-conditioned triangle is found, a new point is inserted at the midpoint

of the longest edge. The numerical differences are minor, but the essence is that the shape

of the mesh is more regular and stable.

• The modified and efficient root tracing algorithm involving self-adaptive discretization in CAP

condition is developed. The procedure significantly reduces the number of function calls,

resulting in faster analysis without affecting accuracy. It can be utilized in design and opti-

mization processes.

• The problem of multipath root tracing has been discussed. Even though it is a limitation

of this approach, the proposed modification of the initial condition for the starting triangle

expands the possibilities of the algorithm.

• The new algorithm for finding the roots and poles of a complex function with an additional

parameter is presented. By generalizing the DCAP condition in theC×R space, it is possible

to obtain a full picture of the characteristics in a given domain. The proposed algorithm is

straightforward, flexible, and very efficient. Numerical tests have confirmed the effectiveness

of the proposed technique.

• The iterative application of the regular GRPF algorithm with sweeping the t parameter, com-

monly known as the ”slicing method,” is an accurate but inefficient approach for the C × R

space. On the other hand, tracing enables a rapid analysis of a single curve with comparable

precision. In contrast, the recently introduced GRPF in C×R domain provides a full and fast

overview of the roots in the entire domain. To achieve high accuracy, one can increase the

number of function calls or employ further analyses or local methods.

Each of the research results (from Chapters 3,4,5) in more detail can also be found in the following

publications:

1. M. Jasinski, S. Dziedziewicz, M. Jozwicka and P. Kowalczyk, ”An Improvement of Global

Complex Roots and Poles Finding Algorithm for Propagation and Radiation Problems,” 2019

13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 2019,

pp. 1-5.

2. S. Dziedziewicz, M. Warecka, R. Lech and P. Kowalczyk, ”Self-Adaptive Mesh Generator

for Global Complex Roots and Poles Finding Algorithm,” in IEEE Transactions on Microwave

Theory and Techniques, vol. 71, no. 7, pp. 2854-2863, July 2023.

3. S. Dziedziewicz, R. Lech and P. Kowalczyk, ”A Self-Adaptive Complex Root Tracing Al-

gorithm for the Analysis of Propagation and Radiation Problem,” in IEEE Transactions on

Antennas and Propagation, vol. 69, no. 8, pp. 5171-5174, Aug. 2021.
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4. S. Dziedziewicz, M. Warecka, R. Lech and P. Kowalczyk, ”Multipath Complex Root Tracing,”

2022 24th International Microwave and Radar Conference (MIKON), Gdansk, Poland, 2022,

pp. 1-4.

5. S. Dziedziewicz, M. Warecka, R. Lech and P. Kowalczyk, ”Global Complex Roots and Poles

Finding Algorithm in C× R Domain,” in IEEE Access, vol. 11, pp. 68809-68817, 2023.

In the author’s belief, all the thesis presented at the beginning of the dissertation has been con-

firmed by the achieved results.

6.2 The way forward

Even though there are stable and efficient algorithms for eigenvalue problems, there are still many

opportunities for further research in root finding approaches, particularly in their development.

Taking into account the presented limitations of the GRPF family algorithms, the following issues

can be considered for further research:

• future developments for regular GRPF and tracing methods;

• exploring development opportunities and challenges in advancing algorithm GRPF in C×R

domain;

• improving the characteristics obtained utilizing GRPF in C× R domain employing the post-

processing method;

• possible application of the presented algorithms for solving nonlinear eigenvalue problems.

Even though the regular GRPF and tracing methods have already undergone improvements,

their continued development is highly valued. Further enhancements of these techniques will

involve optimizing the visualization process and implementing the algorithms in additional pro-

gramming languages, such as Python. Alternatively, hardware optimization using graphics cards

is also under consideration.

