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Abstract: Advanced finite element (FE) modeling and simulations were performed on vehicular
crashes into a three-bar metal bridge rail (TMBR). The FE models of a sedan, a pickup truck, and a
TMBR section were adopted in the crash simulations subject to Manual for Assessing Safety Hardware
(MASH) Test Level 2 (TL-2) and Test Level 3 (TL-3) requirements. The test vehicle models were first
validated using full-scale physical crash tests conducted on a two-bar metal bridge using a sedan and
a pickup truck with similar overall physical properties and sizes to their respective vehicles used in
the simulations. The validated vehicular models were then used to evaluate the crash performance of
the TMBR using MASH evaluation criteria for structural adequacy, occupant risk, and post-impact
trajectory. The TMBR met all MASH TL-2 requirements but failed to meet the MASH TL-3 Criteria H
and N requirements when impacted by the sedan. The TMBR was also evaluated under in-service
conditions (behind a 1.52 m wide sidewalk) and impacted by the sedan under MASH TL-3 conditions.
The simulation results showed that the TMBR behind a sidewalk met all safety requirements except
for the occupant impact velocity in the longitudinal direction, which exceeded the MASH limit
by 3.93%.

Keywords: three-bar metal bridge rail (TMBR); Manual for Assessing Safety Hardware (MASH);
vehicular crash; finite element (FE); numerical simulation; highway safety; critical impact point (CIP)

1. Introduction

Bridge rails are important roadside safety devices used to protect errant vehicles,
and their occupants, from catastrophes. Commonly used bridge rails include concrete
bridge rails, metal bridge rails, and hybrid bridge rails (i.e., metal rails anchored onto
a concrete parapet). While concrete bridge rails have higher rigidity than metal bridge
rails, they have higher initial and repair costs. Bridge rails are considered longitudinal
barriers and like all other roadside safety devices, they must be tested to pass the safety
requirements issued by the American Association of State Highway and Transportation
Officials (AASHTO). Figure 1 shows a three-bar metal bridge rail (TMBR) adopted by the
North Carolina Department of Transportation (NCDOT). This bridge rail has two oval-
shaped rails and one flat rail, all made of aluminum and constrained to metal posts that are
affixed to the concrete footings along the edges of the bridge deck.
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Figure 1. A three-bar metal bridge rail [1]. 

The TMBR was originally tested and passed the safety requirements of the National 
Cooperative Highway Research Program (NCHRP) Report 350 [2], which was later re-
placed by the new AASHTO standards, Manual for Assessing Safety Hardware (MASH) 
2016 [3]. With the issuance of the new standards, the performance of the TMBR should be 
re-evaluated to provide guidance for usage, design improvements, and physical crash 
testing. 

Bridge rail evaluations began in the early 1960s with physical crash tests as the pri-
mary method to study bridge structure performance [4]. Since then, full-scale crash testing 
has been the predominant approach for design validation and performance assessment. 
Over the years, a variety of bridge rails have been tested across different states, such as 
the California Type 9 [5] and Type 115 [6] bridge rails, the Wyoming tube-type bridge rail 
[7], two types of Texas bridge rails [8], Texas T-1F bridge rail [9] and T202 bridge rail [10], 
the Tennessee bridge rail [11], and many other bridge rails [12–20]. Most of these bridge 
rails were crash tested using a small passenger car as well as a pickup truck. Over the 
years, many bridge rails were also tested under more severe crash conditions such as im-
pacts by a single-unit truck [21–27]. All these crash tests provided valuable data and in-
sights into bridge rail designs and performance under vehicular crashes. However, full-
scale physical tests are extremely expensive and time-consuming to conduct. Although 
they are useful for design validation, they are prohibitively expensive for design explora-
tion when many different designs/options are to be evaluated. 

Since the early 1990s, the use of computer modeling and simulation in transportation 
safety has dramatically increased [28–30]. Significant effort was put into model develop-
ment, particularly on vehicle models [31–35], to improve the fidelity of numerical simula-
tions. In the past few decades, computer modeling and simulations for vehicular crashes 
have seen significant growth in modeling capabilities and model complexity, attributed 
to the technological advancement of computing hardware and numerical codes. Full-scale 
crash simulations have been used on a variety of roadside safety devices and infrastruc-
tures such as cable barriers [36–42], W-beam and Thrie-beam guardrails [43–52], concrete 
barriers [53–57], crush cushions [58–61], bus shelters and cluster mailboxes [62], and var-
ious bridge rails [63–67]. Numerical modeling and simulations, specifically finite element 
analysis (FEA), have provided alternative and viable means for studying the crash mech-
anisms and performance of highway safety devices. 

In the work by Wekezer et al. [63], they used LS-DYNA simulations to study the 
safety performance of Florida beam-and-post reinforced concrete bridge barriers under 
the Test Level 3 (TL-3) impact of a Chevy pickup truck according to the NCHRP Report 
350 [2]. The study revealed severe snagging of the vehicle and provided input for retrofit 

Figure 1. A three-bar metal bridge rail [1].

The TMBR was originally tested and passed the safety requirements of the National
Cooperative Highway Research Program (NCHRP) Report 350 [2], which was later replaced
by the new AASHTO standards, Manual for Assessing Safety Hardware (MASH) 2016 [3].
With the issuance of the new standards, the performance of the TMBR should be re-
evaluated to provide guidance for usage, design improvements, and physical crash testing.

