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A b s t r a c t - - W e  investigate stability properties of two-step Runge-Kutta methods with respect to 
the linear test equation 

y ' ( t )  = ay(t) + by(t - T), t > O, 

u(t)  = 9(t) ,  t C [ - ~ ,  0], 

where a and b are complex parameters. It is known that the solution y(t) to this equation tends to 
zero as t --~ oc if Ibl < - Re(a). We will show that under some conditions this property is inherited 
by any A-stable two-step Runge-Kutta method applied on a constrained mesh to delay differential 
equations, i.e., that the corresponding method is P-stable. @ 2002 Elsevier Science Ltd. All rights 
reserved. 

K e y w o r d s - - T w o - s t e p  Runge-Kutta methods, Delay differential equations, Absolute stability, 
P-stability. 

1 .  I N T R O D U C T I O N  

C o n s i d e r  t h e  in i t ia l -value  p r o b l e m  for delay different ial  e q u a t i o n  ( D D E )  

~'(t)  = / ( t ,  y( t ) ,  y(t  - ~))~ t e [to, T], 
(1.1) 

y(t)  = g(t) ,  t e [to - 7, to], 

T > 0~ w h e r e  g is a specif ied ini t ial  func t ion  and  f sat isf ies cond i t i ons  wh ich  g u a r a n t e e  t h e  

ex i s t ence  of  t h e  un ique  so lu t ion  y to  (1.1). Such cond i t ions  can be found  in, for ex amp l e ,  [1-4]. 
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84 Z. BARTOSZEWSKI AND Z. JACKIEWICZ 

Many numerical methods have been proposed for the numerical solution of problem (1.1); the 
recent surveys are given by Jackiewicz and Kwapisz [5] and Zennaro [6]. In this paper, we are 
concerned with two-step Runge-Kut ta  (TSRK) methods which can be defined by 

I f  J+l = f ( t i  + cjh, UjYh(ti-1) + (1 -- u j ) Y h ( t i )  
\ 

/2 

y h ( t i  ~- ( h )  = ~] ( ( ) yh ( t i _ l )  -t- (1 -- ?](~) )Yh@i) -[- h ~-~ ( V s ( ~ ) K  s -1- W s ( ~ ) / ~ ' S + l )  , 

s=l 

i = 0 , 1 , . . . , n -  1, ~ E (0,1], nh = T - t o ,  ti = to + i h .  Here, ~ is the number of stages, 
yh(t) is a continuous approximation to y(t), [(~+~ are approximations (possibly of low order) 
to y'(ti + cjh), and r/(~), vi((), and wi(~), i = 1,2 . . . .  , , ,  are polynomials such that  r](0) = 0, 
vi(0) = 0, and wi(0) = 0. These methods form a subclass of general linear methods introduced by 
Butcher [7] and could be possibly also referred to as two-step hybrid methods. They generalize 
k-step collocation methods (with k = 2) for ordinary differential equations (ODEs) studied by Lie 
and Norsett [8] and Lie [9], and TSRK methods for ODEs investigated by Byrne and Lambert  [10], 
Renaut  [11,12], Caira et al. [13], Jackiewicz et al. [14], Jackiewicz and Zennaro [15], and Jackiewicz 
et al. [16]. The discrete version of these methods (in somewhat different so-called Y-notation) 
was introduced by Jackiewicz and Tracogna [17] in the context of ODEs. They were filrther 
investigated by Jackiewicz and Tracogna [18], Butcher and Tracogna [19], Tracogna [20], Tracogna 
and \Velfert [21], Jackiewicz and Vermiglio [22], Hairer and Wanner [23], and Bartoszewski and 
Jackiewicz [24]. The variable stepsize continuous TSRK methods for ODEs were investigated by 
Jackiewicz and Tracogna [25]; they result in the formulation (1.2) when applied with a constant 
stepsize h to the DDE (1.1). The A-stable TSRK methods have been constructed in [14,17,25]. 

Following [25], we will represent these methods by the following table of the coefficients: 

Ul  

1](~) vT(~ ") wT(~)  = It u 

v(~) 

al l  . .-  al~, 

a~l a ~  

vl(~) v.(~) 

bll • • " bl~ 

b~l . • • b,~, 

W l ( ~ )  ' ' "  Wlz(~ ) 

We would like to stress that  the methods (1.2) given by the above table of coefficients are more 
general than the methods studied in [8,9] (with k = 2) and in [10-16] since for all these methods 
the coefficient matrix A is identically equal to zero• As illustrated in [17], the presence of extra 
parameters aij in (1•2) makes it possible to construct high-order methods with relatively few 
stages, and we refer to [17,24,25J for specific examples. 

