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Theoretical modelling of efficient 
fire safety water networks 
by certified domination
Joanna Raczek 1,3* & Mateusz Miotk 2,3

This paper explores a new way of designing water supply networks for fire safety using ideas from 
graph theory, focusing on a method called certified domination. Ensuring a good water supply is 
crucial for fire safety in communities, this study looks at the rules and problems in Poland for how 
much water is needed to fight fires in different areas and how this can be achieved at a lowest possible 
cost. We present a way to plan water supply networks for fire protection as a graph, where each point 
(node) is a place that needs water, and the lines (links) show where water can go between these points. 
The main idea is to find the best places to put pumping stations and wells in the network to save 
money and still meet all the fire safety requirements. Our approach assumes that it costs more to build 
a pumping station than a well. We use some examples to show how this method can find cost-effective 
solutions for water supply networks, while ensuring that they meet fire safety requirements and are 
not too expensive to build. This approach is a new and efficient way to improve the design of water 
supply networks for fire safety. Key challenges that are solved in this paper are a linear time algorithm 
finding an optimal solution for networks without cycles and a BLP (Binary Linear Programming) 
algorithm solving the problem in arbitrary networks.
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Providing water to the fire protection water supply network is a crucial aspect of the overall fire protection and life 
safety strategy of an entire community. To meet the expectations of fire safety when a new building is developed 
or an existing building is renovated, necessary calculations are performed so that the building is complied with 
fire safety regulations. Before everything it is important to make sure that the proper amount of water is available 
to the responding fire department for both suppression of the fire in the building, and protection of any exposed 
buildings. All water-based fire protection systems need water. Without access to an adequate water supply these 
systems will not function properly. When determining a water supply one needs to make sure it is reliable, and has 
sufficient volume and pressure to meet the system demand. Because of these reasons, the fire safety regulations 
require a minimum amount of water be provided, as well as appropriate water pressure, network construction, 
and supply diameters for external hydrants or automatic sprinkler systems.

In Poland the provision of fire water supply for external fire extinguishing is required for all settlement units 
with a population exceeding 100 people, not constituting colony buildings, and within their boundaries: public 
utility buildings and collective residences, as well as production and storage buildings1. The demand of the 
amount of water may be decreased in rural areas with no buildings with increased fire safety, while, for example, 
in a production and warehouse building the required amount of water for fire-fighting purposes for external fire 
extinguishing should be higher.

The fire protection water supply network should be constructed as a circumferential network. It is allowed to 
build a branched fire-fighting water supply network outside urban areas Moreover, it is allowed to build branches 
from the peripheral network to supply external hydrants.

In Poland the fire protection network can be a part of the main supply network, and in general they are not 
separated. If in a settlement unit the water resources intended for the population supplied via a water pipeline 
do not provide the amounts required for fire protection purposes, at a distance of no more than 250 m from the 
outermost buildings of the settlement unit or the protected building, at least one of the following supplementary 
water sources with sufficient parameters is provided:
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•	 a well;
•	 a water intake point at a natural or artificial water reservoir;
•	 fire-fighting water tank meeting the requirements of the Polish Standards2.

The supplementary water sources are used in places with no water supplied via a water pipeline or when the 
supplied pipeline water has insufficient parameters (capacity, pressure, efficiency). This solution is applied, if 
necessary, for example, to hotels or sport facilities in rural areas, usually where the fire-fighting water supply 
network is branched1.

The supply system in the water supply network includes the elements such as water intakes, first stage pumping 
stations (pumping stations from the intake to the treatment station), water treatment plants (if needed), clean 
treated water tanks, second stage pumping stations (pumping stations from the reservoir to the network) and 
network expansion tanks3.

Act on collective water supply and collective sewage disposal provides that collective water supply and collec-
tive sewage disposal is the commune’s own responsibility, but also municipalities are not obliged to build water 
supply and sewage facilities directly to every object. Hence, while the local community office should provide 
fire water supply with the required parameters in the neighbourhood of each newly built (or rebuilt) object, in 
practice it may take a few years (due to lack of funds) and in such situations investors usually prefer to build 
wells, water tanks or use water from a nearby lake (if there is any) to fulfill the fire safety regulations, however by 
their own expense. Our model is meant to help develop planning techniques which can be applied in fulfilling 
the fire safety regulations at a lowest possible cost at the same time.

In this paper we introduce a theoretical model of a water supply network given in the language of graph 
theory. The model focuses on placing the water supply issues and hence other, less important parameters are 
omitted. The we apply the notion of minimum certified domination sets to solve placing water supplies: wells 
and pumping stations in such a way their number for the entire network is minimized. Other types of domina-
tion numbers do not fulfill all the requirements of our model, specifically do not take into account placing two 
different facilities, so they are not suitable in this model.

