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Dynamic polarizability of the relativistic hydrogenlike atom: Application of the Sturmian
expansion of the Dirac-Coulomb Green function
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We utilize the Sturmian expansion of the Dirac-Coulomb Green fund¢orSzmytkowski, J. Phys. BO,
825(1997] to obtain components of the dynamic dipole polarizability tensor of the relativistic hydrogenlike
atom in the ground state. It is found that the tensor may be expressed in terms of two independent quantities:
a scalar polarizability and a vector polarizability, the latter being of the relativistic origin. In the static and
nonrelativistic limits the previously known expressions for the scalar polarizability are recovered.
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[. INTRODUCTION ics based on the Dirac equation. Relativistic formulas for
a{")(w) were obtained by Zapryagaé22], Florescuet al.
A problem of deriving an analytical expression for a sca-[23], Pachucki[24,25, and Le Anh Thuet al. [26] (who
lar dynamic dipole polarizability of a nonrelativistic hydro- used an oscillator representation of the Dirac-Coulomb
genlike atom in a ground state was considered in a number @reen function However, Zapryagaev's work is not acces-
publications[1-20]. Below a one-photon ionization thresh- sible while the formulas presented in R¢f23—26 seem not
old, with some effort, all available expressions may be transto be direct analogues of E¢L.2). It is the purpose of the

formed to the form present paper to derive such an analogue. We obtain also an
W ) expres_s?or_l for the vector polarizability of the ground state of
agw)=ag (o) tas (o), 1.1 a relativistic one-electron atom. In calculations, we make use
. of the Sturmian expansion of the Dirac-Coulomb Green
with function constructed by us some time d@7,28.
- aO 2907 2 [n+3
al(w)= — E Il. THE RELATIVISTIC HYDROGENLIKE ATOM IN AN
zt (f( J+1)12i=0 EXTERNAL HARMONICALLY OSCILLATING
(n+2_2§§$))2 fgf) n_o ELECTRIC FIELD
X ) &) , (1.2 Consider a hydrogenlike atom with an infinitely heavy
N+2—&n e 1 pointlike and spinless nucleus of chargeZe placed in an

external homogeneous linearly polarized electric field oscil-
lating harmonically with amplitud& and frequencyw. The
time-dependent Dirac equation describing the dynamics of

whereZ is a nuclear chargé pointlike and spinless nucleus
is assumel a,=%2/mé is the Bohr radius,

7 an atomic electron is
+)_
nr )\(i)ao' (1.3 762
nr —icha-V+pBmc— ——fer Fcos{wt)—lﬁ \If(r t)
and
=0, (2.1
. 2m(EQ+ 1 w) o 2% _ o
A=) - 7 E@=— S5 (L4  with boundary conditions
Ao
r—0 r—oo
The representatiofil.?) of a{*)(w) is particularly conve- r¥(r,t) —0, r¥(rt)— 0. (2.2

nient for computational purposes and approximate manipula-
tions. It is most easily obtained by utilizing a Sturmian ex- We shall assume that in the remote past, when the field was
pansion of the Schdinger-Coulomb Green function found being switched on, the atom was in its ground state charac-
by Hostler[21]. terized by the radial quantum number0, the combined
The validity of the formula(1.2) is restricted to lowZ angular momentum and parity quantum numker—1 and
hydrogenlike atoms. For multiply charged one-electron atthe total angular momentum projection quantum numnier
oms this expression should be replaced by its counterpart =1 (the quantization axis coincides with the direction of
derived within the framework of the relativistic atomic phys- F). If the oscillating electric field is weak and causes only a
small perturbation of an initial atomic state, we may seek an
approximation to an exact solution of the problé2nl) and
*Electronic address: radek@mif.pg.gda.pl (2.2 in the form
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W(r,t)=TO(r t)+w(r 1), 2.3 Z€? F
(r,t) (r,t) (r,t) (2.3 —iCﬁaPV‘F,BmCZ—T_ihEqr(l)(r't)

where¥ ©)(r t), obeying

z¢ d =— Eer FyO(r)exp —io{Mt)
—ichia V+BmE— ———if— | WO(r.t)=0, 2
2.4 1
24 - er FyO(rexp —iw(t), (2.19
r—0 r—o
re©@rt)y -0, re@rt) -0, 25 \where
is the time-dependent wave function of the ground state of (+)_  (0)
the isolated atom. It is given by wT=eTE. (2.19
TO(r,t) =y O(r)exp —iw@t) (2.6)  The particular form of the time-dependence of the right-hand
side of Eq.(2.14) suggests that we should seek solutions to
with this equation in the form