One of the most promising development opportunities lies in the further advancement of the

algorithm GRPF in C × R domain. One issue that needs to be addressed is implementing the

self-adaptive mesh generator for regular GRPF to three-dimensional space. Despite this, there

is no evidence to suggest that the idea and concept of isophases cannot be utilized in the C × R

space. To achieve this, determining the gradient of the function argument for individual edges

of a three-dimensional mesh is necessary. Introducing such a solution could positively influence

the efficiency of the algorithm. It could lead to the creation of a self-active detection of critical re-

gions of the mesh that require densification. This is especially beneficial in situations where many

curves intersect in different planes, e.g., bifurcation characteristics. Nevertheless, it is essential to

remember to verify the stability of the mesh permanently and avoid ”skinny” triangles, which are

still a limitation of the general family of mesh algorithms.
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Furthermore, a crucial area needing improvement in GRPF in C×R domain is the ability of the

algorithm to characterize individual solutions (e.g., based on a physical interpretation) or determine

whether the obtained points are zeros or poles. To address this issue, it is recommended that an

additional post-processing method be developed (a final verification technique). One possible

strategy involves constructing a chain of tetrahedrons using a set of ”candidate edges” and the

generated mesh, somewhat similar to the tracing method. These ”candidate regions” can aid in

verifying the CAP condition, enabling the interpretation of the identified curve (especially zeros

and poles verification).

In summary, any of the presented algorithms have a wide range of applications in solving

nonlinear eigenvalue problems. Specifically, the algorithms proposed in this thesis are dedicated

and highly efficient for solving electrodynamic problems. These problems are often related to

the propagation of electromagnetic waves and require the investigation of complex and leaky

modes. In the field of modern microwave engineering, understanding the relationship between

these modes is crucial for analyzing both shielded and open structures. Unfortunately, these

issues are usually poorly described or omitted in the literature, especially the conditions of their

existence. Generally, these problems boil down to finding the roots of complex parameters, e.g.,

propagation coefficient. When dealing with huge nonlinear problems, traditional methods based

on calculating the determinant of a function may not be effective. Thus, it becomes essential to

develop flexible projection algorithms to the appropriate subspace so that it is possible to reduce

the problem to a small determinant size (or a large sparse matrix). Nevertheless, in the author’s

plans, the package of numerical tools developed in this dissertation will also be employed in other

areas of modern technologies, such as automatic systems and control theory.
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Appendix A

Initial mesh generators

This appendix delves into the proposed solutions that try to overcome the limitation of the regular

GRPF approach by addressing the issue of initial mesh generation. The research in this area

aims to develop a stable mesh algorithm by examining the uneven refinement process in detail.

The focus is on identifying the most critical edges on the mesh and finding ways to refine them

effectively. To this end, two methods are discussed: a simple mesh refinement algorithm and a

rational interpolation approach.

A.1 The simple mesh refinement

The simple algorithm proposed involves determining the importance of each edge based on a

standard DCAP approach-based analysis of increasing the function’s argument at themesh nodes.

Determining the importance of an edge is crucial to the whole issue. The algorithm is developed

based on trial and error methods and is based on seven irregular iterations. This approach helps

identify the most critical edges that need to be refined.

A.1.1 Algorithm details

The procedure starts with five points. Iterations first to four will divide all kinds of edges, but this

must be done unevenly. The first iteration will be preliminary. In the following steps, the length

of the edges will be checked so that the mesh created is regularly distributed. The length check

will only apply to single and no quadrants change edges to avoid redundant points. Iterations five

and six will assume higher density nodes in the ”candidate regions.” From the seventh iteration,

refinement will occur as in the standard GRPF algorithm.

The distribution of quadrants (resulting from the function’s argument), as well as the zeros

and poles, can be challenging. The following method is used to identify all ”candidate regions,”

particularly those without a noticeable phase change. For edges with zero quadrant change, all

edges are divided into four equal parts, resulting in three additional points. For edges with a

single quadrant change, all edges are divided into three equal parts, resulting in two additional

points. Finally, for edges with double quadrant change, all edges are divided into two equal parts,

136

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


resulting in one additional point. Initially, the mesh comprises eight edges, so the number of new

points added will range from 8 to 24.