Assuming that  h = r / m  for some positive integer m we can approximate the delayed argu- 
ments yh(ti + cjh - T) = yh( t i -m + cjh) by 

12 

Yh(t i -m + cjh) = rl(cj)Yh(ti . . . . .  l) + (1 -- ~?(Cj))yh(ti-m) -b h ~ (Vs(Cj)li]S_rn -k ws(c j )Ki  s ,  - r e + l )  , 
s = l  

j = 1 , 2 , . . . ,  u. Substituting this relation into (1.2) with ~ = 1, we obtain 

K~+I = f t~ + cjh, u~y~_l + (1 - ~j)y~ + h ~ ( a . K :  + bSq%~) , 
8=1 

" )) ~jy~-r~-~ + (1 - v~)y~-m + h ~ (~jq~_.~  + 5 .K;_m+i  , (1.3) 
s = l  

8~1 
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Delay Differential Equations 85 

i = 1,2 . . . . .  n - i ,  j = 1 , 2 , . . . , u ,  where Yi = yh(ti) ,  r] = r~(1), r b = V(cj) ,  7is = % ( c j ) ,  and 
a .  = ~,~(~). 

It  is the  purpose of this paper  to investigate s tabi l i ty  propert ies  of (1.3) with respect  to the 

linear test  equat ion 

J ( t )  : ay ( t )  + by(t - 7), t >_ O, 
(1.4) 

y(t) = g(t) ,  t e l -T,  o1, 

where a and b are complex parameters .  Stabi l i ty  propert ies  of Runge -Ku t t a  methods  with  re- 

spect  to  this  tes t  equat ion have been investigated by Koto [26,27], Zennaro [28], in ' t  Hout  and 

Spijker [29], in ' t  Hout  [301, Gugliehni [31], and Guglielmi and Hairer [32]. S tabi l i ty  proper t ies  

of l inear mul t is tep methods  for DDEs with respect to (1.4) have been invest igated by Cryer  [33], 

Bickart  [34,351, Wiederhol t  [36], and Watanabe  and Roth [37]. 

I t  was proved by Barwell [38] tha t  the solution y( t )  to (1.4) tends to zero as t -~ oc if 

Ibl < - Re(a) ,  ( i .a)  

and it was proved by Zennaro [28] tha t  if y( t )  ~ 0 as t --* ec, then Ibl _< - R e ( a ) .  Hence, 
inequal i ty  (1.5) defines the interior of the region of asymptot ic  s tabi l i ty  of equat ion (1.4). In 

this  paper ,  we investigate under wha t  condit ions the ~ y m p t o t i c  s tabi l i ty  propert ies  of this  test  

equat ion are inheri ted by the numerical  approximat ion  to (1.4) by the TSRK method  (1.3). 

The  approach of this paper  is based mainly on the technique proposed by Zennaro [281 in the  

context  of RK methods  for DDEs. However, in spite of some similarit ies to the  RK case there 

are also many impor tan t  differences, and the extension of the approach of [28] to TSRK methods  

for DDEs is far from trivial.  

The  main  result  of the  paper  is Theorem 3.3 in Section 3, which states  tha t  under sonic technical  

condit ions the  TSRK method  (1.2) for DDEs is P-s tab le  if the underlying T S R K  method for 

ODEs is A-stable.  

2 .  P R E L I M I N A R Y  R E S U L T S  A N D  D E F I N I T I O N S  

Apply ing  (I.3) to the test  equation (1.4) with h = 7-/m, we obta in  

( )) t(~+i = a u j y ~ - i  + (1 - u j ) y i  + h E a j s K ~  + bj~KJ+i 
8=1 

+ b rby i_m_t  + (1 - rJj)yi-,~ + h (Tj~K;?_ m + 5j~Ki ~ . . . .  +~ , 
s = l  

(2 . i )  

11 i = 0, 1 , . . . ,  j = 1 , 2 , . . . ,  u. Pu t t ing  (~ = ha, /3 = hb, 35 = [ 7 ~ 1 , . . .  ,7],j] T, F = [ ~ j s ] j , s = l ,  

