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Abstract

Wind energy being a free source of energy is becoming popular over the past decades and
is being studied extensively. Integration of wind turbines is now being expanded to urban
and offshore settings in contrast to the conventional wind farms in relatively open areas.
The direct installation of wind turbines poses a potential risk, as it may result in finan-
cial losses in scenarios characterized by inadequate wind resource availability. Therefore,
wind energy availability analysis in such urban environments is a necessity. This research
paper presents an in-depth investigation conducted to predict the exploitable wind energy
at four distinct locations within Nottingham, United Kingdom. Subsequently, the most
suitable location, Clifton Campus at Nottingham Trent University, is identified where a
comprehensive comparative analysis of power generation from eleven different wind tur-
bine models is performed. The findings derived from this analysis suggest that the QR6
wind turbine emerges as the optimal choice for subsequent experimental investigations to
be conducted in partnership with Nottingham Trent University. Furthermore, this study
explores the selection of an appropriate probability density function for assessing wind
potential considering seven different distributions namely, Gamma, Weibull, Rayleigh,
Log-normal, Genextreme, Gumbel, and Normal. Ultimately, the Weibull probability dis-
tribution is selected, and various methodologies are employed to estimate its parameters,
which are then ranked using statistical assessments.

1 INTRODUCTION

In recent decades, global energy demand has surged due to
population growth and rapid industrialization [1]. A large part
of this energy comes from fossil fuels, which release signifi-
cant amount of greenhouse gases causing major environmental
changes including but not limited to global warming. Given the
adverse impacts of climate change, there is a growing empha-
sis on renewable energy sources [2, 3]. Wind energy, being
a clean, sustainable, and readily available source, has proved
to be a promising alternative to perishable energy sources.
This field is attracting a lot of research worldwide with the
main focus on cost-effective methods and modified wind tur-
bine designs to harness the power [4, 5]. Many projects have
been initiated to promote the harnessing of energy using
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renewable resources. The paper in hand is in coordination
with the project zEPHYR under Horizon 2020 which aims
toward more efficient exploitation of on-shore and urban wind
energy resources.

An important source of information when making the deci-
sion on the type of turbine and its installation location [6, 7], is
the wind characteristic in the region. It provides information on
the environmental conditions that the turbines will be exposed
to, such as wind speed and turbulence [8]. This data is critical
in designing turbines that can withstand harsh weather condi-
tions, optimize energy production, minimize maintenance costs
[9–11] and help predict their energy output. The total energy
output of the wind turbine is influenced by various factors, some
of them being site temperature, type of surface, wind speed,
height of measurement device, air density etc. [12], apart from
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the turbine design itself [13, 14]. Wind energy analysis also helps
to evaluate the potential environmental impact of a wind energy
project [15]. It takes into account factors such as noise pollution
[16], visual impact, and the effects on local wildlife [17–19]. By
studying these factors, experts can design projects that minimize
their impact on the environment and local communities.

The wind energy potential in the city of Tehran, Iran was
calculated by Keyhani et al. [20]. It was inferred that the wind
potential of this area can be utilized for electrical and mechan-
ical purposes that do not require direct connectivity to the
power grid. The applications may include water pumping, bat-
tery charging, and local small-scale consumption. Faghani et al.
[21] studied the wind data obtained from 35 different stations
located in nine provinces of Iran. It was outlined that the spring
and summer seasons combined gave good results in terms of
wind potential, suitable for installing large-scale wind turbines,
while for the second half, i.e. during the fall and winter seasons,
the wind power density (WPD) drops substantially. Another
analysis performed in the city of Zarrineh, Iran deduced that
the location is more suitable for small-scale wind turbines for
various applications [22].

Investigations carried out at a site in Iraq (Al Salman) by Mah-
mood et al. [23] indicated a mean WPD of 219 W/m2, signifying
that the site is suitable for wind energy exploitation by small
wind turbines. Wind data was recorded for a period of 5 years
between 2000 and 2005 in Turkey for the locations Çanakkale
city centre and Bozcaada, an island in the Aegean Sea. It was
concluded that Boczaada is a preferred location for large-scale
electricity production [24].

Due to the fluctuating nature of wind patterns, which govern
the energy output at any given location, it is imperative to find
an optimal analysis technique. Over the years, many distribu-
tions have been developed to predict the probability density of
wind. Studies demonstrated in [25] compare the Wakeby, Beta,
Pert, generalized Pareto, Gamma, generalized Gamma function,
and the Johnson SB distribution function. It was concluded that
the Wakeby method outperformed the other functions used in
the study, with a good agreement between the predicted and
recorded data.

Some of the other distribution functions are the inverse
Gaussian distribution, the generalized normal, the log-normal
distribution, the three-parameter log-normal, the kappa, the
normal two-variable distribution, the normal square root of the
wind speed distribution, and hybrid distributions. Wind speed
at the airport in Dolný Hričov was modelled using the lognor-
mal, gamma and Weibull probability density distributions, with
the Weibull prediction outperforming the others [26]. Through
a comparative analysis of probability density distributions for
the Mediterranean coast of Turkey over a 1-year period utiliz-
ing Rayleigh and Weibull predictions, it was determined that
the Weibull model offered a better fit and superior probability
density estimates for the entire duration of the study [27].