TO(r =3¢ (nexp —iwt)

O)(ry=
#O(r) +%¢(*)(r)exq—iw(7)t), (2.16

1( P(O)(r)Q—lM(nr)
riQ@(r)Q, 1u(ny)

whereQ . .(n;), with n,=r/r, are spherical spinors and the
radial functionsP®(r) andQ(r) are

: (2.7

where the functions ¢(*)(r) satisfy inhomogeneous
boundary-value problems

Z 1+y, [2zr\n
Ofy=— ) ——— "1 2% — ze?
PO IN G Ty Dl ag | TR 7273 icha v pme- ST B |y ()= —er - Py,
9 (2.17)
[Z 1-y, [2zr\n
Q(O)(r): T/, | ANl T~ eXF(—ZI‘/a ) r—0 r—oo
ao I'(2y1t 1)\ ag ° 2.9 rgd=)(r) — 0, ry(r) — 0. (2.18

ProvidedE(*)=%w(*) do not coincide with any of eigenen-

ergies of the isolated relativistic hydrogenlike atom, time-
hw@=mdcy,, (2.10  independent boundary-value proble(@sl?) and(2.18 may

be solved by using the standard technique of Green functions

is the total energy of the ground state of the isolated atonh29,30. One finds

Here

and
Y= KP=(aZ)?, (2.11 Y1) = —eF- fR3d3r'g<i>(r,r')r'¢<°)<r'),
(2.19
where a=e?/c (not to be confused with the Dirac vector
matrix @) denotes the Sommerfeld’s fine structure constantyyith
To find the first-order correctio (!)(r,t), we substitute
Eqg. (2.3 into the Dirac equatior(2.1). Utilizing then Eg. G r"Y=GES r,r"), (2.20
(2.4) and retaining only first-order terms, we find the follow-
. . . . . . l
ing differential equation satisfied by )(rt) whereG(E,r,r') is the Dirac-Coulomb Green function satis-
fying the differential equation
icha-V+amc z¢ 'ﬁa‘lf(l) t
icha-V+Bm —ih (r,t) 762
—icha-V+pBmcE— ——E|GE,r,r")
=—er-F¥O(r t)coq wt), (2.12 r
— A _r!
and the appropriate boundary conditions 76®r—r")  [[E|<me?, (2.2
-0 e (hereZ is the unit 4x 4 matriX with the boundary conditions
rv@(rt) — 0, rv@(rt) — 0. (213  (r' fixed)

On utilizing Eq.(2.6), Eq.(2.12 may be equivalently rewrit- r—0 o
ten as rg(E,r,r')y — 0, rg(E,r,r') — 0. (2.22
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lll. THE DYNAMIC POLARIZABILITY TENSOR FOR In|+ ¥+ Ny, aZ
THE GROUND STATE OF THE RELATIVISTIC un(e)=g 7 T [ty —N,,
HYDROGENLIKE ATOM @ Y™ N (3.10
The dynamic polarizability tensorA(w) is defined and
through the relationship
. 2N, n(n
(1) =Re[A(w)-F exp( —iwt)}, (3.1) O (E.r)= 1(. Snel(£,201)Q (1) ) a1
FiTh(g,201)Q _  m(Ny)
where
with
p(=2Re| d’r wO(r t)(—enwW(rt) (3.2 \/ a(n[+ 2y [n[!
R — K
SN 2N (N T (117 27,)
is aninducedelectric dipole moment of the atom in the per-
turbed stat€2.3). From Eqgs.(3.1) and(3.2), on making use Yea—r| | (27,
of Egs.(2.6), (2.16, and(2.19, we obtain X(2Ar)Y-e Lln\*l(Z)‘r)
Alw)=AM)(w0)+A* (), (3.3 . k—Np, L@ ann) (3.12
In[+2y, " ' '
where
(e 201 = 2227
+ —a2 3 3.7 ,(0)F + !, 1,(0) ! &, LNT)=
A (w)=e fde rfRSd r O yr G e, ) g Or). n 2N (Npe— )T ([N[+27,)
39 Aty (27,0
X(2Nr) e ML e (2N
From now on, we shall work with components of the tensors (2A1) o =2(2AT)
A™)(w) in a complex spherical basfg,}, g=0,% 1, ortho- N
normal in the sense of _ = e 2y
|n|+2yKL‘n| (27\r)}. (3.13

o r= 5 1y (35)
% 9 Heren is a (positive, negative, or zeyanteger radial quan-
and related to the Cartesian bagig)}, Q=x,y,z, through tum number,