In the second iteration of this process, the mesh remains somewhat sparse, with edges ranging

from 28 to a maximum of 68. The following step is to give more attention to the areas where a

single quadrant change occurs. The following stages will be more sensitive in detecting ”candidate

regions.” It means that if an edge with zero or single quadrant change is shorter than a specified

length, it will not be reduced further. This method for dividing edges is based on a certain subjective

observation. For edges with zero quadrant change over one-tenth of the domain side, half of the

longest edges are divided into three equal parts, while the remaining parts are divided into two

equal parts. For edges with a single quadrant change longer than one-tenth of the domain side,

half of the longest edges are divided into four equal parts, and the remaining parts are divided

into three equal parts. Double quadrant change edges are divided into two equal parts regardless

of length. Additionally, one adds new points at the centers of the ”skinny” triangle on the entire

domain. From this stage until iteration no. 5, ”skinny” triangles will be checked in the entire region

and only in the first zone of the ”candidate regions” (see subsection 3.4.2). At this point, the

number of new points added will range from 28 to 170.

In the third iteration of this method, edges with different quadrant changes are split. For edges

without quadrant change and over one-tenth of the domain size, half of the longest edges are

divided into two equal parts, resulting in one additional point. For edges with a single quadrant

change and longer than one-tenth of the area size, half of the longest edges are divided into three

equal parts, and the remaining parts are divided into two equal parts, resulting in two additional

points. Edges with double phase change are divided into two equal parts, resulting in one ad-

ditional point, regardless of length. Lastly, new points are added in the centers of the ”skinny”

triangle of the entire domain, resulting in one additional point.

In the fourth step, the third step is repeated but with fewer new points. The process involves

dividing long edges with no quadrant change into smaller parts that are one-tenth of the side of the

domain. Only half of the longest edges are divided into two equal parts, adding one extra point.

For edges with a single quadrant change that is longer than one-tenth of the side of the domain,

only half of the longest edges are divided into two equal parts, which adds one extra point. Edges

with double quadrant changes are divided into two equal parts, adding one extra point. Lastly,

new points are added in the middle of ”skinny” triangles across the entire domain, which adds one

extra point.

The first four steps of this process aim to detect all ”candidate regions” with some resolution.

Subsequent stages focus on the density of regions around the ”candidate edges,” specifically those

with edges that are a double quadrant change. A specific procedure is followed to add new points.

All ”double-quadrant” edges are divided into four equal parts, which gives three extra points. New

points are added at the centers of all triangles from the second ”candidate regions” zone, giving

one more point. Additionally, new points are added at the centers of all ”skinny” triangles on the

entire domain, which gives another point. Lastly, the edges of the first ”candidate regions” zone
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are divided in half, which gives one more point.

The following steps are taken in the sixth iteration to refine the mesh further:

• All edges that have a double quadrant change are divided into three equal parts, resulting

in the addition of two new points.

• A new point is introduced at the center of each triangle in the first ”candidate regions” zone.

Then, new points are added at the centers of all ”skinny” triangles across the entire domain.

• The edges of the first ”candidate regions” zone are divided in half, resulting in the addition

of one new point.

Table A.1: The number of points added by refinement of the particular regions in iterations from first to fourth.

A ”skinny” triangle involves the additional points in the centroid; in other cases, the new points are added by

splitting the edges.

longer than one-tenth of the domain side each

iteration |∆Qp| = 0 |∆Qp| = 1 |∆Qp| = 2 ”skinny”

longer shorter longer shorter

1 3 3 2 2 1 0

2 2 1 3 2 1 1

3 1 0 2 1 1 1

4 1 0 1 0 1 1

Table A.2: The number of points added by refinement of the particular regions in iterations from fifth to

seventh. In the case of a |∆Qp| = 2, this involves points on the edges; in other cases, the new point is in the

centroid (”skinny,” first zone).