The kernel density estimation (KDE) is a relatively new dis-
tribution that is being employed in the field of wind potential
analysis [28, 29]. The main disadvantage related to KDE is that
it is primarily used for estimating the probability density func-

tion of a given data set based on its observed values. Therefore,
it is not directly suitable for predictions. However, KDE may
be used in conjunction with other models to make predictions
about future data [30, 31]. It is also worth noting that there
are other methods, such as machine learning algorithms and
memory networks, that can be used to model wind speed dis-
tributions and make predictions about future wind speeds [32,
33]. These methods can be more flexible and better suited for
capturing complex patterns and relationships in the data but
may require more data and computational resources to imple-
ment and are out of the scope of the research presented in this
paper. The Weibull distribution function has been chosen and
discussed in detail in this paper. The factors which contribute
to the selection of this distribution function include its abil-
ity to estimate its skewness satisfactorily, the velocity and the
cubed velocity follow the same Weibull distribution, and the
wind speed frequency distribution allows for simple estimation
of the total WPD and its standard deviation [34].

In recent years, an increased interest by researchers has been
observed in the wind power availability in Urban areas. The
increasing number of high-rise buildings to meet the needs of
the growing population, have proved to be quite attractive in
the study of wind turbine deployment in such areas. The wind
patterns observed in an urban setting are quite unpredictable
and more turbulent. The heterogeneous terrain makes the stud-
ies more complex, especially when the uncertainty of changing
city architectural plans is taken into consideration. This calls for
special attention to study the local winds. The analysis done by
Juan et al. [35] demonstrates the change in dimensionless power
density when the width, height, and distance between the build-
ings are varied. A detailed illustration on how the wind velocity
pattern fluctuates due to changes in the relative height of adja-
cent buildings is also presented in this paper. Thus, from this
study it can be inferred that it is not only important to select
the right city for optimal power production, but also the precise
placement of the turbines when considering its installation in
complex terrain urban settings.

Moreover, selecting appropriate input features (or predic-
tors) is crucial for building accurate and effective wind speed
forecasting models. The selection of features can significantly
impact the model’s performance. Some of the input features
that can be used in prediction models include meteorological
variables (temperature, pressure, and humidity), geographical
features (latitude, longitude, and elevation), time of the day,
historical wind speed data, wind direction, frontal system and
clouds, topographical features etc. The selection of these vari-
ables depends on the type of data available and the probabilistic
model used. Due to the highly fluctuating nature of these vari-
ables, the wind patterns can vary to a large extent. Prediction
is thus required for each of these predictors which is quite
complicated. An in-depth study about the uncertainty mod-
els used for predicting the input-cloud cover can be found in
[36]. Also, due to the uncertainty of wind power generation,
the generation capacity and probability distribution of wind
power are affected. Research presented in [37, 38] provides a
good evaluation of the topic. The comprehensive estimation
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FIGURE 1 Area of study: (a) Nottinghamshire in black, (b) areas in Nottinghamshire, (c) areas under consideration.

of all predictors poses a considerable complexity, demand-
ing in-depth research. The current article, however, does not
extensively explore this intricate subject. Instead, it centers its
focus on examining the impact of varying wind speed and
terrain on wind energy potential, ultimately influencing the
selection and siting of wind turbines.

The main objectives of this article can be summarised as
follows:

Primary objective:

∙ Leverage a large, geographically diverse dataset for assess-
ing the feasibility of wind energy generation through wind
turbine installation at optimal locations.

∙ Focus on exploring wind power production potential in vari-
ous urban settings, including countryside, cities, and villages,
considering variations in building structures, materials, and
population densities.

Probability density distributions:

∙ Conduct an in-depth study of probability density distri-
butions for wind energy potential assessment at specific
locations.

∙ Apply seven different distributions (Gamma, Weibull,
Rayleigh, Log-normal, Genextreme, Gumbel, Normal) to the
data to identify the most fitting probability density function.

Parameter estimation:

∙ Select the Weibull probability density distribution as the most
suitable, based on goodness of fit evaluation.

∙ Calculate probability density parameters using four estima-
tion methods (STDM, MLM, MOM, PDM).

Location and application-specific nature:

∙ Demonstrate the location and application-specific nature of
identifying an optimal wind speed distribution model.

∙ Evaluate goodness of fit using various statistical tools to
compare errors and enhance the accuracy and reliability of
statistical analyses.

Key goals:

∙ Identify the most suitable location for wind turbine installa-
tion.

∙ Determine the optimal wind turbine type for energy produc-
tion.

∙ Conduct further experimental investigation, considering
aspects such as power output, efficiency, and noise levels,
both in absolute terms and as perceived by humans.

Campaign extension:

∙ Propose extending the campaign by installing additional wind
turbines to harness untapped potential for energy generation
in urban environments.

2 DATA COLLECTION AND ANALYSIS

For the purpose of this study, the city of Nottingham in the
county of Nottinghamshire, East midlands, England was cho-
sen (Figure 1). Data was collected from five weather stations
positioned at the locations as shown in Figure 2:

∙ Watnall - A village in the borough of Bouxton in Notting-
hamshire.

∙ Bulwell - A market town in the City of Nottingham.
∙ Chaucer building - Campus of Nottingham Trent University

(NTU) in the main city.
∙ Clifton campus - The campus of NTU in a suburban village

in the city of Nottingham.
∙ Sutton Bonnington - A village and civil parish lying along the

valley of the River Soar in the Borough of Rushcliffe, South-
West Nottinghamshire.
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4 SACHAR ET AL.