Bridge rail evaluations began in the early 1960s with physical crash tests as the primary
method to study bridge structure performance [4]. Since then, full-scale crash testing has
been the predominant approach for design validation and performance assessment. Over
the years, a variety of bridge rails have been tested across different states, such as the
California Type 9 [5] and Type 115 [6] bridge rails, the Wyoming tube-type bridge rail [7],
two types of Texas bridge rails [8], Texas T-1F bridge rail [9] and T202 bridge rail [10], the
Tennessee bridge rail [11], and many other bridge rails [12–20]. Most of these bridge rails
were crash tested using a small passenger car as well as a pickup truck. Over the years,
many bridge rails were also tested under more severe crash conditions such as impacts by
a single-unit truck [21–27]. All these crash tests provided valuable data and insights into
bridge rail designs and performance under vehicular crashes. However, full-scale physical
tests are extremely expensive and time-consuming to conduct. Although they are useful
for design validation, they are prohibitively expensive for design exploration when many
different designs/options are to be evaluated.

Since the early 1990s, the use of computer modeling and simulation in transporta-
tion safety has dramatically increased [28–30]. Significant effort was put into model de-
velopment, particularly on vehicle models [31–35], to improve the fidelity of numerical
simulations. In the past few decades, computer modeling and simulations for vehicular
crashes have seen significant growth in modeling capabilities and model complexity, at-
tributed to the technological advancement of computing hardware and numerical codes.
Full-scale crash simulations have been used on a variety of roadside safety devices and
infrastructures such as cable barriers [36–42], W-beam and Thrie-beam guardrails [43–52],
concrete barriers [53–57], crush cushions [58–61], bus shelters and cluster mailboxes [62],
and various bridge rails [63–67]. Numerical modeling and simulations, specifically finite
element analysis (FEA), have provided alternative and viable means for studying the crash
mechanisms and performance of highway safety devices.

In the work by Wekezer et al. [63], they used LS-DYNA simulations to study the
safety performance of Florida beam-and-post reinforced concrete bridge barriers under
the Test Level 3 (TL-3) impact of a Chevy pickup truck according to the NCHRP Report
350 [2]. The study revealed severe snagging of the vehicle and provided input for retrofit
recommendations. Ray et al. [64] performed FEA on an extruded aluminum truss-work
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bridge railing subject to TL-3 and Test Level 4 (TL-4) impacts specified in the NCHRP
Report 350. An AASHTO LRFD analysis conducted in the study confirmed the results of
LS-DYNA simulations, and the bridge rail design was found to have comparable strength
to other F-shaped bridge railings in terms of structural rigidity. Atahan and Cansiz [65]
used FEA to study a concrete bridge rail-to-guardrail transition that failed to pass the TL-3
requirements of NCHRP Report 350. After validating the simulations using qualitative and
quantitative comparisons, an examination of the physical test and simulation results was
performed. It was determined that the W-beam height of 685 mm was the main cause of
vehicle rollover. It was suggested to modify the W-beam height to 810 mm and subsequent
simulation results predicted that the modified design contained and stably redirected
the impacting vehicle without wheel snagging. Atahan [66] subsequently performed
FEA on the modified bridge rail-to-guardrail transition and determined that the vehicle
trajectory, occupant risk, guardrail displacements, and vehicle redirections matched well
with the results from a similar transition previously tested under TL-4 conditions specified
in NCHRP Report 350. Atahan [67] later studied a high-containment-level rail (i.e., under
impacts of tractor-trailers) for bridges and viaducts using LS-DYNA simulations and a
physical crash test. The numerical simulation results were validated using test data, and
the rail was determined to meet the EN1317 Standard [68].

Bocchieri and Kirkpatrick [69] used LS-DYNA simulation combined with the design of
experiments to identify the critical modeling parameters on several bridge railing designs
impacted by a Chevrolet C2500 truck. By evaluating the effect of parameter variation on
bridge railing performance, they selected the best bridge rail design choice, and a second
experimental design was used to determine the bounds of the predicted performance. Abu-
Odeh [70] used LS-DYNA simulation to study the T501 steel-reinforced concrete bridge rail
under a 2268 kg bogie’s impact at different speeds. The study evaluated the usability of
three LS-DYNA material models and suggested the use of small-scale material tests such
as triaxial tests to improve the predictability of these material models. Thanh and Itoh [71]
used FEA to study the performance of curved steel railings subjected to collisions of trucks
at large impact angles. Their simulation results showed that curved railings absorbed less
energy than straight railings under the same impact conditions, but they were still capable
of guiding the truck’s subsequent movements as long as the initial impact angles were
within the limit by the design specification. They also pointed out that the impact angle
at curved bridge sites sometimes might be larger than the 15◦ allowable impact angle,
meaning that the curved railing would not be capable of guiding the truck back to the
travel lane.

Fang et al. [72] evaluated an NCDOT two-bar metal bridge rail using both FEA and
physical crash tests of two vehicles, i.e., a 2010 Toyota Yaris passenger car and a 2014 Chevy
Silverado pickup truck. Their finite element (FE) models were validated using test data.
The study confirmed the validity of simulation results and high fidelity of FE models of
both the vehicles and the two-bar metal rail.