Results
This section introduces definitions and properties of certified domination in graphs. Afterwards we study com-
putational results concerning finding a minimum certified dominating sets. In particular, we give some basic 
results obtained in previous works to help understand the background for our study. Then we present a linear 
time algorithm finding a minimum certified dominating sets in trees. A tree is a connected graph in which any 
two node are connected by exactly one path. Next we present a binary integer programming (BLP) formulation 
that finds a minimum certified dominating sets in arbitrary graphs. Even though the BLP works for any graph, 
its computational complexity is greater. Performances of both algorithms are compared in next chapters.

Graph theory definitions and network model
Let G = (V ,E) be a model of a water supply network where V is a set of nodes, where each node represents a 
place that needs water, and E is the set of links between nodes. Two places u and v are connected if and only if 
placing a supply system in u gives water in the required quantity and parameters at v. This may be influenced by 
the landforms, natural resources (e.g. nature reserves, forests), type of developments in the area and other fac-
tors. We assume that if u is connected to v then v is also connected to u, and thus G is an undirected graph (see 
Fig. 4). It is worth to note that the network is more dense in urban areas, as in this case town Liniewo. In rural 
areas nodes have lower degree, and nodes of higher degree are more distant from each other.

In what follows we assume, without loss of generality, that the only possible supplementary water source (apart 
from pumping station) is a well. . Our task is to place in G pumping stations and individual wells in such a way 
that the total number of water supply devices is as small as possible providing the following conditions are met: 

1.	 Connection to Pumping Stations Each node without a pumping station and without a well must be con-
nected to a node with a pumping station. This ensures that every location receives adequate water supply 
from a nearby pumping station.

2.	 Pressure Maintenance for Wells If a node has a well, every node connected to it should be equipped either 
with a well or a pumping station. This prevents a drop in water pressure and ensures that the parameters at 
the node with the well remain within acceptable limits.

3.	 Financial Viability of Pumping Stations The construction of a pumping station is financially viable only 
in locations adjacent to at least two other locations without wells and without pumping stations. This cri-
terion ensures that pumping stations are built in locations where they provide maximum benefit and cost-
effectiveness.

Our aim is to minimize the total number of wells and pumping stations.

Figure 1.   Graphs P1 , P2 and P3.
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For example, (see Fig. 1) if the water supply network is just one node, P1 , then it is enough to build there a 
well. If the network are two adjacent nodes, namely P2 , then the optimal solution is to build wells in both nodes. 
For P3 the optimal solution is to build a pumping station in the middle node.

However the most interesting case among small graphs is P4 , see Fig. 2.
Note that placing a pumping station in x1 or in x4 is not possible by condition 3. Similarly, placing one pump-

ing station (for example at node x2 ) and one well (at x4 ) is impossible by condition 2. Hence, the optimal solution 
for P4 is to build a well at each node.

For the graph G1 (see Fig. 3, left), the optimal solution is one pumping station and two wells, while for the 
graph G2 (see Fig. 3, right), which has no support vertices, and all nodes have a minimum degree of 2, the optimal 
solution is to place two pumping stations.

We generally follow the notation and terminology of a book on domination in graphs4. For a graph G, the set 
of nodes is denoted by V and the links set by E. For a vertex v ∈ V  , the open neighbourhood N(v) of v is the set 
of all nodes adjacent to v, and N[v] = N(v) ∪ {v} is the closed neighbourhood of v. The degree of a node v in G is 
dG(v) = |N(v)| . The number min{dG(v) : v ∈ V} is the minimum degree of G and is denoted by δ(G) . A node 
of degree 0 is called an isolated vertex, while a node of degree one in G is called a leaf of G. If v is a leaf, then its 
only neighbour is called a support vertex of v. If a support vertex is adjacent to exactly one leaf, then we call it a 
weak support vertex and a strong support vertex, otherwise.

Given a graph G, we say that a subset D ⊆ V  is a dominating set of G if every node belonging to V − D is adja-
cent to at least one node in D. The domination number of a graph G, denoted by γ (G) , is the cardinality of a small-
est (that is minimum) dominating set of G. A dominating set of G of minimum cardinality is called a γ-set of G.

A subset D ⊆ V  is called a certified dominating set of G if D is a dominating set of G and every node belong-
ing to D has either zero or at least two neighbours in V − D . The cardinality of a smallest (that is minimum) 
certified dominating set of G is called the certified domination number of G and is denoted by γcer(G) . A certified 
dominating set of G of minimum cardinality is called a γcer-set of G. The certified domination was introduced by 
Dettlaff et al.5 and continued in6 in order to describe some possible relations in social networks.

Let G = (V ,E) be a model of a water supply network and let D be a set of all nodes in which a pumping sta-
tion or a well is placed in such a way all requirements 1.–3. are met. Then D is a dominating set of G, because of 
condition 1. Moreover, if the total number of pumping stations and wells in G is as low as possible, then D is a 
minimum certified dominating set by conditions 2. and 3.

