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Abstract—We investigate stability properties of two-step Runge-Kutta methods with respect to
the linear test equation

y'() =ayt) +by(t-7), t=0,

y(t) = g(t), te (-0,
where a and b are complex parameters. It is known that the solution y(t) to this equation tends to
zero as t — oo if |b] < — Re(a). We will show that under some conditions this property is inherited
by any A-stable two-step Runge-Kutta method applied on a constrained mesh to delay differential

equations, i.e., that the corresponding method is P-stable. (© 2002 Elsevier Science Ltd. All rights
reserved.

Keywords——Two—step Runge-Kutta methods, Delay differential equations, Absolute stability,
P-gtability.

1. INTRODUCTION
Consider the initial-value problem for delay differential equation (DDE)

v(t) = fyt),yut—7),  telt,T),

u(t) = g(t), € fto - 7 ol (1)

7 > 0, where g is a specified initial function and f satisfies conditions which guarantee the
existence of the unique solution y to (1.1). Such conditions can be found in, for example, [1-4].
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Many numerical methods have been proposed for the numerical solution of problem (1.1); the
recent surveys are given by Jackiewicz and Kwapisz [5] and Zennaro [6]. In this paper, we are
concerned with two-step Runge-Kutta (TSRK) methods which can be defined by

Kl =f <tz‘ +ejh, ujyn(tion) + (1 — uy)yn(ts)

B> (055 KS +bisKr)  yn(t + cih — T)) , (1.2)

s=1

124
yn(ti +€h) = n()yaltio) + (1= n(€))yalts) + b Y (v (OK] +ws(§) Ky
s=1
i=0,1,...,n—1, & € (0,1], nh = T — tq, t; = to + th. Here, v is the number of stages,
yr(t) is a continuous approximation to y(t), K1?+1 are approximations (possibly of low order)
to y'(t; + ¢;h), and n(€), v:(€), and w;(§), i = 1,2,...,v, are polynomials such that 7(0) = 0,
v;(0) = 0, and w;(0) = 0. These methods form a subclass of general linear methods introduced by
Butcher [7] and could be possibly also referred to as two-step hybrid methods. They generalize
k-step collocation methods (with k£ = 2) for ordinary differential equations (ODEs) studied by Lie
and Nersett [8] and Lie [9], and TSRK methods for ODEs investigated by Byrne and Lambert [10],
Renaut [11,12], Caira et al. [13], Jackiewicz et al. [14], Jackiewicz and Zennaro [15], and Jackiewicz
et al. [16]. The discrete version of these methods (in somewhat different so-called Y-notation)
was introduced by Jackiewicz and Tracogna [17] in the context of ODEs. They were further
investigated by Jackiewicz and Tracogna [18], Butcher and Tracogna [19], Tracogna [20], Tracogna
and Welfert [21], Jackiewicz and Vermiglio [22], Hairer and Wanner [23], and Bartoszewski and
Jackiewicz [24]. The variable stepsize continuous TSRK methods for ODEs were investigated by
Jackiewicz and Tracogna [25]; they result in the formulation (1.2) when applied with a constant
stepsize h to the DDE (1.1). The A-stable TSRK methods have been constructed in {14,17,25].
Following [25], we will represent these methods by the following table of the coefficients:

Uy ai . al, bll e bl)/
w | A | B : - : : - :
@€ | 0T @) | w € T w | aa o aw | b o b

n€) | v® - w® [ wil® - w(€)

We would like to stress that the methods (1.2) given by the above table of coefficients are more
general than the methods studied in [8,9] (with & = 2) and in [10-16] since for all these methods
the coefficient matrix A is identically equal to zero. As illustrated in [17], the presence of extra
parameters a;; in (1.2) makes it possible to construct high-order methods with relatively few
stages, and we refer to [17,24,25] for specific examples.