A characteristic feature of full-scale crash tests is that roadside barriers are typically
evaluated under predefined impact conditions specified by relevant standards. However,
questions remain regarding how these barriers will perform under different, untested im-
pact conditions. To address this issue, this study aimed to evaluate the safety performance
of the TMBR under MASH standard Test Level 2 (TL-2) and TL-3 impact conditions, as well
as under real-world in-service conditions. The research results would help identify perfor-
mance issues and guide necessary design improvements of the TMBR before conducting
expensive full-scale crash tests.

The research plan assumed the use of FE models of the two validated vehicle models
from Fang et al. [72] (Section 3.2). Having reliable FE models, simulations of the test
vehicles impacting the TMBR on flat terrain were performed under MASH TL-2 and TL-3
conditions (Sections 4.2 and 4.3, respectively). Given that the TMBR was often installed
behind sidewalks, the study evaluated its performance in this configuration. Specifically,
the TMBR behind a sidewalk was assessed when impacted by a 2010 Toyota Yaris under
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MASH TL-3 conditions (Section 4.4). The safety evaluation focused on the structural
adequacy of the TMBR, the risks posed to vehicle occupants, and the trajectories of vehicles
after impacts. These analyses aimed to identify potential issues and safety concerns related
to barrier installations behind sidewalks, which have not been previously assessed in
full-scale crash tests. The findings could contribute to future improvements in roadside
barrier designs and crash test requirements. The modeling and simulation methodology
from this research is expected to contribute significantly to roadside barrier designs, and
the research findings could provoke necessary adjustments to crash testing requirements
or standards.

All numerical simulations for this study were conducted using LS-DYNA R11.2.0.
Consequently, the description of the FE models employs nomenclature consistent with this
software to describe the types of finite elements and the material models used.

2. FE Modeling of TMBR

The FE model of TMBR was based on 9.14 m (30 ft) long sections according to NCDOT
specifications. Figure 2 shows a 27.4 m (90 ft) long TMBR model that consists of three
sections connected by two expansion joints.
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ezoidal support, both welded to a base plate. Six clamping bars were used to secure the 
three rails to the post, and the bars were affixed to the post with twelve 12.7 mm diameter 
bolts. The base plate was anchored to the concrete parapet using three 19.05 mm bolts and 
two 15.875 mm bolts, which were connected to wire struts within the concrete parapet to 
form the anchor assembly. In this study, aluminum alloy 6061-T6 was selected for all alu-
minum components in the FE model of the TMBR, while carbon steel was used for the 
bolts, nuts, washers, and reinforcement bars within the concrete. 

Figure 2. FE model of the TMBR.

2.1. Modeling of Metal Rails

Each section of the TMBR comprised three horizontal aluminum rails attached to
aluminum posts via clamping bars, as depicted in the post assembly in Figure 3. The
cross-sections of the top two rails were oval-shaped, while the bottom rail had a trapezoidal
cross-section. The TMBR post featured a thin, T-shaped front plate backed by a solid,
trapezoidal support, both welded to a base plate. Six clamping bars were used to secure the
three rails to the post, and the bars were affixed to the post with twelve 12.7 mm diameter
bolts. The base plate was anchored to the concrete parapet using three 19.05 mm bolts
and two 15.875 mm bolts, which were connected to wire struts within the concrete parapet
to form the anchor assembly. In this study, aluminum alloy 6061-T6 was selected for all
aluminum components in the FE model of the TMBR, while carbon steel was used for the
bolts, nuts, washers, and reinforcement bars within the concrete.
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Figure 3. Rail–post assembly of TMBR: (a) Rear view; (b) front view of the post without rails; (c) 
front view of rails. 

Fully integrated membrane elements, i.e., the Belytschko–Tsay membrane in LS-
DYNA with elform 2, were used to model the aluminum rails, the T-shaped front posts, 
and the base plates, while the trapezoidal supports of the posts were meshed using con-
stant stress solid elements with elform 1. The bolts were modeled using Hughes–Liu 
beams with a single integration point along the length, while the nuts were treated as the 
same solid elements used for the trapezoidal supports. The bolt-and-nut fastening mech-
anism was implemented in the FE model through pre-tensioned bolts, designed to pro-
vide clamping forces. For each of the bolted connections, a discrete element was used to 
connect the bolt head and the nut. The clamping force is activated upon the start of the 
crash simulation by an elongation prescribed to the discrete element. An automatic sur-
face-to-surface contact definition was defined between the nut and the bolt since the nut 
can slide along the bolt. 

At each expansion joint, the aluminum rails from the two sections were connected 
using extension bars. Figure 4 shows the cross-sectional profiles of three extension bars 
inserted into one side of the horizontal rails. The extension bars for the top and middle 
rails were modeled as solid elements, while the bottom extension bar was modeled as shell 
elements. 

 
Figure 4. Expansion joint of the TMBR. 

Figure 3. Rail–post assembly of TMBR: (a) Rear view; (b) front view of the post without rails; (c) front
view of rails.