FIGURE 2 Locations studied in Nottingham.

The flow chart as shown in Figure 3 details the algorithm
followed to perform the analysis of the measured wind. As
mentioned in the prior sections, it is essential to select a suit-
able probability density function calculation model to analyse
the wind energy production. This is achieved by comparing the
estimated curves to the actual wind speed distribution. If this
condition is not satisfied, the data is fed to another set of equa-
tions and the prediction model is changed until the results from
the two are comparable.

2.1 Wind power density and energy density

The wind power density (WPD) as calculated from the Weibull
parameters can be given as 1.

WPD(v) = 1
2
𝜌c3Γ

(
1 + 3

k

)
(1)

and the WPD (average) of the recorded wind sample can be
presented as:

WPD(v) = 1
2
𝜌v3 (2)

The value of air density 𝜌 is assumed to be 1.225 kg/m3 and v
is the mean velocity of the sample for the purpose of the calcu-
lations included in this paper. The wind energy density (WED)
can be calculated by multiplying the WPD with the time over

FIGURE 3 Algorithm followed for wind analysis.

which the data has been sampled. EPD is generally expressed in
the terms of kWh∕m2∕year.

2.2 Weibull distribution

The probability density function (PDF, f (v)) and the cumulative
distribution functions of the Weibull distribution are as follows
[39]:

f (v) =
(

k
c

)
⋅
( v

c

)k−1
⋅ exp

(
−
( v

c

)k)
(3)

F (v) = 1 − exp

(
−
( v

c

)k)
(4)

where f (v) is the probability to observe the wind velocity v
at an instant. The Weibull paramaters include a dimensionless
shape factor ‘k’ and a scale factor(m/s) ‘c’. The shape factor
provides information regarding the strength of the wind, whilst
the scale factor details the range over which the frequencies of
wind recorded have been scattered.

A number of methods are available to calculate the Weibull
distribution parameters [40]. Over the years, studies have proved
that certain methods are more accurate in some conditions,
whilst giving a large difference between the recorded wind fre-
quencies and the distribution for other cases. [41] investigated
six different methods for predicting the Weibull parameters. It
was found out that the change in topographical setting did not
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SACHAR ET AL. 5

affect the precision of the different estimation techniques used,
but a direct effect was observed with increasing complexities of
the terrain, resulting in heightened disagreement between the
measured and the estimated sample distribution. The study of
prevalent wind direction performed by plotting a wind rose has
also proved to be an important factor in planning the location
of the wind turbines.

Wind power analysis done in Bangladesh [42] was performed
by using GM, EM, and PDM to estimate Weibull parameters
along with the Rayleigh distribution function. It was concluded
that GM produced comparatively more accurate values of the
Weibull parameters, EM and PDM followed next, while the
results from the Rayleigh distribution function were found to
be most erroneous. The WPD in the centre of Iran was anal-
ysed using the Standard Deviation Method, EM and PDM at
heights ranging from 10 and 100 m [21]. The results illustrated
that PDM is the best method among the three for the pre-
diction of k and c. The research performed by Mohammadi
and Mostafaeipour [22] yielded that for the Zarrineh region in
Iran, PDM gave more accurate results in contrast to STDM at a
height of 10 m. The methods used to extend the study presented
include the GM, STDM, MOM, PDM, MLE.

2.2.1 Standard deviation method (STDM)

This method has been used extensively for predicting the
Weibull parameters [43–45] and can be calculated by Equations
(5) and (6).

k =
(𝜎

v̄

)−1.086
(5)

c = v̄

Γ
(

1 + 1

k

) (6)

where 𝜎 is the standard deviation and v̄ is the mean velocity
of the sample. The gamma function, Γ can be calculated using
Equation (7)

Γ(x ) = ∫
𝛼

0
yx−1.e−ydy (7)

where y = (
v

c
)k and

v

c
= yx−1; x = 1 + 1

k

2.2.2 Method of moment (MOM)

The method of moments was put forward by a British statis-
tician Karl Pearson in the early 19th century and involves the
calculation of the probability distribution parameters [46] and
was introduced in the field of wind pattern study by Justus
and Mikhail in the later half of the 19th century [47]. The
Weibull parameters can be calculated by using Equations (8)
and (9).

k =
⎛⎜⎜⎝

0.9874
𝜎

v̄

⎞⎟⎟⎠
1.0983

(8)

v̄ = cΓ
(

1 + 1
k

)
(9)

2.2.3 Power density method (PDM)

A prior calculation of the energy pattern factor (Epf) is required
for the prediction of Weibull parameters by this method. This
factor can be defined as the ratio of the total available wind
power and the power calculated by taking the cube of mean
wind speed [40, 48].

Epf =
1

n

∑n
i=1 v3

i(
1

n

∑n
i=1 vi

)3
= v3

(v̄)3
=

Γ
(

1 + 3

k

)
Γ3
(

1 + 1

k

) (10)

The Epf calculated using the above equations is then used to
calculate the Weibull parameters as illustrated in Equations (11)
and (12).

k = 1 + 3.69

E2
pf

(11)

c = v̄

Γ
(

1 + 1

k

) (12)

2.2.4 Maximum likelihood estimation (MLE) or
maximum likelihood method (MLM)

MLE is one of the most extensively used Weibull distribution
estimation technique. The estimation of the parameters is car-
ried out by maximizing the likelihood function, resulting in their
most probable evaluation. The likelihood estimation function
was proposed by Fisher [49] and extended for application in
wind data analysis by Stevens and Smulders [50]. The Weibull
distribution is represented as Equation (13). Performing further
evaluation of this equation results in Equation (14). Therefore,
finding the most likely value of k, an iteration needs to be
performed by considering an initial value of the shape factor.