Assuming that h = 7/m for some positive integer m we can approximate the delayed argu-
ments yp,(t; + cjh — 7) = yp(tiom + c;h) by

yh(ti—m + C_;‘h) = n(cj)yh(ti~m—l) + (1 - n(cj))yh(ti—m) +h Z (Us(cj)]{is—m + ws(cj)‘[(f—m-{—l) ’

s=1

J=1,2,...,v. Substituting this relation into (1.2) with £ = 1, we obtain

Kl =F (tz‘ +eihyugyior + (1= uy)ys + b Y (a5 K7 + b K2 y)

s=1

NYi—m—1 + (L = 05)¥i-m + hZ (’YjsKiS—m + 5jsK1:s—m+1)) ) (1.3)

s=1

1’4
yier = Myic1 + (L= )y + b Y (0K + w K3 )

s=1
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i=1,2,...,n—1,7=12,...,v, where y; = yp(t;), n = n(1), n; = n(c;}, ;s = vs(c;), and
855 = ws(cy).
It is the purpose of this paper to investigate stability properties of (1.3) with respect to the
linear test equation
y'(t) = ay(t) +by(t —7), t=0,

a
y(t) = g(t), te[-,0], (1.4)

where a and b are complex parameters. Stability properties of Runge-Kutta methods with re-
spect to this test equation have been investigated by Koto [26,27], Zennaro [28], in 't Hout and
Spijker [29], in 't Hout {30}, Guglielmi [31], and Guglielmi and Hairer [32]. Stability properties
of linear multistep methods for DDEs with respect to (1.4) have been investigated by Cryer [33],
Bickart [34,35], Wiederholt [36], and Watanabe and Roth {37].

It was proved by Barwell [38] that the solution y(t) to (1.4) tends to zero as t — oo if

b] < — Re(a), (1.5)

and it was proved by Zennaro [28] that if y(t) — 0 as t — oo, then |b] < —Re(a). Hence,
inequality (1.5) defines the interior of the region of asymptotic stability of equation (1.4). In
this paper, we investigate under what conditions the asymptotic stability properties of this test
equation are inherited by the numerical approximation to (1.4) by the TSRK method (1.3).

The approach of this paper is based mainly on the technique proposed by Zennaro [28] in the
context of RK methods for DDEs. However, in spite of some similarities to the RK case there
are also many important differences, and the extension of the approach of [28] to TSRK methods
for DDEs is far from trivial.

The main result of the paper is Theorem 3.3 in Section 3, which states that under some technical
conditions the TSRK method (1.2) for DDEs is P-stable if the underlying TSRK method for
ODEs is A-stable.

2. PRELIMINARY RESULTS AND DEFINITIONS

Applying (1.3) to the test equation (1.4) with i = 7/m, we obtain

Kl ,=a (ujyi-l +(L=u)y+h Y (ajst + bjstH))

s=1

14
+b (njyi—m—l + (1 - nj)yi—m +h Z (’Yjsl(f_m + 5jst_m+1)) s (2'1)

s=1

Yirr = nyio1 + (L~ n)ye + 2y (0K +w,K)

s=1

i =0,1,...,5 = 1,2,...,v. Putting @ = ha, 8 = hb, @ = m,...,m]", T = [vsl)s=1
A= (0455 g1y Ki = (Kl,...,K!]T,and e = (1,...,1]7 € R”, equation (2.1) can be written as

hK1'+1 = a(yi_l& + yi(e — ’IL) + hAK,; + hBI(H_])
+ 3 (yi—m—lﬂ + Yi—m (6 — 11) + WK _ o + ’ZAI{i_m_l) y (22)
Yis1 = i1 + (1 =0y +v AE; +w hKyy,

i = 0,1,.... Denote by {y;(m;a,3)}2, the solution to (2.2) with h = 7/m. Following Zen-
naro [28], we introduce the following definition.
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DEFINITION. Method (1.3) is said to be stable for given (a, 3) if the sequence {y;(m; «, 5)}2,
tends to zero as t ~— oo for any integer m > 1. The region Sp of stability of (1.3) is the set of all
values (a, 8) for which this method is stable. Method (1.3) is said to be P-stable if its region of
stability Sp includes the set {(o, 3) : |8] < — Re(a)}.

Observe that it follows from (1.5) that if the method (1.3) is P-stable, then the numerical solu-
tion {y;(m; a, £)}52, defined by (2.2) tends to zero as i — co whenever the analytical solution y(t)
to {1.4) tends to zero as t — co. Observe also that o and 3 depend on the stepsize A.