Fully integrated membrane elements, i.e., the Belytschko–Tsay membrane in LS-DYNA
with elform 2, were used to model the aluminum rails, the T-shaped front posts, and the
base plates, while the trapezoidal supports of the posts were meshed using constant stress
solid elements with elform 1. The bolts were modeled using Hughes–Liu beams with a
single integration point along the length, while the nuts were treated as the same solid
elements used for the trapezoidal supports. The bolt-and-nut fastening mechanism was
implemented in the FE model through pre-tensioned bolts, designed to provide clamping
forces. For each of the bolted connections, a discrete element was used to connect the bolt
head and the nut. The clamping force is activated upon the start of the crash simulation by
an elongation prescribed to the discrete element. An automatic surface-to-surface contact
definition was defined between the nut and the bolt since the nut can slide along the bolt.

At each expansion joint, the aluminum rails from the two sections were connected
using extension bars. Figure 4 shows the cross-sectional profiles of three extension bars
inserted into one side of the horizontal rails. The extension bars for the top and middle
rails were modeled as solid elements, while the bottom extension bar was modeled as
shell elements.
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2.2. Modeling of Concrete Parapet and Terminals

The aluminum rail assembly was fastened to the concrete parapet through the anchor
assembly shown in Figure 3. At the end of the aluminum rails, a concrete terminal is
installed to secure the aluminum rails through brackets (see Figure 5). The brackets were
bolted to the clamping bars inserted in the horizontal rails with four bolts and nuts for
each rail. The brackets were connected to the concrete parapet using bolts and nuts. One
pair of bolts and nuts were used for each of the top and middle rails, and two pairs
for the bottom rail. All the brackets were modeled using the same membrane elements
introduced previously.
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Figure 5. Rail connections to the concrete parapet and terminal of the TMBR.

The steel reinforcing bars cast in concrete terminals and parapet of the TMBR were ex-
plicitly modeled using beam elements, as shown in Figures 6 and 7. The concrete terminals
and parapet were modeled as constant-strain solid elements. The meshes of the concrete
and steel reinforcing bars were carefully created such that the nodes of beam elements (rep-
resenting the reinforcing bars) coincided with the nodes on the solid elements (representing
the concrete). This node-sharing technique for modeling reinforced concrete was effective
and eliminated the need for contact definitions between the steel bars and concrete.
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The entire TMBR model consisted of 1530 components that were meshed with
1,111,527 elements (680,653 solid, 416,056 shell, 14,514 beam, and 304 discrete elements) and
1,244,441 nodes. The following is a list of the seven material models for the TMBR model:

• MAT_PIECEWISE_LINEAR_PLASTICITY (MAT_024): for all aluminum components
(rails, posts, clamping bars, extension bars, and brackets).

• MAT_CSCM (MAT_159): for the concrete parapet and terminals.
• MAT_PLASTIC_KINEMATIC (MAT_003): for steel bolts and reinforcement bars.
• MAT_LINEAR_ELASTIC_DISCRETE_BEAM (MAT_066): for discrete elements.
• MAT_RIGID (MAT_020): for nuts and washers.
• MAT_NULL (MAT_009): for contact purposes.
• MAT_ELASTIC (MAT_001): for the road surface.

Table 1 gives the basic material properties of the steel, aluminum, and concrete com-
ponents of the TMBR. The material model of steel components (MAT_003) includes a
damage mechanism that removes elements upon reaching a failure strain of 0.4. Aluminum
components are modeled by MAT_024 in LS-DYNA, incorporating a damage model with a
plastic strain threshold value of 0.06 for element deletion upon reaching this value. The
CSCM model (MAT_159) in LS-DYNA was employed to represent the concrete parapet. It
incorporated isotropic constitutive equations, yield and hardening surfaces, and damage
formulations to simulate material softening and modulus reduction. The CSCM model
required thirty-seven input values and seven control parameters. A detailed review and
validation of this model can be found in references [73,74].

Table 1. Basic material properties of TMBR components.

Material Young’s
Modulus

Poisson’s
Ratio

Yield
Stress

Tangent
Modulus

Shear
Modulus

Bulk
Modulus

Steel 200 GPa 0.3 0.448 GPa 3.2 GPa N/A N/A
Aluminum 68 GPa 0.3 0.287 GPa N/A N/A N/A
Concrete N/A N/A N/A N/A 11.52 GPa 12.61 GPa

3. FE Modeling of Test Vehicles
3.1. FE Vehicle Models

In this study, the vehicle models employed were a 2010 Toyota Yaris passenger car
and a 2014 Chevy Silverado pickup truck, corresponding to the MASH 1100C and 2270P
test vehicle specifications, respectively. The FE models of the vehicles were originally
developed at the National Crash Analysis Center (NCAC) and previously validated using
the standard tests for crashworthiness. Fang et al. [72] enhanced the numerical stability of
these models by remeshing and adding hourglass controls to handle large deformations.
Some of the contact definitions between dissimilar materials, such as between metals
and plastic bumpers, were updated using pinball segment-based single-surface contact
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definitions to overcome premature terminations of the simulations caused by contact
instabilities. The initial penetrations, which were due to small errors in geometry caused by
meshing, were removed by separating those components involved. The improved vehicle
models were validated using physical crash tests on another bridge rail system (also with
a metal rail anchored on a concrete parapet) and were shown to have good accuracy and
numerical stability [72]. Figure 8 shows the vehicle models used in this study and Table 2
summarizes the detailed information of the two models. These models are available from
the National Highway Traffic Safety Administration (NHTSA) [75].
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The vehicle models included fully functional suspensions and steering systems. The
following is a list of the main material models for both vehicle models:

• MAT_PIECEWISE_LINEAR_PLASTICITY (MAT_024): for all steel components.
• MAT_RIGID (MAT_020): for accelerometers and non-deformable materials.
• MAT_ELASTIC (MAT_001): for rubber components.
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• MAT_LINEAR_ELASTIC_DISCRETE_BEAM (MAT_066): for shock absorbers with
viscous damping effects.