L(vi , k, c ) =
n∏

i=1

{(
k
c

)( vi

c

)k−1
exp

[
−
( vi

c

)k]}
(13)

k =

[∑n
i−1 vk

i ln (vi )∑n
i=1 vk

i

−
∑n

i−1 ln (vi )

n

]−1

(14)

c =

(
1
N

N∑
i=1

vk
i

)1∕k

(15)

where vi is the wind speed at an instant i.
This method can be further extended to modified maximum

likelihood method (MMLM). This method is similar to MLE
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6 SACHAR ET AL.

with the addition that the observed data is arranged according to
the wind speed bins. The frequency of each bin formed within
a specific range of wind speeds, corresponds to its probability
[51].

k =

[∑n
i=1 vk

i ln (vi ) f (vi )∑n
i=1 vk

i f (vi )
−

∑n
i=1 ln (vi ) f (vi )

f (v ≥ 0)

]−1

,

c =

[
1

f (v ≥ 0)

n∑
i=1

vk
i f (vi )

]1∕k

(16)

2.3 Wind speed at height

An additional important factor to be taken into account when
performing the wind analysis is the height at which the wind
velocities have been recorded. This needs to be adjusted accord-
ing to a reasonable height at which the wind turbine needs to
be mounted. Equations (18)–(22) can be used to calculate the
Weibull parameter values, the energy and power density values
for a desired height. The power law given by Equation (17) is
used to extrapolate the wind velocity recorded at height ‘Z’ to
the height of interest ‘Zh’ (hub height) [52]. The surface rough-
ness given by 𝛼 can be calculated according to the conditions
mentioned in [53].

V = Vh

(
Z
Zh

)𝛼

(17)

kh =
k[

1 − 0.0881 ln

(
zh

zref

)] (18)

ch = c

(
zh

zref

)n

(19)

vh = chΓ

(
1 + 1

kh

)
(20)

P̄h =
1
2
𝜌v̄3

h = 1
2
𝜌v̄3

h

Γ
(

1 + 3

kh

)
Γ3
(

1 + 3

kh

) = 1
2
𝜌c3

hΓ

(
1 + 3

kh

)
(21)

ED = 1
2
𝜌c3

hΓ

(
1 + 3

kh

)
T (22)

In the above equations, the Weibull parameters at a height
‘h’ are described as kh and ch. The velocity is given by vh, aver-
age power density as P̄h, duration of measurement ‘T ’ and the
energy density as ED.

2.4 Statistical tools for wind distribution
evaluation

Several statistical tools are available to calculate the error
between data sets [40]. By comparing different statistical tools

for comparison of errors, we can gain a more complete under-
standing of the strengths and limitations of each tool and
make more informed decisions about which tool to use in
a given context. This can help to ensure that the analysis is
accurate and meaningful, and can help to avoid potential pit-
falls or misinterpretations that can arise from using a single
tool in isolation. Details of the methods used for calculat-
ing the errors between the predicted function and observed
data set for the cases under consideration are presented in this
section.

Mean absolute percentage error

MAPE = 1
N

N∑
i=1

|||||
Xpre − Xobs

Xobs

||||| × 100 (23)

Root mean square error

RMSE =

√∑N
i=1

(
Xobs − Xpre

)2

N
(24)

Variance error (R2)

R2 =

(∑n
i=1

(
Xobs − Xobs

)
×
(

Xpre − Xpre

))2

∑n
i=1

(
Xobs − Xobs

)2
×
∑n

i=1

(
Xpre − Xpre

)2
(25)

Chi square error (𝜒2)

𝜒2 =
∑N

i=1

(
Xobs − Xpre

)2

Xpre
(26)

where N = no. of observations,
Xpre = predicted values from the probability distribution
Xobs = observed values from the data set
Xpre = mean of the predicted values from the probability dis-

tribution
Xobs = mean of the observed values from the probability dis-

tribution.
MAPE gives the mean absolute value between the predicted

terms from the Weibull distribution and the values calculated
from the collected data sample. RMSE is essentially the stan-
dard deviation of the predicted errors. The predicted errors
(residual) signify how far the data points are from the regres-
sion curve. It can also be explained as how spread the data
is about the best fitting line [54]. R2 illustrates the fraction of
variance of the true value recorded by the regression model, in
contrast to the residuals as in the case of RMSE. A value of R2

close to 1 is considered preferable to determine the goodness
of the fit [55]. Even though this model is simple to use, it can-
not completely take into account the effect of the theoretical
distribution, thus, it is recommended to use it in conjunction
with other methods [56].𝜒2 is another test used to determine
the closeness of the predicted data to the observed data. This is
a non-parametric tool, i.e. it is distribution-free and can be used
to compare groups with different sample sizes. In addition, this

 17521424, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rpg2.13132 by Institution O

f Fluid Flow
 M

achinery, W
iley O

nline L
ibrary on [04/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://ietresearch.onlinelibrary.wiley.com/action/rightsLink?doi=10.1049%2Frpg2.13132&mode=
http://mostwiedzy.pl


SACHAR ET AL. 7

TABLE 1 Small industrial wind turbines - suitable for urban environments.