Assuming that the matrix I — aB is nonsingular we can compute hK,;,, from the first relation
of (2.2), and substituting the resulting expression into the second relation of (2.2) leads to the
following vector recurrence equation:

Yiy1.=LY; + MY, 1+ NYi_ms1 + RYs_m + SYi_m_1, (2.3)

i=0,1,..., where Y; = [y;, hK;']T and the matrices L, M, N, R, and S are defined by

[ [1-n+aw'(I-aB) He—-u) v'+aw'([ —aB)‘lA]
N ol —aB) (e —u) a(l —aB)™1A ’
M = (74 aw™ (I —aB) lu 0]
| al-aB)"lu 0]’
N = K ﬂwT(I—aB)‘lA}
“lo sU-aB)tA |
R [BwT (I —aB)~Ye—1) pw'(—aB)~'T
| BUI-aB) Ye-1) B(I —aB)~'T } ’
5= [BwT (I —aB) i O]
Tl BI-aB) a0

The characteristic equation of (2.3) is
det (A2 — A™HLL — XM — A2N ~ AR - S) = 0. (2.4)
Observe that ) is a root of this equation if and only if there exists z* € C**1, z* # 0, such that
A2 XL Ly XMt — A2Nz* — ARz* — Sz* = 0. (2.5)

Put z* = [p,z"]", where p € C and z € C¥, and assume that p # 0. This seems to happen for
most TSRK methods. Then (2.5) is equivalent to

A2 ymL ((1—n+ ow ' (I — aB) (e - u))
+( +aw (I —aB) 'A)z) - A" (n+ aw (I — aB)"'u)

_,\QﬁwT(I—aB)‘lAz—)\(ﬁwT(I—aB)’l(e—ﬁ) 26)
+Bw' (I —aB)™'T'z) — puwT (I - aB)~'a =0,
and
A2 A (oI — aB) " He —u) + a(l — aB)™'Az)
= A"l - aB) lu - A2B(I —aB) 'Ax
(2.7)

- A (BU —aB) ! (e—1u)+ B(I — aB) 'I'z)
-8 —aB) la=0.

Consider also the following relation:

MuTz - A+ A(1-n+v'z)+97=0, (2.8)
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and the quadratic function

N - AR; <a, X%) - R, (a, 1%) =0, (2.9)

where the rational functions

Ri(o,z) =1—n+v z+w (I —aB - 2A)" (e —u) + z (e — @) + aAx + zlx)

and
Ry(a,z2) =n+w' (I —aB —zA)"! (au + z@)

are well defined if the matrix I — aB — zA is nonsingular. We have the following theorem.

THEOREM 2.1. Assume that the matrix | —aB—zA is singular if and only if = is a pole of Ry {(a, 2)
or Ro(a,z). Then A # 0 such that 3/A\™ is not a pole of Ri(a, z), and Ra(w, z) satisfies (2.6)
and (2.7) if and only if M is a root of (2.8) and (2.9).

PROOF OF NECESSITY. Assume that A # 0 such that 3/A™ is not a pole of Ry{a, z), and Ry (a, 2)
satisfies (2.6) and (2.7). Then it follows from the assumptions of the theorem that the matrix
I —aB - (#/A™)A is nonsingular. Consider the relation

AT — aB)z — A" ale — u) + adz) — AMau — A2BAz — A (B (e — @) + fTx) — Bi = 0,

which is equivalent to (2.7). Dividing this relation by A™ and then multiplying it by wT (I —
aB - (8/A™)A)~! we obtain

-1
Nuwlz —w' (I—aB—/\ﬁmA) X (a(e—u)+/\—€; (e—ﬁ)+aAm+/\£mI‘z>

—1
w1 —ap- P B
w (I aB e A> (au + o u) =0.