A = r5 1,, K~ [KJ, .  K~] r ,  and e = [1, 1] T E R ' ,  equation (2.1) can be wr i t ten  as 
t J s l j , s = l ~  = " ' ~  " ' "  

hK~+l = o~(y~-iu + y~(e - u) + h A K i  + hBK,s,+i) 

+ ~ (Yi . . . .  - l u  + y i - m  (e - ~) + h F I ( i _ , ,  + h A K i  . . . .  1), 

Yi+l = 7]yi-1 + (1 - ~q)Yi + v T hI ( i  + wT h K i + l ,  

(2.2) 

i = 0, 1 , . . . .  Denote  by {y.~.(m;ch~)}~=0 the solution to (2.2) with h = r / m .  Following Zen- 

naro [28], we introduce the following definition. 
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86 Z. BARTOSZEWSKI AND Z. JACKIEWICZ 

DEFINITION. M e t h o d  (1.3) is said to be s table  for given (a,/3) i f  the  sequence  {y i (m;  a,/3)}i°°__0 

tends to zero as t -4  oc for any in teger  m >_ 1. The  region S p  o f  s tab i l i t y  o f  (1.3) is the  set o f  all 

vaIues (a, /3)  for which this  m e t h o d  is stable.  M e t h o d  (1.3) is said to be P - s t a b l e  K i t s  region o f  

s tab i l i t y  S p  includes  the set {(a,/3) :1/31 < - R e ( a ) } .  

Observe tha t  it  follows from (1.5) tha t  if the  method (1.3) is P-s table ,  then the numerical  solu- 

t ion {y~(m; a ,  3)}~--0 defined by (2.2) tends  to zero as i --+ oo whenever the  analyt ica l  solution y( t )  

to (1.4) tends to zero as t --+ oo. Observe also tha t  a and /3  depend on the stepsize h. 

Assuming tha t  the  mat r ix  I - a B  is nonsingular we can compute  h K i + l  from the first relat ion 

of (2.2), and subs t i tu t ing  the  result ing expression into the second relat ion of (2.2) leads to the  
following vector  recurrence equation: 

Y,+I = L Y / +  MY/-1 + NYi- ,~+I  + RY/-m q- SY/ . . . .  1, (2.3) 

i = 0, 1 , . . . ,  where Y / =  [yi, h K T ]  r and the matrices L, M,  N,  R, and S are defined by 

L =  [ 1 - - ~ + a w T ( I - - c ~ B ) - l ( e - u )  v T + a w q - ( I - o z B ) - l A ]  

L o~(I - oeB)- l(e  - u) a ( I  - o l B ) - l A  ] ' 

[ r l + O e w T ( I - a B ) - l u  00] 
M = L a ( I  - c t B ) - l u  

N = /3(Z - a B ) - I A  J ' 

[ /3wT(I  - a B ) - l ( e  - ~) 3 w r ( I  - a B ) - ~ r ]  

t~ = L / 3 ( I  - o ~ B ) - l ( e  - ( ,)  / 3 ( I  - a B ) - l r  J ' 

I / 3 , . r ( _ z .  ~ B ) - I ~  0]  
S = L / 3 ( 1 - a B ) - i ( ,  0 " 

The  character is t ic  equation of (2.3) is 

det  (A'~+2I - Am+lL - M~M - A2N - AR - S) = 0. (2.4) 

Observe tha t  A is a root  of this equation if and only if there exists x* E C "+1, x* ¢ 0, such tha t  

Am+2X* -- Am+ILx*  - A"~Mx * - A 2 N x  * - ARx* - Sx* = 0. (2.5) 

Pu t  x* = [p, xT] q-, where p E C and x c C ~, and assume tha t  p ¢ 0. This seems to happen  for 
most  TSRK methods.  Then (2.5) is equivalent to 

A ra+2 -- A m+l ((1 -- r] + c~wr( I  -- c t B ) - i ( e  - u)) 

+ (v T + a w T ( I  - -  oLB)-IA) x)  - -  A m (r I + a w T ( I  - -  a B ) - l u )  
(2 .6 )  

- A2/3~,~-(.r - a B ) - ~ A x  - .X ( /3~r  (Z - ,~B) -~ (e - ~) 

+ / 3 w T ( I  -- c t B ) - I F x )  -- / 3wT( I  -- OeB)-I~ = O, 

and 
Am+2x - A "~+' ( a ( I  - a B ) - l ( e  - u) + a ( I  - a S ) - l A x )  

- A m a ( I  - a B ) - l u  _ A2/3(I --  o ~ B ) - l A x  

- ~ ( Z ( I  - a B )  - 1  (e  - ~ )  + Z ( I  - a B ) - l r x )  

- / 3 ( I  - a B ) - l ~  = 0. 