iteration |∆Qp| = 2 ”skinny” first zone boundary in first zone

5 3 1 1 1

6 2 1 1 1

7 1 1 0 1

A summary of the algorithm for each iteration is provided in Tables A.1 and A.2. These steps

help to create a more refined and specific mesh. The standard refinement GRPF method is used

from the seventh iteration onwards. It involves dividing all edges with a double quadrant change

into two equal parts, resulting in an additional point. Furthermore, new points are added to the

centers of the ”skinny” triangle in the first ”candidate regions” zone, resulting in one additional

point. Finally, the edges of the first ”candidate regions” zone are further divided in half, resulting

in another point.
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A.1.2 Numerical example

The numerical test is done for the identical example discussed in the subsections 3.6.4 and 3.3.

The rational function from (3.12) is analyzed in the following domain:

Ω = {z ∈ C : −1 < Re(z) < 1 ∧ −1 < Im(z) < 1}

Figure A.1 shows the successive stages in forming a mesh for a function with an ”island” of size

ϵ = 0.05. As can be seen, the effect of the last sixth iteration is the island’s detection. In this case,

the method worked successfully. However, the mesh contains too many redundant points, i.e., the

nodes in the areas with slight variation in function.
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Figure A.1: The iterative process of simple mesh refinements solution, for function from (3.11) with ϵ = 0.05

a) first six example stages, b) zoom of ”island” locations, respectively, in the demonstrated iterations.
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A.2 The local rational interpolation

The next algorithm is based on rational interpolation, which combines classical interpolation with

GRPF technique. This approach involves finding the zeros of complex functions based on inter-

polation methods. Given a set of points (e.g., function values evaluated in nodes on the mesh),

one can use different functions to interpolate the function between them. For instance, it can use

polynomials of a higher order than the number of points or various trigonometric functions. If the

function has singularities, it can use a set of rational functions with different variants of the order

of the numerator and denominator. So, regarding the zeros and poles finding issue, rational inter-

polation seems to be the most appropriate. Rational interpolation is a numerical method involving

estimating a function using a ratio of two polynomials. Generalizing such approaches creates a

rational function, where the order of the polynomial (in numerator and denominator) is related to

the current number of nodes, according to the following formula:

F (z) =
a0 + a1z + a2z

2 + ...+ anz
n

b0 + b1z + b2z2 + ...+ bmbm
(A.1)

where:

z ∈ C,

an, bm - are unknown coefficients,

n+m - order of the rational (number of points).

The goal of rational interpolation is to find a set of coefficients of a rational function that accurately

represents the original function being interpolated while minimizing the error between the two. The

resulting function can be used to make predictions or to generate a smooth curve that fits the data

see Figure A.2.

x

f(x)

x , f(x )1 1

x , f(x )2 2

x , f(x )3 3

x , f(x )4 4

Figure A.2: An example of a real function f(x), interpolated using polynomials based on four points.

A.2.1 Algorithm details

This subsection briefly introduces an adaptive approach for generating an initial mesh. The pro-

posed method utilizes local rational interpolation. The algorithm implemented in the present solu-

tion consists of three primary stages: Mesh nesting, Validation of the accuracy of the interpolation,

and the Selection of a densified edge.
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Mesh nesting

The adaptive initial mesh generation based on rational interpolation is an iterative-recursive pro-

cess. At the beginning of each series, four points from the domain are selected (see Figure A.3).

Next, the values of the functions at points no. 1, 2, 3, 4 are evaluated. If it is impossible to create a

correct interpolation from these points (see Validation of the accuracy of the rational interpolation),

then points no. 5, 6, 7, 8, 9 will be used in successive iterations. They will be grouped into smaller

subdomains, each consisting of four points, as shown in Figure A.3.

12

3 4

12

3 4

5

67
8

9

Figure A.3: On the left, the initial mesh from points (1, 2, 3, 4). On the right, smaller subdomains are formulated

by dividing the edges in half based on possible combinations of (1, 5, 8, 6),(5, 2, 7, 8),(8, 7, 3, 9),(6, 8, 9, 4).