To compute Aw 'z, we multiply (2.7) by w' and then compare the resulting relation with
equation {2.6). This leads to

(2.10)

MuTz=X-A(1-n+v'z)-n,

which is equivalent to (2.8). Substituting this equation into (2.10), we obtain (2.9). This com-
pletes the proof of necessity. (]

PROOF OF SUFFICIENCY. From (2.9), it follows that
AM-A1l-n+vTz)-n

-1
:)\wT<I—aB—>\—€;A> <a(e—u)+—%(e—ﬂ)+a,4x+>\—ﬁm—l“m>
-1
—wT(I——an)‘ﬂmZ_\) (au+-/€;ﬂ>.

Using relation (2.8) it can be verified that (2.7) is satisfied. Multiplying (2.8) by A™ and (2.7)
by w' and comparing the resulting relations, we then obtain (2.6). This completes the proof of
sufficiency. 1
REMARK. Assumptions of the Theorem 2.1 are not very restrictive and seem to be satisfied for
most TSRK methods of practical interest. For example, they are satisfied for the TSRK methods
constructed in Section 4.
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3. P-STABILITY PROPERTIES OF TSRK METHODS

Introducing the notation by z = 8/A™, relation (2.9) can be rewritten in the form
A% — ARy (a, 2) — Ra(av, 2) = 0.
Now define the set

I's = {z : one of the roots of A — ARj(a, z) — Ry(a,z) = 0 is on

the unit circle and the other is inside or on the unit circle}

and the quantity
Ta = min |z}.

We have the following theorem.

THEOREM 3.1. Assume that z = 0 is not a pole of Ry(a, z) and Ra(cv, z). Assume also that both
roots of
A2 — AR;(,0) — Ro(a,0) =0 (3.1)

are inside of the unit circle and that |3| < ¢,. Then all roots of

A2 — AR; <a, A%) — Ry (a, Xﬁﬁ) =0 (3.2)

are inside of the unit circle for all integers m > 1.

PROOF. Since the functions R;{«,0) and Ry(«,0) are well defined and the roots of (3.1) are
inside of the unit circle, it follows that the roots of

A —ARi(a,z) — Ri(c, 2) =0 (3.3)
are also inside of the unit circle for all |2| < g, (see Figure 1 for a geometrical explanation).

Im(z)

Re?z)

Figure 1. Geometrical interpretation of 4.
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Assume now to the contrary that equation (3.2) has a root A such that {A| > 1. Then
B
‘)\—m <18 < gas

for all integers m > 1. This means that for z = 8/A™ we have |z| < o, and one root of
equation (3.3) has modulus greater than or equal to one. This contradiction concludes the proof
of the theorem. [}

The next theorem gives a characterization of o, for some TSRK methods.

THEOREM 3.2. Assume that &t =u, ' = A, and A = B. Then
04 = dist (v, 054),

for every o € Sa, where S4 is the stability region of the TSRK method for ODEs.
PROOF. We have

Ri(a,z) =1 —n4+v'z+w (I-(a+2)B)"! x ((a+ 2)(e — u) + (o + 2)Az) = Ry (a + z,0),

- and
Ro(a,z) =n+ (a+2)w' (I — (a+ 2)B) 'u = Ry(a + 2,0).

By the definition of Sa, it follows that one of the roots of
A2 — ARi(a,z) — Ry, 2) = A2 = ARy (o + 2,0) — Ra(a+ 2,0) = 0

has modulus equal to one and the second has modulus less than or equal to one if and only
if o + 2 € S 4. It follows from the definition of I'y, that z € T, if and only if &« + 2 € 354 (see

Figure 2).
Hence,
oo = inf o] =  inf  f(a+2)—of =dist(a,054)
which completes the proof of the theorem. 1

We are now ready to formulate and prove the main result of this paper.

Im(z)4

ﬁé(z)

Figure 2. Region S4 and 90S4.


http://mostwiedzy.pl

90 7. BARTOSZEWSKI AND Z. JACKIEWICZ

THEOREM 3.3. Assume that the TSRK method for ODEs such that @ = u, I’ = A, and A = B
is A-stable. Then the corresponding TSRK method (1.2) for DDEs is P-stable.

PRrROOF. We have

Sp = {(a,ﬁ) - all roots of A2 — AR, (a’}%> — R, (O")\ﬂm) _

are inside of the unit circle for m > 1} .