Consider  also the  following relation: 

A 2 w r x  - A 2 + A (1 - ~ + v r x )  +7] = O, 

(2 .7 )  

(2 .8 )  
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and the quadra t ic  function 

(2.9) 

where the  ra t ional  functions 

R l  (oz, z) = 1 - rl + v T x  + wq-(I  -- ctB - zA) -1 (o~(e - u) + z (e - *2) + oeAx + z F x )  

and 
R2(OZ, Z ) ~- $1 -~- w T ( / -  --  (_~B -- Z A )  - 1  (6t% -~ Z*2) 

are well defined if the mat r ix  I - a B  - z A  is nonsingular.  We have the following theorem.  

THEOREM 2.1. Assume tha t  the mat r ix  I - a B - z A  is singular i f  and only  i f  z is a pole o f  R1 (a, z) 

or R 2 ( a , z ) .  Then A ¢ 0 such that  3 / A  m is not  a pole o f  R l ( a , z ) ,  and R 2 ( a , z )  satisfies (2.6) 

and (2.7) i f  and only  i r a  is a root  o f  (2.8) and (2.9). 

P R o o e  OF NECESSITY. Assume tha t  A ¢ 0 such tha t /3 /A m is not a pole of R l ( a ,  z), and R2(a ,  z) 

satisfies (2.6) and (2.7). Then it follows from the assumptions of the  theorem tha t  the  maZrix 
I - c~B - (/3/Am)A is nonsingular.  Consider the relat ion 

Am+2(I  -- eeB)x - Am+l(a(e  - u) + ceAx) - AmCtU -- A2/3AX - A (3 (e - *2) + ~ r x )  - 3*2 = 0, 

which is equivalent to (2.7). Dividing this relation by A ~ and then mult iplying it by w T ( I  -- 
a B  - (/3/Am)A) -1 we obta in  

A2wT x-.XwT (I-o:B - AI3--T A)-'  x (oz(e- u) + A/3--T2,~ (e- *2) + oeAx + A/3--~ Px) 
(2.10) 

To compute  A2wTx ,  we mult iply  (2.7) by W T and then compare the result ing relat ion with 

equat ion (2.6). This  leads to 

A2wmz = A 2 -- k (1 -- r] + v T x )  --  r], 

which is equivalent to (2.8). Subst i tu t ing this equation into (2.10), we obta in  (2.9). This  com- 

pletes the  proof  of necessity. | 

PROOF OF SUFFICIENCY. From (2.9), it follows tha t  

,,,2 _ ,,, ( 1  - ~ + v r x )  - ~-j 

= ..,,S (,, - ~B - ~-#-d- A ) - '  (o4e - u) + ~-~,~ (~ - .2) + o~Ax + Xf~- r.~ ) 

Using relat ion (2.8) it  can be verified tha t  (2.7) is satisfied. Mult iplying (2.8) by A m and (2.7) 
by w T and comparing the resulting relations, we then obta in  (2.6). This completes the  proof  of 

sufficiency. | 

REMARK. Assumpt ions  of the  Theorem 2.1 are not very restr ict ive and seem to be satisfied for 
most  T S R K  methods  of pract ical  interest.  For example,  they  are satisfied for the  T S R K  methods  

const ructed  in Section 4. 
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88 Z, BARTOSZEWSKI AND Z. JACKIEWICZ 

3. P - S T A B I L I T Y  P R O P E R T I E S  O F  T S R K  M E T H O D S  

In t roducing  the nota t ion  by z = / ~ / A  m, relat ion (2.9) can be rewri t ten in the  form 

.~2 _ )~Rl(o~, z) - R2(c~, z) = 0. 

Now define the  set 

P~ = {z : one of the  roots  of A 2 - ARI(OZ, z) - R2(ct, z) = 0 is on 

the  unit  circle and the other  is inside or on the unit  circle} 

and the quant i ty  

era = min Izl. 
z6F,~ 

We have the following theorem. 