Company Model Diameter Tower height (m) Blade length (m) Swept area (m2) Rated power (kW) Cut-in speed (m/s) Type

WEPOWER Falcon 3.4 kW 3 5.5 3.6 10.8 3.4 2.7 VAWT

Falcon 5.5 kW 4 5.5 4.6 18.4 5.5 2.7 VAWT

Falcon 12 kW 6 5.5 6.2 37.2 12 2.7 VAWT

Kliux energies Zebra plus 3.4 6 3.05 10.37 4.9 2.5 VAWT

Interwin Maia S 3.3 6-12(folding) 1.65 8.5 1.8 2.8 HAWT

Maia M 3.7 6-12(folding) 1.85 10.8 2.3 2.5 HAWT

Maia L 4.7 6-12(folding) 2.35 17.4 3.3 2.3 HAWT

Quite Revolution QR 6 3.1 6-18(folding) 5.1 15.81 7 1.5 VAWT

Delft University
of Technology
(TUD)

Turby 1.99 6-7.5(folding) 3 5.97 3 4 VAWT

Aventa AV-7 LoWind 12.9 18 6.45 129 6.5 2 HAWT

FinnWind Tuule 200 5 18 2.5 19.6 2–2.5 HAWT

study provides information about how each compared group
affected the complete study, making it one of the significant
tools [57].

2.5 Selection of wind turbine

One of the major goals after analysing the optimal wind
resource available is to check for the type of wind turbine to be
installed. A variety of wind turbines are available in the market
and can be selected based on the purpose of interest. Since this
study is limited to urban environments, research was done on
wind turbines to suit such conditions. Small wind turbines are
designed to generate electricity for residential or small commer-
cial use, and they are typically less than 100 feet in height. They
are designed to operate at lower wind speeds and can be installed
on rooftops or other small areas, making them ideal for urban
environments. The small vertical axis wind turbines are gener-
ally preferred in an urban environment as they have a unique
design that allows them to capture wind from any direction,
which is particularly useful in urban environments where wind
direction can change quickly and unpredictably due to buildings
and other structures [58, 59]. They are also quieter than hori-
zontal axis wind turbines, making them more acceptable to the
neighbourhood [60, 61]. These can also be installed closer to
the ground, making them a good option for rooftops and small
urban spaces, also allowing for easy access to the equipment
parts for maintenance. Thus, it can be inferred that a combi-
nation of both the above-mentioned types of rotors, i.e. a small
VAWT is a good choice for the case study under consideration.
VAWTs can again be classified as Darrieus and Savonius-type
rotors. The Savonius type rotor is drag-based while the Darrieus
WT is lift-based and offers a comparatively higher efficiency
than the former.

A comparison of a few commercially available small wind
turbines which are suitable for urban environments has been
presented in Table 1. Power production analysis related to the

selected locations for each of these turbines has been detailed in
Section 4.

3 RESULTS AND DISCUSSION

3.1 Mean wind speed

The mean wind speeds of the locations under consideration
have been shown in Table 2. The data set includes the mean val-
ues of wind measurements done over a period of 1 year using
10-min average. The mean wind speeds for two locations, i.e.
Sutton Bonnington—a village in the countryside and Watnall a
village close to the city with a higher number of buildings are
shown over a period of 3 years (2018–2020). One clear observa-
tion from the two is that Sutton Bonnington has a higher value
of average wind speed. This may be attributed to the fact that
this village has relatively lower urbanization, thus less number
of buildings.

Figure 4 shows the hourly variation of the wind speeds while
Figure 5 demonstrates the average wind speed for each month.
Looking into the details of the hourly wind speed averages, it can
be seen that the wind speed has the least deviation for the year
2019 for both the locations. When the complete data set of the
hourly variation over the 3 years is taken into consideration, the
average mean wind speed in the case of Sutton–Bonnington is
ranging between 3 and 3.6 m/s. While in the case of Watnall, this
deviation ranges between 2.3 and 3.2 m/s. Another interesting
factor in case of Watnall is the drop in wind speeds between
12 PM to 2 AM for all the years.

The monthly wind data represented as in Figure 5 shows a
similar wind speed pattern for the two locations with a dip in
the wind speeds from April to October. An amusing obser-
vation made in the case of the location Sutton–Bonnington
is the sudden dip in the monthly wind speed average from
2018 to 2019–2020. As even a slight change in the surrounding
of the meteorological mast, such as additions of building and
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8 SACHAR ET AL.

TABLE 2 Weibull parameters calculated using different formulas.