It follows from Theorem 3.1 that S, given by

84 = {(a, B) : both roots of A2 — AR1(a,0) — R2(,0) =0
P

are inside of the unit circle and |8] < 04}

satisfies
Sp C Sp. (3.4)

We have to show that
{(a,8) : Re{a) < 0 and |4] < —Re(a)} C Sp

(this is the definition of P-stability). Take (a, 3) such that Re(«) < 0 and |4| < — Re(a). Since
the TSRK method for ODEs is A-stable we have

{a:Re(a) <0} C S4.

This means that both roots of equation (3.1) are inside of the unit circle. It follows from Theo-
rem 3.2 and A-stability that
T = dist (@, 054) > — Re(a).

Hence,
8] < —Re(a) < o4

This means that (o, 8) € Sp, and as a consequence of (3.4) it follows that (o, 3) € Sp. This
completes the proof. |

4. EXAMPLES OF P-STABLE TSRK METHODS FOR DDES

In this section, we will illustrate by two examples how to construct TSRK methods for DDEs
which are P-stable. We start with the TSRK method for ODEs given by

w| 4| B 0] 0164905 —0.198522 | 0.75 0
: S T 0 | —0.210337 -1.07121 | 2.70983  0.75
" 0 | 0128015 —0.284316 | 1.12692  0.0293846

which, as demonstrated in [17], is A-stable and has order p = 4 and stage order ¢ = 4. We
compute next the continuous weights

vi(€) =& (v +vip€+vi36%), 1= 1,2,
such that v;(1) = v; and I' = A, and the continuous weights

wi(€) =€ (win +wi2€ +wiz€?), i=1,2,
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such that w;(1) = w; and A = B, where I’ and A are the matrices defined in Section 1. This
leads to the linear systems of equations

Ui(cj> = aji7 U1<1) = Vs,

and
wi(cj) = by, wi(1) = w,

1,7 = 1,2, for the coefficients vy and wgr, & = 1,2, 1 = 1,2, 3. The solutions to the above systems
correspond to the continuous weights v;(£) and w;(€) given by

vi(€) = £ (0.57142 — 0.559464 € + 0.116058£2)
va(€) = € (—0.33277 +0.151525 € — 0.10307¢?) ,

and

w1 (€) = € (0.755371 + 0.49649 ¢ — 0.124943 ¢2) ,
w2 (€) = € (0.00598078 — 0.0885513¢ + 0.111955¢2) .

It can be verified using Theorem 3 in [25] that the resulting TSRK method for DDEs is convergent
with uniform order p = 4; i.e., there is no superconvergence at the gridpoints. We think this is a
very desirable property of the method since we can generate dense output without any additional
cost. The method constructed above is also P-stable as can be easily verified using Theorem 3.3.

Theorem 3.3 can also be used to construct TSRK methods of the type considered in [8,9,14],
i.e., with A = 0. For example, starting with the A-stable method of order p = 4 for ODEs

0 0 0 0.527766  1.06598
= 0 0 0 —0.0679367 _ 0.47028
0.462626 | 0.592719  0.457494 | 0.0203561  0.392057

| A | B
leT

u
n| v

constructed in [14] and proceeding similarly as in the previous example, we obtziin the P-stable
method of uniform order p = 4 for DDEs. The coefficients n(§), vi(£), and w;(€) of this method
are given by

€ (—0.835974 + 2.60229 £ — 1.30369£2)
¢ (—1.07105 + 3.33407¢ — 1.6703¢?)
vp(€) = € (—0.8267 + 2.57343 ¢ — 1.28923¢7) ,

S 3
—~
Ty Sy
(I

and

wy (€) = € (—0.226373 + 0.073107 £ + 0.173622¢7)
wo(€) = € (2.28815 — 3.37831 € + 1.48221£7) .

It can be verified by direct computations that both methods constructed in this section satisfy
assumptions of Theorem 2.1. For example, the matrix I — (a4 z)B corresponding to the latter
method is singular at z = 1.55644—«+0.834543 ¢ which are also the poles of the function R1(a;, 2).

A systematic approach to the construction and implementation of highly stable TSRK methods
for DDEs will be the subject of future work.
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