1 | Npe= = (N[ + 7,07+ (@Z)?= = [P+ 2]y, + <2
&=~ Eq(nxﬂqny)ﬂl—lql)nz- (3.6) 3.
is the “apparent principal quantum numbeftiotice that it

With this basis, which, as we shall see soon, is particularlynay assume positive or negative valyes
suitable for the present purposes, we have

~ N(MP—E)(mc+E)

. ) A=\(E) , (3.19
AN 0)=2 agy)(w)efey (3.7) ch
qg

where e=e(E)= mc-E (3.19

( mc+E’

ag?(w)=€2JR3d3rJR3d3f’lﬂ(O)T(f) and,(¢) is a 4x 4 matrix defined as

() RPN (0) YY) ne)l O
Xeg-rG(rr)el, g0’ (3.9 Un (o :(,u (;s) |)' 317

To evaluate the double integral in E®.8), we shall em-
ploy the following Sturmian expansion of the Dirac— wherel andO are the 2<2 unit and null matrices, respec-
Coulomb Green function fojE|<mc® found in Refs. tively. In Eq. (3.14 the upper sign should be chosen for
[27,28: n>0 and the lower one fon<0. For n=0 one should
choose the upper sign <0 and the lower one ik>0.
|12 1 On substituting the expansid.9) to Eq. (3.8 and uti-

GErr=e2> X lizing Egs.(2.7) and (3.1D, we find

n=—o k=—o m=—|x|+1/2 ,U/nK(g)_l

k#0
(r# )Jr i ’ |$1t)‘]§1t)
><(I)nKm(E’r)(DnKm(Elr,)unK(s)! (39) a(f,)(cu)= 2 dlq(Km,_lM)dlq (Km,—lM) K+ “ ,
a4 nkm /1,51;)_1
where (3.18
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where the real coefficiens9(xm,x'm’) are defined by

dk9(km, k'm")

am 2. ot
- 2k+1 J4 d nrrimr(nr)qu(nr)QKm(nr),

(3.19

and we have designated

(

pid = (),

(3.20

1= fwdr r[PO)SE(n) + Q)T ()1,
0
(3.21

= fo dr r[ g PO S0 + QO T,

(3.22

with
S(r)=8, (), 205)r), (3.23
TE(r) =T, (5,205, (3.29

and
ANE=N(EF),  eE=g(E®). (3.29

The coefficient(3.19 may be conveniently expressed
terms of Wigner’s 3 coefficients in the following way:

d 90 km, k' m’)=(—1)™ *¥2/(2] + 1)(2j’ +1)

Tk
X[ 1 1
-0 _Z
2 2
X V' J (1L1",k) (3.26
_m, m ™ ’ 1 ’ .
where
) 1 for I+1"+k even,
=10 for 14174k odd. 3.29

Deriving Eq. (3.18, we have made use of the symmetry

properties

in

PHYSICAL REVIEW A 65 012503

d“9(— km,— k'm’)=d % km,x'm’),

(3.29

which follow immediately from Eq(3.26). Due to selection
rules obeyed by the Wigner’sj Zoefficients, we find that

% d*d(xm, —1M)d' (km,— 1IM)~84qr,  (3.30

hence, it follows that in the basis chosen the ten#ét3(w)
are diagonal. Their elements are

(@) =[(3A5)+ 3419)

+aM(3A) - 3A5) 18,4, (33D
where
® Igi)‘]gi)
A= > S (3.32
S pil -1

Having found components oA™)(w) in the spherical

basis, we consider their Cartesian components. Because of

the relation(3.6), we have

a(QiQ)r(w) = agi)(waQ’ +iM a\(/t)(w)sQQ’z’
(3.33

where
al N (w)=3Tr A (w)= 1A+ 2A5), (334

a\(,i)(w)=

©In

AE - 2A0), (3.35
and g;j, is the Levi-Civita symbol. Hence, for Cartesian
components of the dynamic polarizability tensdfw) we
obtain

aqo (®)=ag®)dgg +iMayw)eqy,.  (3.36
The coefficients
afw)=al(w)+al (o), (3.37)
and
a()=al(w)~al (o), (3.39

are, respectively, the scalar and the vector polarizabilities of

the ground state of the one-electron atom.