Site v (m/s) 𝝈 Parameters STDM MOM PDM MLE Preferred method

Clifton Campus 3.764 2.125 k 2.156 2.141 2.092 2.173 MLE

c 3.949 3.948 3.944 3.964

Bulwell 4.759 2.490 k 2.008 2.020 1.979 2.022 MLE

c 5.370 5.371 5.368 5.384

Chaucer 1.334 2.125 k 1.679 1.665 1.474 1.73 PDM

c 1.494 1.493 1.474 1.507

Watnall 2.63 1.061 k 2.419 2.213 3.408 2.244 PDM

c 2.966 2.97 2.927 2.984

Sutton–Bonnington 3.266 1.800 k 1.908 1.896 2.104 1.848 PDM

c 3.681 3.680 3.687 3.567

FIGURE 4 Hourly wind distribution for Sutton, Bonnington, and Watnall
areas in Nottingham.

deforestation can lead to a change in the local wind patterns.
This change can be linked to a variation in the topography of
the surrounding area. The exact factors that influenced the wind
speed distribution need to be studied in more detail. The lowest
wind speeds were observed for the warm months from April
to September.

It is to be noted that all the calculations were performed
by normalising the velocities at a height of 40 m using Equa-
tion (17). This height has been chosen as it is one of the most
commonly used hub height when considering the installation
of wind turbines. For the purpose of this study, the surface
roughness (𝛼) value has been assumed to be 0.27.

FIGURE 5 Monthly wind distribution for Sutton, Bonnington, and
Watnall areas in Nottingham.

3.2 Comparison of different probability
distribution methods

Many different probability density estimations have been
employed in various studies to statistically characterise the wind
energy potential for a given data set. A detailed investigation was
also performed in order to find a suitable distribution function
under different conditions. Seven different distributions namely
Gamma, Weibull, Rayleigh, Log-normal, Genextreme, Gumbel,
and Normal were applied to the data in order to find the best
probability density function for the wind potential assessment.
The parameters for these distributions were calculated using
MLE. Analysis was performed for two locations—Watnall and
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SACHAR ET AL. 9

FIGURE 6 Error analysis of Weibull parameters using different statistical tools for different locations and year 2019–2020.

Sutton–Bonnington, for three consecutive years (2018–2020).
The plots showing the comparison of different distributions for
a part of the data recorded over the years 2019 and 2020 are
shown in Figure 6. R2 is used as the goodness of fit criterion and
its corresponding value to each of these distribution functions
has also been detailed in the plot.

Overall, it was observed that Rayleigh, Weibull, and Gamma
methods outperformed the other approaches for the different
years and locations under consideration. It should also be noted
here that Rayleigh distribution produced identical results to the
Webull probability density distribution. This can be attributed
to the fact that Rayleigh probability distribution function is a
special case of Weibull distribution when the shape factor value
is ‘2’, as observed for the study presented. The exponential or
Gaussian distribution can be defined by changing the value of
the shape parameter to k = 1 and k ≥ 3, respectively. The ability
of Weibull distribution to incorporate these specific probability
distribution instances, suitability to investigate very high wind
speeds [62], and the capability to describe the data asymmetri-

cally about a mean value, ease of analysis, make it a preferable
choice for wind energy estimation as compared to the other
distribution functions discussed in this paper.

Moreover, the Weibull distribution is also more flexible when
compared to the gamma distribution. Thus, the Weibull proba-
bility density function was finally selected for characterizing the
wind energy potential of a given data set. It was further analysed
to study the effect of the method used on predicting the shape
and scale parameters of the distribution.

3.3 Weibull distribution

Different methods used for the estimation of Weibull parame-
ters are compared in Figure 7. The data represents the estimates
calculated from a single day using 10 min average for the loca-
tion Clifton campus. The best-fitting curve is given by STDM in
this case. Since the sample considered for this plot is only for 1
day at a particular location, this result cannot be generalized and
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10 SACHAR ET AL.

FIGURE 7 Weibull distribution estimation using different methods for
calculating the parameters.

requires further detailed investigation. Thus, this plot illustrates
why is it important to find the best-fitting curve in each of the
cases under consideration for wind analysis.

Table 2 details the parameters measured using different
Weibull methods for various locations in the Nottingham
region. These measurements were taken for a period of 1 year
from June 2020–2021. Plots in Figure 8 demonstrate the error
analysis performed for the four methods STDM, MOM, PDM,
and MLE. This goodness of fit check was implemented as
explained in Section 2.4. The plot is characterized by groups of
bars. Each of these groups depicts the method that was used to
predict the Weibull distribution parameters (x-axis), while every
bar represents the error measured using: R2, Chi-square, RMSE,
and MLE (as shown on four different y-axis). This comparison
allows us to rank the methods that give the most accurate pre-
dictions of the Weibull parameters at the particular location. The
method preferred for each of the locations is also highlighted in
Table 2. Results obtained from the error analysis are consistent
with the literature, that one single method is not sufficient to
perform wind energy analysis at varying locations.

Following the Weibull distribution analysis for different loca-
tions during the same year, another study considering wind
data collected from suburban locations consisting of different
population densities and architectural features was performed.
The variation between k and c is calculated for the years under
consideration. It is observed that the shape factor is almost
constant with a maximum variation of 4% in the case of
Sutton–Bonnington and 1.3% in the case of Watnall (Figure 9).

The layout of buildings and their architectural designs influ-
ence the local wind energy. A concentration effect is generated
because of spacing between building which is generally smaller
than their height. This effect results in an increased wind
velocity and thus the wind energy potential [63]. Higher num-
ber of buildings concentrated in an area for the location of
Clifton Campus as compared to Sutton–Bonnington can thus

TABLE 3 Energy density production comparison of different locations in
Nottingham.