On the other hand, let D ⊆ V  be a minimum certified dominating set of G. If v ∈ D and v is adjacent to at 
least 2 nodes not in D, then in the optimal solution we should place a pumping station in v. If v ∈ D is not adja-
cent to any nodes not in D, then we should place a well in v.

Figure 4 shows a case study of placing wells and pumping stations at a lowest possible number while meeting 
conditions 1.–3. Wells are denoted in blue, while pumping station – in red. Every place, denoted black, has a 
well or a pumping station, or is adjacent to a place with a pumping station, so condition 1. is met. Additionally, 
if a place has a well, each neighbour also has a well or a pumping station (condition 2.) Also, every place with a 
pumping station is adjacent to at least two places with no water source. Since the network is more dense in urban 
areas, the optimal solution suggests building wells only in the suburbs and rural areas.

It is observed5 that every support vertex in a graph G is part of every certified dominating set of G . For con-
nected graphs of order at least three, there is an interesting equivalence between the standard domination number 
and the certified domination number. This equivalence exists when the graph has a γ-set where each vertex has 
at least two neighbours outside the set. Furthermore, for any graph with a minimum degree of at least two, it 
is found that there’s always a γ-set where every vertex satisfies the neighbourhood condition, leading to equal 
domination numbers. The results also show that graphs with a unique γ-set naturally have equal domination and 
certified domination numbers. For connected P4-free graphs, except K2 , these domination numbers are also equal.

Background and motivation
In graph theory, the concept of a certified domination set has received considerable attention. Many scholarly 
articles explore different aspects of this subject. The idea of certified domination has been explained using dif-
ferent practical examples5. In this paper the researches have calculated exact values for the certified domination 
number in elementary graph types and set basic upper limits for this number in any type of graph. They also 

Figure 2.   Graph P4.

Figure 3.   Graph G1 (left) and graph G2 (right). PS denotes a pumping station, while W denotes a well.
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noticed that the certified domination number is equal to the well studied ordinary domination number in graph 
without weak support vertices. On the other hand, the authors in7 have proven that the question if the certified 
domination number is equal to the domination number is NP-complete even for graphs with just one weak 
support vertex. For this reason using known algorithms for finding the domination number does not solve the 
problem of the minimum certified dominating set. At the same time studying the certified domination number 
imposes new challenges requiring new techniques, tools and algorithms.

The motivation behind this paper also comes from the complexity of the certified dominating set problem, 
which is known to be NP-hard even for split graphs, star convex bipartite graphs, comb convex bipartite graphs, 
and planar graphs8. Therefore an important open problem in this area is ascertaining the computational com-
plexity of identifying the certified domination number across various graph classes. Despite so many studies, 
the challenge of finding the certified domination number for non-elementary graph classes remains unresolved. 
Our work aims to address this gap by providing a solution to the open problem presented in6 and9, specifically 
targeting the certified domination number for trees (connected acyclic graphs). Despite the relative simplicity 
of finding dominating sets in trees10, the task of finding certified dominating sets in trees is significantly more 
difficult due to the certification requirement. This additional complexity renders the problem both challenging 
and intriguing for theoretical research and practical use in graph theory. The linear time algorithm presented in 
this paper finds a minimum certified dominating set in trees, while the ILP algorithm finds a minimum certified 
dominating set for any graph, however in exponential time. Other studies have compared traditional and certified 
domination number in graphs 6, and have analyzed certified perfect dominating sets11. Research on isolate-free 
graphs has explored the structural properties of graphs related to certified domination12. The concept of certified 
critical vertices and vertex certified domination critical graphs were also examined9.

Mathematical models and tools has been used for solving various problems in water distribution networks 
since many years, see a review article13. Depending on the problem to solve, the mathematical methods include 
for example global gradient method, perturbation or delta expansion, Newton-Raphson methods, linear 
methods14, extended linear graph theory15,16, genetic algorithms17, and many others.

Linear algorithm for trees
The tree-order is the partial ordering on the vertices of a tree with u < v if and only if the unique path from the 
root to v passes through u, see a tree in Fig. 5. Let C(v) be the set of all children of a vertex v, and F(v) the father 
of v (if v is the root, then F(v) = null ). Denote by S(T) the set of all support nodes and by SW(T) the set of all 
weak support nodes of T.

The algorithm described in this section proceeds the nodes of T along its tree ordering, from the last to the 
root. It assumes that the number of nodes of tree, denoted n(T), is greater than 2, and the root is not a leaf. The 
algorithm consists of three phases, Phase 0, Phase 1 and Phase 2.

Figure 4.   Map with an optimal solution for placing wells (blue circles) and pumping stations (red circles). 
Source of the map: Google Maps.
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Algorithm 1.   Phase 0 of MinimumCertifiedDominatingSet 
In Phase 0 of MinimumCertifiedDominatingSet (Algorithm 1), or MCDS for short, determines in T: leaves 

(assigns to such nodes status L), weak support vertices (assigns to such nodes status SW) and strong support 
vertices (status S). For this reason, each node stores local variables, sta, leaf and add and their values are updated 
while performing the algorithm. Before the algorithm starts, we assume each variable of every node is equal to 
0. To determine support nodes, the algorithm analyzes values of the local variables leaf. Moreover, every weak 
support should remember his unique leaf (variable add, it is used further by SW nodes only). The Phase 0 Algo-
rithm works in linear time.