To proceed further, we have to evaluate the intedrgl$
andJ{>) . On substituting the explicit form@.12 and(3.13
of the radial Sturmians to Eq$3.21) and (3.22, and per-

(—1)9% 9% «'m’, km)=d*9(xm,x'm’), (3.289  forming integrations with the aid of the formu[&1]
|
o I'v+D)I'(a+n+1
fo dx x7e XL{)(x) = v n”),(iﬂ) )t7+12F1(—n,y+ 1;a+1t), (3.39
we obtain
012503-4
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a5 227 My + DI(|n|+2y, + DT (yt y1+2)]2 (§5)n*2

|(i): Y
" 2% ae®Nn|INg(Np— T (29, + DT (2y,+1)]% (65 +1)7F nt2
X[[n|[e)(1= y1) — aZ]F) (= [n]+ 1)+ (Np,e— ) [ (1= 1) + @Z]F (= |n))], (3.40
1 a3 6227 2Ny + DTN+ 2y, + DIT (y,t 11 +2))* (§)172
" z° a|n|!Np(Npe— )T (21 + 1)[T(2y,+1)1? ()4 1) 7t n+2
X[=n[(Npet ]+ ¥t y2— DFE (=] + 1) + (N ) (N # [0+ v,— 1+ DS (= n)], (3.4D)
[
where y(y+1)Fi(a,B;y;:2)=y(y+1) Fi(a, B y+1;2)
. +aBzF(at+1,B+1;v+2;2),
Fi—)(—k)zzFl _k!7K+71+2;27K+1;§(i)—+1 , (3 44)
(3.42
and and the identity{31]
Z
()=
& ®ay (3.43 Fi(—kaia2)=(1-2% [keN].  (3.45

In the case ofk=+1, Egs.(3.40 and (3.41) may be
simplified if one makes use of the contiguous relafidt] This yields

In[-2

(*)
£ 1 x{In[eF)N(1—yy) —aZ](€F)+1)

941

aj 2Ny DI(n[+2y,+1) ()12
7% ae)N[INp (N — DT (2, +1) (6594 1)2774
X[(2y1+ 1)) =(2[n|+2y,— 1)1+ (Npy = D[ e (1= y1) + aZ] (£ = D[(291+ 1) €)= (2[n|+ 2y, + D) ]},

5=

(3.46
Jm_\/aSs“’z%”lnlwﬁ1>r<|n|+2n+1> ()2 [ —g) N2
nt Z5 a(In|=D!Np(Npp = DT (2y,+1) (=) 41)2n+4| =) 4q
X(Nng+ [nl+2y, =D+ y1— €5y +1)], (3.4
(notice thathf)=0), hence, collecting terms with the safmg, one arrives at
3 4 .
a az[ (eP(1=y)|?] ()P
(1) = 2004y, +3 ) _ L
ALy 242 ! (7’1"'1)(2714'1}8“){1 ( o7 ) TCIICAT
“ N+ 291\ [0y €y 12 [ g -1
XE 1[N+ §+ (71 )+] §+ (3.48
i=1\ N=1 ) nty,— e +aze) | g4

In principle, on collecting terms with the sanel, it is  obtained by substituting Eq$3.40 and (3.41) with k=

possible to transform the series —2 to Eq.(3.32, to a series in which a summation index
runs from O toe. We do not present the latter series here
since, due to a complicated form of its summand, in numeri-

— (3.49 cal computations oA(fz) it does not offer any actual advan-
n=-e =1 tages over the serig8.49.
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1.0

larizability is an additionalcompared with the nonrelativis-
tic one branch located between resonant frequenrzigepci/2

; and wyy, .
0.5 P32

IV. THE STATIC AND NONRELATIVISTIC LIMITS

0.0

A. The static limit

In the static limit (w—0) that corresponds to

w—0 1— Z w—0
NS B Gl e B C SR T
1+’yl ’yl+l

a®) (10%au.)