Site v (m/s) Method

Energy density

(kWh/m2/year)

Clifton Campus 3.76 MLE 418

Sutton–Bonnington 3.27 MLE 354

Watnall 2.63 PDM 128

Chaucer Building 1.33 PDM 36

be accounted for the increased mean wind speed and the
resulting power available for exploitation.

Figures 10a and 10b show the Weibull probability distribution
over a period of 3 years 2018–2020, calculated using the maxi-
mum likelihood estimation for the locations Sutton Bonnington
and Watnall respectively. This presents an interesting contrast
of the wind patterns between a less populated and fielded area
and a countryside that is comparatively more architecturally
developed than the prior. In the case of Sutton–Bonnington,
maximum velocities in the range of 16m/s are observed with a
maximum frequency of 0.23. In the case of Watnall, the maxi-
mum velocity is restricted to 12 m/s, but a higher frequency of
the order 0.33 is attained.

3.4 Wind power density and energy

The energy density for the locations under consideration, over
a period of 1 year are as observed in Table 3. It is observed that
Clifton campus gave the highest value of energy density, found
by using the maximum likelihood estimation and the least results
were given by the Chaucer building using the power density
method. This is directly related to the low wind speed recorded
at this location. MLE nad PDM were found to be suitable for
predicting the Weibull distribution parameters for the different
locations under consideration.

While the values corresponding to the suburban and the vil-
lage location for the years 2018–2020 are as shown in Table 4.
It should be noted that the location Bulwell was excluded from
further analysis due to contradictions with local laws. MLE was
found suitable for four out of six cases as described in the
table, while STDM proved to be the most useful method for
only two cases. Sutton–Bonnington can be concluded as a good
option when considering the wind energy availability over the
3 years under consideration. It can be inferred that MLE is the
preferred method for most of the cases under consideration.

4 WIND TURBINE SELECTION

The next step of the study was to compare commercially avail-
able small wind turbines for installation in the optimal locations
obtained. Results obtained in Table 3 suggest that the Clifton
campus and Sutton–Bonnington are the most suitable locations.
As the average wind velocity at both locations is ≈ 3.5 m/s,
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SACHAR ET AL. 11

FIGURE 8 Error analysis of Weibull parameters using different statistical tools.

the wind turbines with a maximum cut-in speed of 3 m/s were
selected for maximum wind energy conversion (refer Table 1).
However, due to Governmental regulations and permissions
from the local authorities, the Clifton campus was selected as
the final place for WT installation. In addition, the installation
of the turbine on the university campus offers a valuable oppor-
tunity for practical investigations across diverse fields, including
medicine, engineering, and social sciences, and will promote the

use of sustainable energy practices while inspiring and motivat-
ing students to participate actively in this emerging field. The
results of this study may be leveraged to implement wind tur-
bines at various locations on the campus, further promoting the
utilization of green energy in everyday activities.

Figure 11 shows the average electrical power produced (kW)
for the duration of wind data available. The top-performing
wind turbines in the order of power produced are Falcon- 12kW,
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12 SACHAR ET AL.

FIGURE 9 Shape and scale parameters variation over the years under consideration.

FIGURE 10 Weibull distribution plots.

TABLE 4 Power production comparison over 3 years.

Site Year Method Power density(W/m2) Energy density (kWh/m2/year)

Watnall 2018 MLE 20.68 181.14

2019 STDM 17.27 151.28

2020 MLE 23.16 204.47

Sutton Bonnington 2018 STDM 47.80 418.76

2019 MLE 40.45 354.31

2020 MLE 53.47 468.37

AV7-Lo wind, and QR6. AV7-Lowind WT performs the best
due to a very large diameter (12.8 m), resulting in a swept area
of 129 m2, which is about ten times that of QR6 and thus gener-
ates very high power. Due to the practical restriction and sizing
constraints of the location selected, this wind turbine was dis-
carded. Next, the comparison between QR6 and Falcon-12 kW
demonstrated that although the latter produced a higher aver-
age power than the former, by ≈1 kW, it was characterised by a
higher cut in velocity and two times the diameter.

Finally, QR6 wind turbine was selected for the current study
and a collaboration was established with the company Quiet
Revolution to evaluate the performance of their commercial
VAWT model, QR6 [64]. This particular model possesses a
compact and easy integration design, incorporating an aesthet-
ically pleasing swept blade (helical shape) configuration with
a unique blade tip designed to minimize noise. Additionally,
the blade structure exhibits excellent aero-elastic character-
istics, enabling it to harness turbulent wind conditions and
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SACHAR ET AL. 13

FIGURE 11 Variation of electrical power for various commercially available wind turbines suitable for installation in an urban environment.

mitigate vibration. The QR6 model commences operation at
wind speeds as low as 1.5 m/s and includes safety cutoff fea-
tures for wind speeds exceeding 20 m/s. The turbine comprises
power regulation mechanisms that initiate an automatic shut-
down in the event of an emergency and is designed for a life
expectancy of over 30 years. The device is also equipped with
an industrial programmable logic controller and is configurable
to conform to grid codes in different regions worldwide. These
attributes make the QR6 model a highly attractive option for
installation at the designated site.

Experiments related to the noise production and efficiency of
the wind turbine in real-case scenarios will also be conducted, as
well as social studies related to public perception and potential
effects on human health.