• MAT_LOW_DENSITY_VISCOUS_FOAM (MAT_073): for the radiator.
• MAT_SPOTWELD (MAT_100): for sheet metal connections.
• MAT_NULL (MAT_009): for contact definitions.
• MAT_SPRING_NONLINEAR_ELASTIC (MAT_S04): for the suspensions.

Table 2. FE model attributes of the two test vehicles used in simulation.

Model Attributes 2010 Toyota Yaris 2014 Chevy Silverado

Mass (kg) 1101.70 2277.60
Number of parts 941 1498
Number of nodes 1,488,671 2,809,787

Number of solid elements 259,803 284,286
Number of shell elements 1,254,993 2,654,053
Number of beam elements 4802 22,403

Number of discrete elements 19 36

3.2. Model Validation

The test vehicle models were validated using crash tests conducted at the Midwest
Roadside Safety Facilities (MwRSF) in 2019 [76]. A 27.4 m (90 ft) long NCDOT two-bar
metal rail was constructed and impacted by two test vehicles in accordance with MASH TL-
3 requirements. The two-bar metal rail was made of aluminum rails attached to aluminum
posts that were supported by a concrete parapet. The FE model of the two-bar metal rail
was created using similar modeling techniques and material models to that for the TMBR.
Due to challenges in obtaining test vehicles over five years old, test vehicles with the exact
models and years of the FE vehicle models could not be acquired. Consequently, alternative
vehicles were utilized for the testing: a 2010 Hyundai Accent sedan and a 2015 Chevy
Silverado pickup truck. Despite variations in make and model year, these vehicles exhibited
comparable dimensions, body structures, and mass relative to the FE models. Figure 9
demonstrates the correlation between vehicular responses in the simulations and those
observed in the actual crash tests.
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The boundary conditions used in the simulations were set to match the test conditions.
In the simulation model, the road surface and the bottom of the concrete parapet were
constrained for all degrees of freedom to prevent any translational or rotational displace-
ments. An initial translational velocity was assigned to all vehicle components in the global
coordinate system to initiate the motion.
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It can be seen from Figure 9 that the 2010 Toyota Yaris and 2014 Chevy Silverado
exhibited similar overall responses to their respective test vehicles in terms of vehicular
redirection characteristics and structural deformations. Subsequently, Figures 10 and 11
provide detailed visual representations of the trajectories of these two vehicles, capturing
data from both the crash tests and the simulations to facilitate a comprehensive analysis of
the dynamics involved. Note that the rectangular boxes in Figures 10b and 11b are the exit
boxes corresponding to those shown in Figures 10a and 11a, respectively.
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Figures 12 and 13 show the comparison of FE simulation results to test data of vehicle
accelerations of the 1100C and 2270P vehicles, respectively. The longitudinal and lateral
accelerations from the simulations had similar trends to those from test data.

The simulated vehicles’ roll, pitch, and yaw angles, as well as the values of occupant
impact velocity (OIV) and occupant ride-down accelerations (ORAs), were found to gener-
ally match well with physical test data. The validated vehicle models were then used in the
crash simulations of the TMBR.
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4. Evaluation of TMBR
4.1. Simulation Setup and Evaluation Criteria

Crash simulations of the TMBR under the impact of the 1100C and 2270P test vehicles
were conducted. In alignment with MASH TL-2 and TL-3 standards, the impacts were
conducted at an angle of 25◦. For both vehicle models, MASH TL-2 required an impact
speed of 44 mph (70 km/h), and MASH TL-3 specified a speed of 62 mph (100 km/h).
The expansion joint of the TMBR was used as the reference point to determine the critical
impact points (CIPs) for all the impact cases. The distances from the CIPs to the reference
point were specified in MASH for each of the test cases as listed in Table 3.

Table 3. MASH TL-2 and TL-3 requirements for 1100C and 2270P test vehicles.

Test Level Impact Speed Impact Angle CIP Distance to Reference Point

TL-2 70 km/h (44 mph) 25◦ 1100C: 1.01 m; 2270P: 0.80 m
TL-3 100 km/h (62 mph) 25◦ 1100C: 1.10 m; 2270P: 1.31 m

The following performance evaluation criteria were used on the TMBR:

1. Structural Adequacy by MASH Criterion A. The TMBR was designed to ensure
that vehicles were contained and redirected without overriding, underriding, or
penetrating the bridge rail.

2. Occupant Risk by MASH Criteria D, F, H, I: These criteria define the assessed risk to
occupants during a crash.

• Criterion D: No debris from the TMBR should enter the passenger compartment
during the crash;

• Criterion F: Maximum pitch and roll angles of the vehicle must not exceed 75◦;
and

• Criteria H and I: Two risk factors for occupant safety were considered: occupant
impact velocity (OIV) and occupant ride-down acceleration (ORA). The accept-
able and preferred limits for OIV are 12.2 m/s and 9.1 m/s, respectively. The
acceptable and preferred limits of ORA are 20.5 G and 15.0 G, respectively, where
G is the acceleration of gravity.