THEOREM 3. i. Assume that z --- 0 is not a pole o/Rl(a, z) and R2(a, z). Assume also that both 
r o o t s  o f  

,~2 _ )~RI(OL,0)  __ i~2(OL, 0 ) • 0 (3 .1 )  

are  inside of  the unit circle and that  IZl < as .  Then ai1 roots of 

are inside o f  the unit circle for 311 integers m >_ 1. 

PROOF. Since the functions R,(c~,0) and R2(a ,0 )  are well defined and the roots  of (3.1) are 

inside of the  unit  circle, it follows tha t  the roots  of 

/~2 __/~R1 (o~, z )  - R l (O! ,  z )  : 0 (3.3) 

are also inside of the  unit  circle for all [z I < aa  (see Figure 1 for a geometrical  explanat ion) .  

I m ( z )  

\F~ 
~,\ 

\ 

~ ~  R e ( z )  

Figure  1. Geomet r i ca l  i n t e rp re t a t ion  of ac,, 
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Delay Differential Equations 89 

Assume now to the  cont rary  tha t  equat ion (3.2) has a root ,~ such tha t  IA[ >_ 1. Then 

< 

for all integers m >_ 1. This means tha t  for z = ~/Am we have Izl < ~ and one root  of 

equat ion (3.3) has modulus  greater  than  or equal to one. This contradic t ion concludes the  proof  

of the  theorem. | 

The  next  theorem gives a character izat ion of ~r~ for some TSRK methods.  

THEOREM 3.2. Assume  that  ~ = u, P = A, and A = B.  Then 

a s  = dist  (c~, OSA) , 

for every c~ E SA, where SA is the s tabi l i ty  region o f  the T S R K  method  for ODEs. 

PROOF. We have 

Rl(Ct, z) = 1 - ' / +  v T  z + w T  ( I -- (ct + z ) B )  -1  x ((ct + z ) ( e  - u)  + (ct + z ) A x )  = Rl(o~ + z,  0),  

and 

R2(c~, z) = ~ + (c~ + z ) w r  ( I  - (c~ + z ) B ) - l u  = R2(c~ + z, 0). 

By the definit ion of SA, it follows tha t  one of the  roots  of 

A 2 -- ARI(OZ, Z) - R2(~ ,z )  = )~2 _ ARI(O~ + z,0) - R2(o~ + z ,0)  = 0 

has modulus  equal to one and the second has modulus less than  or equal to one if and only 

if c~ + z E OSA. It  follows from the definition of F~ tha t  z E Fa  if and only if c~ + z E OSA (see 

Figure  2). 
Hence, 

o',~ = zinrf Izl = inf I(ct + z ) - o ~  I =dis t (c~,OSA) ,  
,, c~+zEOSA 

which completes  the  proof  of the  theorem. I 

We are now ready to formulate and prove the main result of this paper .  

I m ( z ) ]  

( 
\ 

- c ~ + z  

/ 
/ /  

/ 

R e ( z )  

Figure 2. Region S A and OSA. 
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90 Z. BARTOSZEWSKI AND Z. .JACKIEWICZ 

THEOREM 3.3. Assume that the T S R K  method for ODEs such that "~ = u, P = A, and A = B 
is A-stable. Then the corresponding T S R K  method (1.2) for DDEs is P-stable. 

PROOF. We have 

Sp = {(c~,/3) : all roots of A2 - AR1 (ct, ~-~) - JR'2 (c~, k~--7) = 0 

inside of the unit  circle for m > 1 } are l 

I t  follows from Theorem 3.1 tha t  S )  given by 

S~ = {(c~,/3) : both  roots  of A 2 -/~/E~l(OZ, 0) - -  /~2 (O ' ,  0 )  = 0 

are inside of the unit  circle and 1/31 < ~ }  

satisfies 

We have to show tha t  

S'p C Sp. (3.4) 

{ (a , /3 ) :  Re(a)  < 0 and 191 < - R e ( s ) }  c Sp 

(this is t i le  definition of P-s tab i l i ty ) .  Take (c~,/3) such tha t  Re(a)  < 0 and 1/31 < - Re(o,). Since 

the  TSRK method  for ODEs is A-stable  we have 

{a : Re(a) < 0} c Sa. 