5 CONCLUSION

This study includes an in-depth comparison of different prob-
ability density functions available to perform wind energy
assessment. Seven different distributions namely Gamma,
Weibull, Rayleigh, Log-normal, Genextreme, Gumbel, and Nor-
mal are applied to the data in order to find the best probability
density function for the wind potential assessment. The method
with the best fitting is then selected and the probability den-
sity parameters are then calculated using another four methods.
This research study has concluded that the Weibull distribu-
tion is a useful approach for characterizing the wind speed
distribution at four distinct sites, encompassing a village, coun-
tryside, and university campus within a city. These findings
hold relevance for comprehending the potential wind resource
in selected urban locations. This study additionally examines
the influence of population, building density, and variations in
geometry on the available wind energy density. Finally, a com-
parison of eleven commercially available small wind turbines has
been performed to select a WT which is apt for the selected site.
It is noteworthy that while the location with the highest available
energy may be identified, it may not always prove to be the most
optimal location due to other considerations such as noise pro-

duction, turbine size and type, public perception, governmental
regulations, and related factors.

Some of the specific observations and inferences from this
study include:

∙ Comparison between different probability density function
demonstrates that Weibull is the best choice for wind energy
analysis when compared to different distributions namely
Gamma, Weibull, Rayleigh, Log-normal, Genextreme, Gum-
bel and Normal according to based on the goodness of
fit.

∙ It has been noted that the site with the highest total power
density for any comparison data demonstrates the maximum
average wind speed and the lowest value of k. This is in
agreement with literature as found in [34].

∙ The Clifton campus of Nottingham Trent University has the
highest wind energy production.

∙ HAWTS seem to be more suitable for installation in the coun-
tryside due to the higher range of attainable wind velocities
and available installation area.

∙ Small VAWTS are more suitable to be installed in the city
due to their ability to perform with low wind speeds and the
requirement of small starting torque. They also perform well
in a restricted space as compared to their horizontal counter-
part. Moreover, the vertical configurations of wind turbines
are omnidirectional and can achieve higher efficiency even
under turbulent conditions [65]. These characteristics make
VAWTs an excellent choice for urban settings.

∙ A comparison of multiple wind turbines for average power
production per annum suggests that the wind turbine QR6
from Quite Revolution Ltd presents an optimal trade-off
between power production, size, operational wind speed and
noise production.

∙ The power density method and maximum likelihood estima-
tion gave the best fitting curves for the probability density
functions, for the considered locations.

∙ Shape and scale factor variation can be used to predict the
future wind probability distribution within an error of 4% as
observed for the study compared over different years.
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14 SACHAR ET AL.

Thus, it can be concluded that the selected locations are
not suitable for large-scale wind energy production, however,
small-scale wind energy can be produced. Extensive numerical
studies have also been performed to compare different wind
turbines and their respective configurations [66, 67]. Consider-
ing the results obtained from the mathematical analysis, it has
been decided to install a Darrieus-type vertical axis wind tur-
bine in the Clifton campus of Nottingham Trent University,
UK. The objective is to perform an experimental investiga-
tion to validate the predictions made through the probability
density estimations.

The present study underscores the significance of statistical
analysis methods such as Weibull estimation in the context of
wind energy applications. By testing the QR6 VAWT, this study
confirms its suitability for use in urban environments while
identifying opportunities for further refinement and explo-
ration. As the wind energy sector continues to expand, these
findings provide critical insights into how wind speed data can
be evaluated and leveraged to facilitate the advancement of eco-
nomically viable and environmentally sustainable wind energy
initiatives, particularly in urban settings where wind resources
are available.

NOMENCLATURE

VAWT Vertical axis wind turbine
HAWT Horizontal axis wind turbine

PDM Power density method
MOM Method of moments

STDM Standard deviation method
MLM Maximum likelihood method
MLE Maximum likelihood estimation

MAPE Mean average p ercentage error
RMSE Root mean square error

R2 Variance error
KDE Kernel density estimation
WPD Wind power density
WED Wind energy density
PDF Probability density function
CDF Cumulative density function
Vavg Average velocity(m/s)

v Mean velocity(m/s)
𝜒2 Chi-square error

Epf Energy pattern factor
EM Emperical method

k Weibull shape factor/parameter
c Weibull scale factor/parameter
Γ Gamma function

Xpre Predicted values from the probability distribution
N No. of observations

Xobs Observed values from the data set
Xpre Mean of the predicted values from the probability dis-

tribution
Xobs Mean of the observed values from the probability dis-

tribution
𝜎 Standard deviation

NTU Nottingham Trent University

f (v) Probability of wind velocity at an instant
vi Wind speed at an instant i (m/s)
Z Height at which velocity is recorded

Zh Hub height or height of interest
𝜌 Air density

kh Shape factor at height ‘h’
ch Scale factor at height ‘h’

ED Energy density
Ph Average power density at height ‘h’

SWT Savonius wind turbine
T Duration of measurement
m metres
s second

AUTHOR CONTRIBUTIONS

Shivangi Sachar: Conceptualization; data curation; formal
analysis; investigation; methodology; software; validation; visu-
alization; writing—original draft. Shubham Shubham: Con-
ceptualization; data curation; resources; validation; writing—
review and editing. Piotr Doerffer: Conceptualization; project
administration; resources; supervision; writing—review and
editing. Anton Ianakiev: Conceptualization; funding acquisi-
tion; project administration; resources; supervision; writing—
review and editing. Paweł Flaszyński: Conceptualization;
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