Figure 5.   Rooted tree T1 . Blue nodes form the minimum certified dominating set.
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Algorithm 2.   Phase 1 of MinimumCertifiedDominatingSet 
At this point we assume that all additional local variables (namely n0, n1, n2, n22, sw ) are equal 0 at the begin-

ning of the performance of the Algorithm 2 Phase 1, while sta, leaf, add have values as determined in Algorithm 1 
Phase 0. At Phase 1 sta may also be equal 0, 1, 11, 2 or 22. In general, when v is dominated by its child, v.sta = 1 , 
while v.sta ∈ {2, 22} means that v should be a member of a minimum certified dominating set of T, together 
with support vertices (statuses SW or S). Statuses 11 and 22 have special meaning, explained later. In some cases 
there is no need to change the status of a node from 0 to 1, so its status remains unchanged. It means that at the 
end of the performance of the algorithm nodes with sta = 0 or sta = 1 are certified dominated by the nodes 
with sta ∈ {2, 22, S, SW} . After performing the main loop (lines 2–27) on node v, the local variable n0 shows how 
many children of v have status 0, n1 is equal to the number of children of v with sta ∈ {1, 11} , n2 is equal to the 
number of children of v with sta ∈ {2, 22, S, SW} and sw is equal to the number of children of v with status sw.

Let L(T) be the set of all nodes of status L, that is leaves. Algorithm 2 Phase 1 proceeds only non-leaf nodes 
(line 2). The statements differ depending whether node v is a support node (then lines 4–6 are performed) or 
not (lines 8–27 are performed). Line 28 is performed additionally for the root node only.

If v is a support vertex, then the condition (line 4) checks whether v has exactly one leaf child and no other 
child with status 0 or status 1 or status 22. If that is the case, the father of v gets to know that there is one more 
node with these properties. If v is a weak support vertex but has at least one non-leaf child with status 0 or status 1 
or status 22, then there is no risk at the end of the Phase 2 that v has exactly one neighbour not in the minimum 
certified dominating set of T. Hence, v may be treated as a strong support vertex and therefore its status is changed 
to S. In line 6 we increase the local variable n2 of the father of v by one.

Lines 8–27 are performed for nodes, which are neither leaves nor support vertices. If v does not have children 
that should be dominated by v (with status 0) and has a child with sta ∈ {2, 22, S, SW} , then it simply gets status 1 
(lines 8–11). If v neither has children with status 0 nor status 2, then it gets status 0.

Lines 16–27 are performed for nodes with at least one child with status 0. Statuses 11 and 22 indicate that 
additional actions may be taken on those nodes and its children or parents during Phase 2.

Since there is only one for loop, the algorithm MinimumCertifiedDominatingSet in Phase 1 works 
in linear time.
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Algorithm 3.   Phase 2 of MinimumCertifiedDominatingSet 
The algorithm MinimumCertifiedDominatingSet in Phase 2 deals with possible situations where a 

node may dominate exactly one node outside the minimum certified dominating set D. This may happen when 
v is a weak support vertex and its father is supposed to belong to D (lines 4–5). Then the child of v is added to 
D. For similar reasons line 6 is performed for particular situation, as well as lines 7–10.

At the end, the minimum certified dominating set D consisting of nodes with status 2, 22, S or SW is returned.
Since there is only one for loop, the algorithm MinimumCertifiedDominatingSet in Phase 2 works 

in linear time and therefore, the complete algorithm works in linear lime.
Figure 5 shows results of performing the MCDS algorithm on trees. Nodes in blue (set D) show places to build 

a pumping station or a well. Specifically, nodes 2, 6, 8, 10, 13, 15 and 16 should be placed pumping stations, while 
nodes 12 and 20 have no neighbours in V − D , so in those places wells should be built.

Correctness proof of the linear algorithm
Denote by Tv the tree induced by v ∈ V(T) and all its descendants. For example, T9 for the tree T in Fig. 5 is the 
path (9, 10, 17).

The height of a tree (also known as depth), denoted h(T), is the maximum distance between the root node 
of the tree and the leaf node of the tree.

Theorem 1  The MinimumCertifiedDominatingSet (MCDS) performed on a rooted tree T, n(T) > 2 , 
where the root is not a leaf, finds a minimum certified dominating set of T.

Proof  If h(T) = 1 , then T is a star with at least two leaves (because the root is not a leaf). In Phase 0 the root 
gets status S and every other node status L. In Phase 1 only one thing happens: the root changes status to 2. In 
Phase 2 the set D consists of 1 element, namely the central node of the star, which is the minimum certified 
dominating set of this tree.