This means  tha t  both  roots  of equation (3.1) are inside of the unit  circle. I t  follows fl'om Theo- 

rem 3.2 and A-s tab i l i ty  tha t  

~ = dist (a,  OSA) > -- Re(or). 

Hence, 

191 < -Re(c~)  < as .  

This  means  tha t  (c~,/3) ~ S},, and as a consequence of (3.4) it follows tha t  (ct,/3) C Sp. This 

completes  the  proof. | 

4.  E X A M P L E S  O F  P - S T A B L E  T S R K  M E T H O D S  F O R  D D E S  

In this  section, we will i l lustrate  by two examples how to construct  TSRK methods  for DDEs 

which are P-s table .  We s ta r t  with the  TSRK method for ODEs given by 

7] v T wX = 0 
0 

0.164905 -0.198522 0.75 0 
-0.210337 -1.07121 2.70983 0.75 

0.128015 -0.284316 1.12692 0.0293846 

which, as demons t ra ted  in [17], is A-s table  and has order p = 4 and stage order q = 4. We 

compute  next  the  continuous weights 

such t ha t  vi(1) = vi and F = A, and the continuous weights 

~{(() : ( (~{,1 + w~,~(+ ~,{,~ ~ ) ,  i = 1,2, 
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such t ha t  wi(1) = wi and A = B, where F and A are the matr ices  defined in Section 1. This  

leads to the  linear systems of equations 

v d c j )  = aj~, v i ( 1 )  = v i ,  

and 

w i ( c j )  = bji,  w~(1) = wi, 

i , j  = 1, 2, for the  coefficients vkt and wkl ,  k = 1, 2, l = 1, 2, 3. The solutions to the  above systems 
correspond to the  continuous weights vi(~) and wi(~) given by 

Vl(~) = ~ (0.57142 - 0.559464 4 + 0.116058~2), 

v2(~) = ~ ( -0 .33277.+0.1515254 - 0.10307~2), 

and 

Wl(s c) = ~ (0.755371 + 0 .49649s  c - 0 . 1 2 4 9 4 3 ~ 2 ) ,  

'w2(~) = ~ (0 .00598078 - 0 . 0 8 8 5 5 t 3 ¢  + 0 .111955,12) .  

It  can be verified using Theorem 3 in [25] tha t  the resulting TSRK method  for DDEs is convergent 
wi th  uniform order  p = 4; i.e., there is no superconvergence at the  gridpoints.  We th ink  this is a 

very desirable p roper ty  of the method since we can generate  dense ou tpu t  wi thout  any ~ddit ionat  

cost. The  method  constructed above is also P - s t ab le  as can be easily verified using Theorem 3.3. 

Theorem 3.3 can also be used to construct  TSRK methods  of the  type  considered in [8,9,14], 

i.e., with A - 0. For example,  s ta r t ing  with the A-stable  method of order p = 4 for ODEs 

u l  A B 0 
/~/ vT wT = 0 

0.462626 

0 0 

0 0 

0.592719 0.457494 

0.527766 1.06598 
-0.0679367 0.47028 

0.0203561 0.392057 

const ructed  in [14] and proceeding similarly as in the previous example,  we obta in  the  P - s t ab le  
method  of uniform order p = 4 for DDEs. The coefficients rj(~), v~(4), and w~({) of this me thod  

are given by 

r/(~ c) = ~ (-0 .835974 + 2.602294 - 1.3036942), 

vl(~) = ~ ( -1 .07105 + 3.33407s c - 1.6703~2) , 

v2(s c) = 4 ( -0 .8267  + 2.57343 4 - 1.28923~2), 

and 

wl (s  c) = ~ (-0 .226373 + 0.073107~ + 0.173622sc2), 

w2(s c) = 4 (2.28815 - 3.378314 + 1.482214~). 

I t  can be verified by direct computa t ions  tha t  both  methods  constructed in this  section satisfy 
assumpt ions  of Theorem 2.1. For example,  the matr ix  I - (c~ + z ) B  corresponding to the  la t te r  
me thod  is s ingular  a t  z = 1.55644-c~:t:0.834543 i which are also the poles of the  function R1 (c~, z). 

A sys temat ic  approach to the  construct ion and implementa t ion of highly s table T S R K  methods  

for DDEs will be the  subject  of future work. 
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