3. Post-Impact Trajectory by MASH Criterion N. This criterion, also known as the exit
box criterion, assesses the risk of the vehicle crashing into other vehicles after being
redirected back to the travel lane. The exit box is a rectangular box with its long side
along the traffic side of the barrier (Figure 14). The top-left corner of the exit box was
the final point of contact of the rear wheel with the initial, undeformed barrier face.
The dimensions of the exit boxes for the two test vehicles are listed in Table 4.
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• The width of the exit box, A, was calculated using the width and length of the
vehicle (VW and VL) by (7.2 + VW + 0.16VL);

• the length of the exit box, B, had a specified value for each type of vehicle; and
• all four wheels of the impact vehicle are required to remain inside the exit box to

ensure a small exit angle for the vehicle to safely return to the roadway.

Table 4. MASH exit box dimensions.

Vehicle Model A B

2010 Toyota Yaris (1100C) 5.16 m 10.00 m
2014 Chevy Silverado (2270P) 4.58 m 10.00 m
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Figure 16 shows the angular motion histories of test vehicles impacting the TMBR. 
The 2010 Toyota Yaris recorded maximum roll and pitch angles of 5.3° and 3.6°, respec-
tively. In comparison, the 2014 Chevy Silverado exhibited maximum roll and pitch angles 
of 7.1° and 2.2°, respectively. For both test vehicles, these values confirm compliance with 
MASH Criterion F, which requires that roll and pitch angles do not exceed 75°, thereby 
ensuring the safety effectiveness of the TMBR under these specific impact conditions. 

Figure 14. Definition of the MASH exit box criterion.

4.2. Vehicular Crashes According to MASH TL-2 Requirements

The TMBR was subjected to the impacts at a 25◦ angle by both vehicles traveling at
70 km/h in accordance with the MASH TL-2 condition. The vehicle trajectories of the 2010
Toyota Yaris and 2014 Chevy Silverado are shown in Figure 15, with the exit boxes marked
along with the original, undeformed TMBR. For both impact cases, the MASH Criterion N
was met since both vehicles were redirected, as shown in Figure 15. The exit angles were
20◦ and 2.2◦ for the 2010 Toyota Yaris and 2014 Chevy Silverado, respectively. Although
the exit angle of the Yaris is much larger than that of the Silverado, it was considered a safe
redirection by the post-impact trajectory.
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Figure 16 shows the angular motion histories of test vehicles impacting the TMBR. The
2010 Toyota Yaris recorded maximum roll and pitch angles of 5.3◦ and 3.6◦, respectively. In
comparison, the 2014 Chevy Silverado exhibited maximum roll and pitch angles of 7.1◦

and 2.2◦, respectively. For both test vehicles, these values confirm compliance with MASH
Criterion F, which requires that roll and pitch angles do not exceed 75◦, thereby ensuring
the safety effectiveness of the TMBR under these specific impact conditions.

The risk factors for occupant safety, OIVs and ORAs, were determined using the
longitudinal and lateral accelerations of the test vehicles, as shown in Table 5. Along with
the evaluation results for MASH Criteria A, D, F, and N in Tables 6 and 7, the TMBR satisfied
all safety requirements under MASH TL-2 test conditions. The maximum deflections of the
TMBR, both permanent and dynamic, were found negligible in both impact scenarios.
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Figure 16. Angular motion of test vehicles at MASH TL-2 conditions: (a) 1100C; (b) 2270P.

Table 5. Performance evaluation of TMBR by MASH TL-2 Criteria H and I.

MASH Criteria
Criterion H Criterion I

OIVx OIVy ORAx ORAy

Limit Values 12.2 m/s 12.2 m/s 20.5 G 20.5 G
2010 Yaris 9.57 m/s 7.73 m/s 2.44 G 2.15 G

2014 Silverado 5.65 m/s 5.37 m/s 5.18 G 4.86 G
Evaluation Result Met Met Met Met

Table 6. Performance evaluation of TMBR by MASH TL-2 Criterion A.

MASH Criteria

Criterion A

Permanent
Deflection

Dynamic
Deflection Overriding Underriding Penetration

Limit Values / / / / /
2010 Yaris 74.0 mm 122.9 mm No No No

2014 Silverado 122.8 mm 250.7 mm No No No
Evaluation Result Met Met Met Met Met

Table 7. Performance evaluation of TMBR by MASH TL-2 Criteria D, F, and N.