In what follows we proceed by the induction on the number of nodes in a tree T. Assume that for every tree 
T ′ with n(T ′) < n(T) the MCDS algorithm finds a minimum certified dominating set of T ′ and assume h(T) > 1.

Let v0, v1, . . . , r be the longest path from a leaf to the root r. Then v0 is a leaf and v1 is a support vertex. If 
additionally v2 is a support vertex, then at the end of the algorithm MinimumCertifiedDominatingSet 
(MCDS) performed on T v1, v2 ∈ D and, if v1 is a weak support vertex, then v0 ∈ D . Define T ′ = T − Tv1 . Then 
γcer(T) = γcer(T

′)+ 1 if v1 is a strong support vertex or γcer(T) = γcer(T
′)+ 2 if v1 is a weak support vertex. By 

the hypothesis, the algorithm MCDS finds the minimum certified dominating set of T ′ . Hence MCDS also finds 
the minimum certified dominating set of T.

Assume now that v2 is not a support vertex and v2 has at least two children that are support vertices. Then at the 
end of the algorithm MCDS performed on T, v2 /∈ D (in Phase 1 lines 8– 11 gets status 1), every child of v2 belongs 
to D and each such child has at least two neighbours outside D. Define T ′ = T − Tv1 . Then γcer(T) = γcer(T

′)+ 1 , 
regardless whether v1 is a strong support vertex or a weak support vertex. The rest of the proof follows as in 
previous case.

In what follows we assume that v2 has exactly one child, namely v1 . Then, since the root is not a leaf, 
h(T) > 2 . Moreover, if x0 is a leaf such that the distance from r to x0 is the same as the distance from r to v0 , then 
(x0, x1, x2, . . . , r) is a path from x0 to r, then by applying a similar reasoning as in previous paragraph, we obtain 
that deg(x1) = deg(x2) = 2 , so this we assume for the remaining part of the proof.

If v3 is a support vertex, then at the end of the algorithm MCDS performed on T, v0, v2 /∈ D and v1, v3 ∈ D and v3 
has at least two neighbours outside D (at least one leaf and v2 ). Define T ′ = T − Tv1 . Then γcer(T) = γcer(T

′)+ 1 . 
The rest of the proof follows as in previous cases.

Now assume that v3 is not a support vertex, but has at least one child which is a support vertex. Denote such 
a child by z. Then by our assumptions, every child of z is a leaf. In this situation at the end of performing the 
algorithm MCDS on T, v0, v2, v3 /∈ D and v1, z ∈ D and z has at least two neighbours outside D (at least one leaf 
and v3 ). Define T ′ = T − Tv2 . Then γcer(T) = γcer(T

′)+ 1 . If v3 is not a leaf in T ′ then the rest of the proof follows 
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as in previous cases. If v3 is a leaf in T ′ , then v3 is a root, T ′ is a star. It is easy to verify that in this situation the 
algorithm returns D consisting of the two support vertices of P6 , namely D = {v1, z}.

Assume that every child of v3 is a father of exactly one support vertex. Then by applying the algorithm to T, 
every leaf in Tv3 gets status 0, every support vertex gets status SW and every child of v3 gets status 1. If v3 = r , 
then at the end of Phase 1 v3 gets status 2 and it is easy to see that D is a minimum certified dominating set 
of T. If v3  = r , then by applying the algorithm to T, v3 gets status 0 in Phase 1. Depending on the statuses 
of other children of v4 , if v4 gets status 11 in Phase 2, or if v4 gets status 22 and sta(v5) ∈ {2, 22, SW , S} , then 
at the end of the algorithm v3 ∈ D . In both cases v4 /∈ D (see lines 6–10 of Phase 3). Define T ′ = T − Tv1 . 
Then γcer(T) = γcer(T

′)+ 1 and the rest of the proof is similar to the previous cases. Therefore assume v3 /∈ D . 
Define T ′ = T − Tv2 . Then γcer(T) = γcer(T

′)+ 1 and the rest of the proof follows as in previous cases regardless 
whether v3 is a leaf in T ′ or not.

In what follows we assume that v3 has exactly one child, namely v2 . Then, since the root is not a 
leaf, h(T) > 3 . Assume also that if (x0, x1, . . . , r) is another path from a leaf x0 to r of length h(T), then 
deg(x1) = deg(x2) = deg(x3) = 2.