Validation of the accuracy of the rational interpolation

In order to ensure an appropriate interpolation and validation, it is necessary to divide the nodes

into ”training” and ”validation” points. The function value in ”training” nodes is known (evaluated

directly) versus the function value in ”validation” nodes, which is estimated using the interpolation.

Two points are selected for the ”validation” set in each iteration, and the interpolating rational is

made from the remaining points. All possible combinations for four points are presented in Table

A.3; the number of combinations results in the rational degree and the number of ”training” points.

The mesh can consist of 9 points, so there are 36 ”training” sets (7th-degree rationals).

Upon analyzing the case presented in the table above, it can be inferred that for each set of points

(totaling six), two potential interpolating rationals exist, considering the number of ”training” points.

There are:

• the first type of rational: a0

b1x+b0

• the second type of rational: a1x+a0

b0
.

The coefficients a0, a1, b0, b1 have different values for each (i.e., ”training” and ”validation”) set of

points. This results in 12 possible rational functions (two rationals in six configurations). Conse-

quently, for each point in the ”validation” set, two possible estimated values of the function exist,

one from each rational. Each rational type has 12 ”validation” points, encompassing two possible
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points in six configurations. Lastly, it is worth noting that each mentioned point (1, 2, 3, 4) corre-

sponds to three known points and three ”validation” points.

Table A.3: The example of combinations points for sets (”training” and ”validation”) is presented to clarify the

idea.

set of points ”training” set ”validation” set

no.1 1, 2 3, 4

no.2 1, 3 2, 4

no.3 1, 4 2, 3

no.4 2, 3 1, 4

no.5 2, 4 1, 3

no.6 3, 4 1, 2

In a nutshell, six interpolate function values can be determined for each point. It should gen-

erally be the same value as the directly evaluated one. The algorithm aims to identify the most

accurate rational type from 2nd to 7th degree (depending on the number of points) and then calcu-

lates its coefficients by averaging their combinations. For instance, Table A.4 shows the function

values for particular points of one of the rational, where:

f ik - interpolated value of the function for k and i indices, respectively,

k - corresponds to the node number,

i - corresponds to the ”training” set number (rational coefficients),

Fk - true function value evaluated directly in k node.

Table A.4: An example of function values for each point in ”training” set.

”training” set function

no.1 no.2 no.3 no.4 no.5 no.6 value

node no.1 f11 f21 f31 f41 f51 f61 F1

node no.2 f12 f22 f32 f42 f52 f62 F2

node no.3 f13 f23 f33 f43 f53 f63 F3

node no.4 f14 f24 f34 f44 f54 f64 F4

Due to it being an interpolation, the estimated values of the function have some error and are not

equal to each other f1k ̸= f2k ̸= f3k ̸= f4k ̸= f5k ̸= f6k ̸= Fk. For each k, i indices, the relative

error can be determined eik =
|fi

k−Fk|
|Fk| . It creates the error matrix Err, presented in Table A.5 for a

specific rational type, where:

eik - the error for individual k and i indices, respectively,
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k - corresponds to the point number,

i - corresponds to the ”training” set number (rational coefficients),

Ex - mean error for each k node.

Table A.5: An example of interpolation error for each point in ”training” set.

”training” set mean

no.1 no.2 no.3 no.4 no.5 no.6 value

node no.1 0 0 0 e41 e51 e61 E1

node no.2 0 e22 e32 0 0 e62 E2

node no.3 e13 0 e41 0 e53 0 E3

node no.4 e14 e24 0 e44 0 0 E4

In order to determine the global interpolation error for a specific rational, the errors for each point

should be averaged. This parameter indicates how accurate the method is and determines which

rational most reliably represents the analyze function (the averaged error should be as small as

possible). Additionally, the algorithm assumes the general condition for the correctness of the in-

terpolation defined in percent1. If none of the interpolated rationals meet this condition, adding an

extra point on the mesh (out of 5, 6, 7, 8, 9) is necessary. The procedure of validating the rational

interpolation is repeated with more points in ”training”, up to seven. If the mean interpolation error

is still more significant than accepted, the domain is recursively split according to the abovemen-

tioned rule (see Mesh nesting).