MASH Criteria

Criterion D Criterion F Criterion N

Intrusion
of Debris

Maximum
Roll Angle

Maximum
Pitch Angle

Within Exit
Box Exit Angle

Limit Values / 75◦ 75◦ / /
2010 Yaris No 5.3◦ 3.6◦ Yes 20◦

2014 Silverado No 7.1◦ 2.2◦ Yes 14◦

Evaluation Result Met Met Met Met Met

4.3. Vehicular Crashes According to MASH TL-3 Requirements

The vehicle trajectories under TL-3 conditions are shown in Figure 17. The 2010 Toyota
Yaris was minimally redirected before it rebounded towards the travel lane, leading to a
failure to meet the MASH Criterion N for the TMBR in this instance. For the impact case by
the 2014 Chevy Silverado, the exit angle was 16◦, confirming that MASH Criterion N was
satisfied as the vehicle was successfully redirected.
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The risk factors for occupant safety (OIVs and ORAs) were calculated for both impact 
cases and are summarized in Table 8, along with the results for MASH Criteria A, D, F, 
and N given in Tables 9 and 10. The results indicate that the TMBR did not meet the re-
quirements of MASH Criterion H in the case of the 2010 Toyota Yaris due to the high 
longitudinal OIV value (OIVx). Additionally, as previously mentioned, the TMBR also 
failed to meet MASH Criterion N in the same case. Despite these issues, all other safety 
requirements were satisfied under MASH TL-3 test conditions. The maximum deflections 
of the TMBR were calculated for both impact scenarios and were found to be insignificant. 

Table 8. Performance evaluation of TMBR by MASH TL-3 Criteria H and I. 

MASH Criteria 
Criterion H Criterion I 
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Figure 17. Vehicle trajectories impacting the TMBR in MASH TL-3 conditions: (a) 1100C; (b) 2270P.

Figure 18 shows angular motion histories of test vehicles impacting the TMBR. The
maximum roll and pitch angles were 6.0◦ and 10.8◦, respectively, for the 2010 Toyota Yaris.
For the 2014 Silverado, the maximum roll and pitch angles were determined to be 5.0◦ and
4.1◦, respectively, meeting the requirement of MASH Criterion F.
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Figure 18. Angular motion of test vehicles at MASH TL-3 conditions: (a) 1100C; (b) 2270P.

The risk factors for occupant safety (OIVs and ORAs) were calculated for both impact
cases and are summarized in Table 8, along with the results for MASH Criteria A, D, F,
and N given in Tables 9 and 10. The results indicate that the TMBR did not meet the
requirements of MASH Criterion H in the case of the 2010 Toyota Yaris due to the high
longitudinal OIV value (OIVx). Additionally, as previously mentioned, the TMBR also
failed to meet MASH Criterion N in the same case. Despite these issues, all other safety
requirements were satisfied under MASH TL-3 test conditions. The maximum deflections
of the TMBR were calculated for both impact scenarios and were found to be insignificant.

Table 8. Performance evaluation of TMBR by MASH TL-3 Criteria H and I.

MASH Criteria
Criterion H Criterion I

OIVx OIVy ORAx ORAy

Limit Values 12.2 m/s 12.2 m/s 20.5 G 20.5 G
2010 Yaris 15.28 m/s 9.87 m/s 11.04 G 5.75 G

2014 Silverado 9.93 m/s 8.25 m/s 8.55 G 6.28 G
Evaluation Result Failed Met Met Met

Table 9. Performance evaluation of TMBR by MASH TL-3 Criterion A.

MASH Criteria

Criterion A

Permanent
Deflection

Dynamic
Deflection Overriding Underriding Penetration

Limit Values / / / / /
2010 Yaris 137.9 mm 208.9 mm No No No

2014 Silverado 204.6 mm 283.0 mm No No No
Evaluation Result Met Met Met Met Met
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Table 10. Performance evaluation of TMBR by MASH TL-3 Criteria D, F, and N.

MASH Criteria

Criterion D Criterion F Criterion N

Intrusion
of Debris

Maximum
Roll Angle

Maximum
Pitch Angle

Within Exit
Box Exit Angle

Limit Values / 75◦ 75◦ / /
2010 Yaris No 6.0◦ 10.8◦ No 18◦

2014 Silverado No 5.0◦ 4.1◦ Yes 16◦

Evaluation Result Met Met Met Failed Met

4.4. Vehicular Crash into TMBR behind a Sidewalk

Under in-service conditions, the TMBR requires a sidewalk with a minimum width
of 1.52 m. This is different from the flat-terrain condition specified in MASH; therefore,
the performance of the TMBR could be different from that without the sidewalk. Since the
TMBR failed to pass Criteria H and N when impacted by the 2010 Toyota Yaris subject to TL-
3 requirements, the FE model of the TMBR was updated to include a 1.52 m wide sidewalk
and re-evaluated under the impact of the 2010 Toyota Yaris subject to TL-3 requirements
(see Figure 19). In this simulation, the vehicle would first hit the curb face of the sidewalk,
ride up the sidewalk, and impact the TMBR. The CIP was the same as that in Section 4.3,
with the reference point at the expansion joint of the TMBR.
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Figure 19. FE model of the TMBR with a (1.52 m) sidewalk under impact by a 2010 Toyota Yaris.

Figure 20 shows the 2010 Toyota Yaris trajectory impacting the TMBR with a sidewalk.
Redirection of the vehicle with a 15◦ exit angle was observed; therefore, the TMBR met
MASH Criterion N. The angular motion histories of the 2010 Toyota Yaris were obtained
and the maximum roll and pitch angles were determined to be 6.6◦ and 3.8◦, respectively,
not exceeding the 75◦ limit according to the MASH Criterion F.
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Tables 11–13 summarize the results of the performance evaluation for the TMBR with
a sidewalk impacted by a 2010 Toyota Yaris. The TMBR met all MASH safety requirements,
except for the longitudinal OIV value that exceeded the limit by 3.93%. When compared to
the results for the TMBR without a sidewalk (Table 8), it was observed that the presence of
the sidewalk significantly reduced the longitudinal OIV value from 15.28 m/s to 12.68 m/s.
This was due to the initial contact of the vehicle with the curb face of the sidewalk, which
reduced the peak acceleration of the vehicle in the longitudinal direction upon impacting
the TMBR. Although the OIV value in the case with a sidewalk still exceeded the MASH
limit, the small percentage (3.93%) could be considered well within the margin of error and
would not raise serious concerns.