If v4 is a support vertex, then at the end of the algorithm MCDS  performed on T, v0, v2, v3 /∈ D and 
v1, v4 ∈ D and v4 has at least two neighbours outside D (at least one leaf and v3 ). Define T ′ = T − Tv2 . Then 
γcer(T) = γcer(T

′)+ 1 . The rest of the proof follows as in previous cases.
Now assume that v4 is not a support vertex, but has at least one child which is a weak support vertex. Denote 

such children by z1, z2, . . . , zk . Then during Phase 1 lines 21–27 are performed for v4 . If v4 has more children 
of status 0 (like v3 ) than nodes with status SW in its neighbourhood (which in our case means that v4 has at 
least two children of status 0), then v4 gets status 2 and at the end of performing the algorithm MCDS on T, 
v4, z1, . . . , zk ∈ D together with the leaf children of z1, . . . , zk (the children are added to D during Phase 2 line 4). 
Define T ′ = T − Tv2 . Then γcer(T) = γcer(T

′)+ 1 and v4 has at least two neighbours outside D. Now the rest of 
the proof follows as in previous cases.

If v4 does not have more children of status 0 than nodes with status SW in its neighbourhood, then v4 gets sta-
tus 11 (lines 25–27) and during Phase 2 v3 together with every child of v4 of status 0 get status 2. Hence v1, v3 ∈ D 
and v2, v4 /∈ D and each z1, . . . , zk has at least two neighbours outside D (one leaf and v4 ). Define T ′ = T − Tv1 . 
Then γcer(T) = γcer(T

′)+ 1 , since v3 has at least two neighbours outside D: v2 and v4 . Now the rest of the proof 
follows as in previous cases (note that T ′ has one more child with status SW compared to T, so during performing 
the algorithm on T ′ node v4 also gets status 11).

Now assume every child of v4 , except for v3 is a strong support vertex. Then in Phase 1 of the algorithm applied 
for T, v4 gets status 22 (lines 16–19). Then, if v4  = r and sta(v5) ∈ {2, 22, SW , S} , v3 gets status 2 during Phase 2 
and define T ′ = T − Tv1 . If not, v3 gets status 0 and define T ′ = T − Tv2 . In both cases γcer(T) = γcer(T

′)+ 1 
and the rest of the proof follows as in previous cases. In what follows assume that v4 is not a support vertex nor 
has a child which is a weak support vertex nor each child of v4 is a strong support vertex. Hence, if deg(v4) > 2 , 
then v4 is a father of a strong support vertex (but not exclusively) or is a grandfather of a support vertex or is a 
father of at least two children which are grandfathers of support vertices (like v3 ). In this case during perform-
ing Phase 1 on node v4 the condition in line 16 is false and condition in line 22 is true, so v4 gets status 2. Then 
v4 ∈ D and v4 has at least two neighbours outside D. Define T ′ = T − Tv2 . Then γcer(T) = γcer(T

′)+ 1 , since v4 
is a support vertex in T ′ . Now the rest of the proof follows as in previous cases.

In what follows we assume that v4 has exactly one child, namely v3 . Then, since the root is not a leaf, 
h(T) > 4 . Then during performing the Phase 2 on v4 , the condition in line 16 of Phase 1 is true, so v4 gets 
status 22. Depending on the status of v5 either v3 gets status 2 at the end of Phase 2 or not. If the father of v4 
is of status in {2, 22, SW , S} (Phase 2 lines 6–9), then v1, v3 ∈ D and v0, v2, v4 /∈ D . Define T ′ = T − Tv1 . Then 
γcer(T) = γcer(T

′)+ 1 , since v3 is a support vertex in T ′ . Now the rest of the proof follows as in previous cases. 
If the father of v4 is not of status in {2, 22, SW , S} , then v1, v4 ∈ D and v0, v2, v3 /∈ D . Define T ′ = T − Tv2 . Then 
γcer(T) = γcer(T

′)+ 1 , since v4 is a support vertex in T ′ . Now the rest of the proof follows as in previous cases.
This completes the proof. 	�  �

Integer linear programming formulation for minimum certified dominating sets
In this section, we present an integer linear programming (ILP) formulation aimed at solving the problem of 
identifying a minimum certified dominating set Dcer in a given graph G = (V ,E) , where V = {i : i = 1, 2, . . . , n} 
and |V | ≥ 2 . Linear programming is a mathematical optimization technique that involves the minimization 
or maximization of a linear objective function subject to a set of linear equality or inequality constraints. The 
objective function in our formulation seeks to minimize the cardinality of a certified dominating set D , while 
the constraints encapsulate the specific conditions that define a certified dominating set. We provide a theorem 
followed by a proof of correctness to validate the efficacy of this BLP formulation. It should be noted there is an 
alternative solution approach discussed in8. However, must be emphasized that the formula presented in that 
article is incorrect, demonstrated by the counterexample of a path P4 : an optimal feasible solution for this graph 
is not a certified dominating set. This underlines the importance of the careful proof of correctness presented 
in this paper. This ILP-based solution provides a mathematical and computationally efficient way to solve this 
complex, combinatorial problem.