Selection of a densified edge

Theway of selecting the extra point from among (5, 6, 7, 8, 9) is not arbitrary. Instead, the interpolate

value of the function is estimated based on the different coefficients of the rationals. Ideally, for

a particular node, the value of the function should be equal regardless of the chosen coefficients.

The point at which the value of the function differs most is critical. It informs on the possible

variability of the function in that region. Hence, the point added to the mesh can be chosen by

determining the most significant standard deviation from the calculated mean error.

A.2.2 Numerical example

In order to illustrate the functionality of the algorithm, one of themost challenging examples, specifi-

cally the graphene transmission line, is examined. This investigation is outlined in subsection 2.3.3

and is also recalculated in subsection 3.6.4 for further clarity. In this problem, the normalized prop-

1This value depends on the investigated problems (function, domain, etc.) but is usually about one percent.
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agation coefficient z = γ for TM modes is determined in the following range:

Ω = {z ∈ C : −100 < Re(z) < 400 ∧ −100 < Im(z) < 400}

The investigated domain has eight single zeros, two poles of the second order, and an additional

single zero and pole (”island”). Figure A.4 shows the examples of stages in forming a mesh.
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Figure A.4: The iterative process of local rational interpolation technique, for level accuracy 0.5% (mean

interpolation error), a) first-sixth example stages, b) zoom of ”island” locations, respectively, in the demon-

strated iterations.
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Figure A.5: The final initial meshes that can be utilized to find all zeros and poles (including ”island”) in the

investigated domain Ω and the interpolated phase portrait based on the calculated rational function. A double

magnification of the critical region of the ”island” is shown at the bottom and right.
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Similar to the previous example in this appendix, the mesh displayed only represents the initial

shape (not the final refinement). The analysis resulted in a mesh consisting of 1069 nodes created

within 586 iterations, illustrated in Figure A.4. Moreover, calculated coefficients of the rational

function are used to interpolate the function values at additional points. In each rectangular grid,

250 regular points are added, resulting in a total number of points: 45 587 776. Based on these

estimated values, a phase portrait is drawn. However, it is important to note that these values are

approximate and are obtained quickly due to the interpolation technique used rather than rational

calculation (see Figure A.5). By implementing an interpolation technique to the initial mesh, the

proposed algorithm successfully identified four additional zeros and two additional poles in the

assumed domain. In comparison (with the results in Figure 3.33), detecting these regions through

a regular mesh for GRPF would require a large number of function calls (in this case, below 600

is enough to find the island).

A.3 Final comments

The effectiveness of the proposed techniques is mostly limited to specific function classes. In

the first presented algorithm (simple refinament method), no theoretical or mathematical evidence

supports the described scheme. The approach has many parameters and needs to be more

flexible. It was discovered that the phase-quadrant approach generated insufficient information

about the function’s variability and character. As a result, the technique should take additional

information, such as correlations between points.

On the other hand, in the interpolation approach, the degree of the rationals plays a crucial role

in the algorithm’s performance, mainly when dealing with rapidly varying functions and exploring

the large domain Ω. However, due to the finite number of mesh nodes used for ”training” and

”validation,” this method cannot guarantee the discovery of all zeros and poles. Another drawback

is the issue of procedure convergence, which can lead to a decrease in efficiency by causing the

algorithm to loop repeatedly. The recursion level can be high, resulting in increased computational

complexity and longer analysis times, especially for simple functions where the time required to

execute a single iteration of the interpolation procedure exceeds that of evaluating a single function

value. Even though only a few nodes are added in each iteration, the overall impact can be

significant.

Overall, the research in this appendix identified several promising algorithms that can be used

to refine the initial mesh effectively. Exploring each algorithm’s strengths and weaknesses helped

develop a new self-adaptive approach to provide a stable and reliable mesh for further analysis

and simulation.
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