Table 11. Performance evaluation of TMBR with sidewalk by MASH TL-3 Criteria H and I.

MASH Criteria
Criterion H Criterion I

OIVx OIVy ORAx ORAy

Limit Values 12.2 m/s 12.2 m/s 20.5 G 20.5 G
2010 Yaris 12.68 m/s 10.35 m/s 10.50 G 3.72 G

Evaluation Result Fail 1 Met Met Met
1 Exceeding the limit by 3.93%.

Table 12. Performance evaluation of TMBR with sidewalk by MASH TL-3 Criterion A.

MASH Criteria

Criterion A

Permanent
Deflection

Dynamic
Deflection Overriding Underriding Penetration

Limit Values / / / / /
2010 Yaris 11.25 mm 14.9 mm No No No

Evaluation Result Met Met Met Met Met

Table 13. Performance evaluation of TMBR with sidewalk by MASH TL-3 Criteria D, F, and N.

MASH Criteria

Criterion D Criterion F Criterion N

Intrusion
of Debris

Maximum
Roll Angle

Maximum
Pitch Angle

Within Exit
Box Exit Angle

Limit Values / 75◦ 75◦ / /
2010 Yaris No 6.6◦ 3.8◦ Yes 15◦

Evaluation Result Met Met Met Met Met

5. Major Research Findings

The performance of TMBR was evaluated using finite element simulations of vehicular
crashes based on MASH TL-2 and TL-3 requirements. Two vehicle models and the TMBR
model were used in the simulations. The major findings of the study are summarized
as follows:

• Under MASH TL-2 test conditions, the TMBR was shown to pass all the safety require-
ments on structural adequacy (MASH Criterion A), occupant risk (MASH Criteria D,
F, H, and I), and post-impact trajectory (MASH Criterion N). The damage to the rails
was acceptable and no debris entered the occupant compartments of the vehicles.

• For MASH TL-3 test conditions, the TMBR met all safety requirements subject to the
impact of the 2014 Chevy Silverado. However, the TMBR failed to pass the safety
requirements of MASH Criteria H and N under the impact of the 2010 Toyota Yaris.
Specifically, the longitudinal OIV value did not satisfy the MASH limit requirement.
Moreover, the vehicle was bounced back and unable to be redirected, indicating failure
of MASH Criterion N.

• Under in-service conditions (i.e., the TMBR was installed behind a 1.52 m wide
sidewalk), the impact severity on the TMBR was reduced in the case of the 2010
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Toyota Yaris according to MASH TL-3 requirements. The TMBR with the sidewalk
passed all safety requirements except for the longitudinal OIV value that exceeded
the MASH limit by 3.93%. This small percentage could be considered well within the
error margins and would not cause serious safety concerns.

• The numerical models and modeling techniques adopted in this study were shown to
be effective through model valuation using full-scale physical crash test data. Although
the makes and/or years of the vehicles in the physical tests and FE simulations were
different, the numerical simulation results and test data generally agreed well in
overall vehicular responses. More full-scale crash tests, particularly those with the
same or similar vehicles as the FE models, would be extremely useful and important
to further fine-tune the FE models and improve their accuracy and fidelity.

6. Conclusions

In this study, FE simulations of vehicles crashing into a three-bar metal bridge rail
(TMBR) were performed. The FE models of two test vehicles were validated, and the
FE model of the TMBR was constructed. Vehicular crash simulations were performed
per both MASH TL-2 and TL-3 requirements, and the performance of the TMBR was
evaluated according to MASH criteria on structural adequacy, risks of occupants in the
vehicle, and trajectories of vehicles after impacts. It is concluded that the TMBR met all
evaluation criteria under MASH TL-2 impacts. However, the TMBR failed to pass all
safety requirements under MASH TL-3 conditions, due to a large longitudinal OIV value
and failure to stay within the exit box. The TMBR was also evaluated under in-service
conditions, i.e., installed behind a 1.52 m wide sidewalk, when impacted by 1100C under
MASH TL-3 conditions. The sidewalk reduced the impact severity on the TMBR, and
MASH Criterion N was met under the in-service conditions. Although the longitudinal
OIV value still exceeded the MASH limit, the value 3.93% over the limit was small enough
to be considered within the error margins without serious safety concerns.

The simulation results provide insights into general trends of vehicular responses
and TMBR performance but should not be used as definitive conclusions about TMBR
performance under specific impact scenarios. The potential issues or safety concerns
identified in the simulations can guide future designs, improvements, and further testing.
Full-scale crash tests are essential for validating simulation results and assessing real-world
performance. Numerical simulations have proven to be a valuable tool in crashworthiness
and transportation safety studies, complementing physical tests by providing cost-effective
ways to explore various design options for different crash scenarios.
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