We define the following sets of binary decision variables:

xi = 1 if and only if i ∈ D,

ai is an auxiliary variable.
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The above decision variables determine the vertex set D = {i ∈ V : xi = 1} of cardinality |D| =
∑

i∈V xi.
The linear program to find a minimum certified dominating set Dcer in a graph G = (V ,E) is formulated as 

follows:

We present a theorem to establish the validity and correctness of the linear program formulated to find the 
minimum certified dominating set in a given graph G = (VG ,EG) . The theorem aims to rigorously prove that 
the linear program not only satisfies to the constraints defining a certified dominating set but also optimally 
minimizes its cardinality.

Let � denote the domain determined by all feasible solutions to Z, i.e.

Proposition 2  Any feasible solution (x, a) ∈ � determines a certified dominating set.

Proof  Let (x, a) ∈ � . Consider D = {i ∈ V : xi = 1}.

•	 Since (x, a) is feasible, constraint (C1) ensures that every vertex or one of its neighbours is in D , thus satisfy-
ing the dominating set condition.

•	 Constraints (C2) and (C3) work together to satisfy the certified condition: zero neighbours or at least two 
neighbours in V − D for each vertex in D . Assume first that xi = 0 . Then by (C1)  

∑
j∈N(i) xj ≥ 1 , and so 

 In this case (C2) simplifies to 
∑

j∈N(i)(1− xj)+ |V | · ai ≥ 0 which is always true, regardless of ai . At the 
same time (C3) simplifies to 

 By (1) and by substituting ai = 0 in (C3) we obtain 
∑

j∈N(i)(1− xj)− |V |(ai − 1)+ 2 ≤ |V | − 2− |V | + 2 ≤ 0 , 
so (2) is true. Therefore if (x, a) is a feasible solution and if xi = 0 , then substituting ai = 0 the constraints 
(C2) and (C3) are always true. Assume now xi = 1 . Then (C2) simplifies to 

 while (C3) simplifies to 

 If 
∑

j∈N(i)(1− xj) = 0 , then substituting ai = 1 makes (3) and (4) both true. Similarly, if 
∑

j∈N(i)(1− xj) ≥ 2 , 
then substituting ai = 0 makes (3) and (4) both true. However if 

∑
j∈N(i)(1− xj) = 1 , then neither ai = 1 

nor ai = 0 gives a feasible solution to both (C2) and (C3). Therefore, if (x, a) is a feasible solution and if 
xi = 1 , then (C2) and (C3) are true only when 

∑
j∈N(i)(1− xj) �= 1 , which means i does not have exactly one 

neighbour in V − D . Hence if (x, a) is a feasible solution, then D is a certified set.
The conclusion of the above analysis is that any feasible solution (x, a) ∈ � determines a certified dominating set 
D = {i ∈ V : xi = 1} . 	�  �

Below we see that the reverse of the above result also holds. In particular

Proposition 3  Any certified dominating set D can be associated with a solution (x, a) ∈ �.

Proof  Let D be a certified dominating set of G. Consider the following solution (x, a):

Minimize Z =

n∑

i=1

xi

subject to

∀i ∈ V , xi +
∑

j∈N(i)

xj ≥ 1 (C1)

∀i ∈ V ,
∑

j∈N(i)

(1− xj)+ |V | · ai ≥ 2xi (C2)

∀i ∈ V ,
∑

j∈N(i)

(1− xj)+ |V |(ai − 1)+ 2 ≤ 2xi (C3)

∀i ∈ V , xi ∈ {0, 1}, ai ∈ {0, 1} (C4)

� = {(x, a) : x ∈ {0, 1}n, a ∈ {0, 1}n satisfy (C1), (C2) and (C3)}.

(1)0 ≤
∑

j∈N(i)

(1− xj) ≤ |V | − 2.

(2)
∑

j∈N(i)

(1− xj)+ |V |(ai − 1)+ 2 ≤ 0.

(3)
∑

j∈N(i)

(1− xj)+ |V | · ai ≥ 2,

(4)
∑

j∈N(i)

(1− xj)+ |V | · ai ≤ |V |.
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•	 xi ∈ {0, 1} and ai ∈ {0, 1} for every i ∈ {1, 2, . . . , n} , so (C4) is true.
•	 xi = 1 if and only if i ∈ D.
•	 if xi = 0 , then ai = 0.
•	 if xi = 1 and i has no neighbours in V − D , then ai = 1.
•	 if xi = 1 and i has at least two neighbours in V − D , then ai = 0.

Let us see that (x, a) ∈ � , because since D is dominating, (C1) is satisfied. Next, if i /∈ D , then xi = ai = 0 and ∑
j∈N (i)

(1− xj) ≤ |V | − 2 . In this situation it is easy to check that (C2) and (C3) are satisfied. If xi = ai = 1 , then ∑
j∈N (i)

(1− xj) = 0 and hence both (C2) and (C3) are true. While if xi = 1 and ai = 0 , then 
∑

j∈N (i)
(1− xj) ≥ 2 

and again both (C2) and (C3) satisfied.
Note that if i ∈ D and if i has exactly one neighbour not in D, then 

∑
j∈NG(vi)

(1− xj) = 1 and xi = 1 . 
Therefore (C2) can be rewritten and can be simplified to |V | · ai ≥ 1 , while (C3) is equivalent to the formula 
|V |(ai − 1)+ 1 ≤ 0 . Then (C2) implies that ai = 1 , but this causes (C3) simplify to 1 ≤ 0 , a contradiction. � �

Methods
In our recent study, we conducted a comprehensive evaluation of the two algorithms presented in this paper, 
which we renamed for need of testings and presentation. The algorithm MinimumCertifiedDominating-
Set is named linear_Trees for short, while the algorithm that uses integer linear programming has name 
certified_ILP, the latter of which is based on linear programming techniques. The algorithms were tested 
on random trees, and their results and timing were compared using a server computer. The obtained results are 
given in tables and graphs.

Server computer tests
We performed this assessment on a high-performance server equipped with an Intel(R) Xeon E321xx 3.20 GHz 
processor, 32.0 GB of RAM, and running the Ubuntu Desktop 22.04.3 LTS system. The algorithms were imple-
mented using SageMath version 9.8 due to its advanced computational features and compatibility with complex 
algorithmic processes.

The experimental setup generated random trees with varying numbers of vertices, specifically 100, 200, 300, 
and 400, to fully understand the algorithms’ behavior across different scales. Each algorithm was applied to the 
tree structures, allowing for an analysis of their performance metrics and efficiency levels.

The certified_ILP algorithm, which focuses on linear programming, used the MixedIntegerLin-
earProgram package and the GLPK solver as its default computational engine. This integration was crucial 
for ensuring the accuracy and reliability of the algorithm’s linear programming components.

Tables 1 and 2 systematically compile the outcomes of rigorous testing and present a detailed breakdown of 
performance metrics. The tables offer insights into the efficiency and effectiveness of algorithms for different 
graph sizes. Results for graphs with 100, 200, 300, and 400 nodes are included, providing a nuanced understand-
ing of the scalability and robustness of the linear_Trees and certified_ILP.

It can be derived that for the tree on 100 nodes the linear time algorithm was over 40 times faster than the 
integer linear programming algorithm, while for the 200 nodes – nearly 300 times faster.

.
The information obtained from these tables and the graph of timings are anticipated to make a substantial 

contribution to the wider discussion of computational algorithm research, especially in the application of linear 
and linear programming techniques to intricate tree structures in graph theory.

Enhancing fire safety in urban planning through graph theory
The research on fire protection systems in this study is significant for several reasons. A new model for fire 
hydrant placement is introduced using graph theory to minimize distances between them. This is crucial because 
in urban areas, the distance and availability of fire hydrants can significantly affect the effectiveness of fire 
department response. We use certified dominating sets to enhance fire safety in urban areas by optimizing the 
placement of hydrants.

Table 1.   Basic time statistics for trees on 100 nodes and 200 nodes for a server computer.

Tests for 100 nodes Tests for 200 nodes

linear_Trees [ms] certified_ILP [ms] linear_Trees [ms] certified_ILP [ms]

Min 0.59 26.10 1.19 337.87

25% 0.76 33.92 1.55 439.22

Mean 1.17 52.19 2.38 675.73

Median 0.88 39.14 1.79 506.80

75% 1.23 54.80 2.50 709.52

Max 1.76 78.29 3.57 1013.60
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Furthermore, the distribution system is analysed through the pump stations and wells network to ensure a 
continuous water supply in the event of a natural fire. This approach not only enhances the ability to extinguish 
fires, but also reduces certain types of fire damage. Mathematical models are also employed to determine the most 
cost-effective and efficient location for building supporting infrastructure. This ensures that fire safety devices 
that are too expensive, redundant, or useless are not purchased by the administrator.

Using mathematical models to determine the optimal placement of hydrant slots and associated infrastructure 
can eliminate defunct fire safety equipment, resulting in cost savings. This research is essential as it provides a 
low-cost method to improve our country’s fire safety performance.

In addition, it has a significant impact on urban planning and development through the integration of fire 
safety considerations into the early stages of urban planning, thus promoting a more comprehensive approach to 
urban planning. The aim is to ensure that new developments have effective fire safety measures from the outset, 
thus reducing the need for costly upgrades.

Conclusion
This study presents a comprehensive approach for enhancing the efficacy of fire hydrant systems through the 
application of graph theory. The impact on urban fire safety, economic efficiency, and city planning is significant 
and provides a plan for more effective and sustainable fire safety strategies in urban environments. This study 
contributes to the theoretical understanding of graph theory and its practical applications in fire safety in cities.

In this paper we have solved a problem of constructing a linear time algorithm that finds a minimum certified 
dominating sets in trees. Also, we have identified and corrected an error that appears in the research literature 
concerning the ILP model for finding a minimum certified dominating set. We have tested and analyzed both 
algorithms on a server computer.
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