-0.5 4

0 %% 95 O, 0., 10 one easily finds that only the terms with=1 andn=2
® (10%a.u) contribute to the sum on the right of E(.48 and conse-
quently

FIG. 1. Plots of relativistiqsolid) and nonrelativistiqdashed
scalar dynamic polarizabilities for a one-electron atom of nuclear

"7085 yi( 71+ D(2y1+ D)4y, +5)

chargeZ=50. w,, is a resonant frequency for the nonrelativistic A(fl) (4.2)
transition 1s-2p while w,, . and wyp, , are resonant frequencies z4 8
for the relativistic transitions 45— 2p,, and 1$,—2p;,, respec-
tively. Due to the relativistic shift and the fine-structure splitting of that agrees with Eq182) of Ref.[27].
energy levels, it holds,,<w,, <wyp, . In turn, making use of the Gauss relati81]
_ S o T (y—a—p)
A plot of the scalar dynamic polarizability for a one- oFi(a,By1)= F(y—a)T(y—f)
electron atom withz=50 is presented in Fig. 1 in a reso-
nance region corresponding to the transitions ,ls [Re(y)>Re(a+B)], 4.3
—2P23/2, Where relativistic effects are most pronounced.
The most distinguished feature of the scalar relativistic po-one finds
|
" \/a_é Np,—2+2 T(y2+ v+ 2T ([ + 72~ 71— 2)
2 74 23|n|IN, _,T' (2, + )T (|n[+2y,+1) T(y2—y1—1)
X (=N 2+ [n|+ v+ y,—2), (4.4
1.2 \/a_% Np,o+2 I(y2+ 71+ 2T(n|+ 7, .- 2)
o2 Z% 2%|n|IN,, 5T (2y,+ DT (|n|+2y,+1) P(y2=y1—1)
X[+ 2= y1=2)(Np o+ |n[+ y2— 1+ 1) = (N, 2= 2)(N, o+ |n[+ y,+ ¥y~ 1)], (4.5
|
nd al .
and also 00 1 (T(yty+2))?
AV — —
24 2°T(2y,+1) \T'(yv2= 71— 1)
w—0 o
) NIty 4.6 [Tty n-2P
’ 7ntl o nl(n+y,— y)l(n+2y,+1) M 70720
(4.7

hence, on utilizing Eqs(4.4) and (4.5 in Eq. (3.49 and
collecting terms corresponding to the samk one arrives at ~ with
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fo(y1,72) =3(1— ¥ (N+ 7,)%+ (473 + 85+ y,— 12)
X(N+y,) = (¥i+8yi+vi—12), (4.9

that agrees with Eqg$183 and (184) of Ref.[27].

Since in the static limitA(") coincides withA(? and
A™) coincides withA), one hasa!")(0)=a{(0). This
implies [cf. Eq. (3.38)] that in this limit the vector polariz-
ability a,(w) vanishes, i.e.,

a,(0)=0. (4.9

B. The nonrelativistic limit

In the nonrelativistic limit €¢—o<°) one has

C— > C— > C—®

Y1 — 1, Y2 — 2, Nn’_zﬂ i(|n|+2), (41@
C—® N N C—x» az
&) fgr—), e (4.1)

25(*)
If k=+1, from Eqgs.(3.47), (4.10, and(4.11) one obtains

C— > a

. n+2
AF) -3,

297
z4 (& +1)2
(n+1 25(*’)) g(i)_
X

n+t1-¢07 e+

S

n—4
) . (412

If k=—2, one finds that fon<O it holds

c—m®

32, - o, (4.13

(and thus the pertinent nonrelativistic limits 6f), and
w2, need not be evaluatgdvhile for =0, with the aid of
Eq. (3.45, one has

o 738 2%n+3)! (n+2- 260 (&) 7
ne T TNz ) (e

n-1

£ 1

Sl (4.14
£+1

PHYSICAL REVIEW A 65 012503

1) c—ee a3 28(n+2)(n+3)!
=27 TN Za n!
+ 1
L (+2-26 (6% £ -1
(& +1)° g+
(4.19
(+) toen+2
Bn -2 = )y (4.1
gnr
that leads to
AT 2§ (nt3
-2 74 (ggr:)_’_l)lZ Py n
+ + 2
(n+2-26,)2 [ &)
X — . (417
n+2- £ f(nr)+1

A glance at Eqs(4 12 and(4.17 shows that in the nonrel-
ativistic limit A5 and A() coincide and that, combining
these equatlons W|th Eq3.34), one recovers the nonrelativ-
istic formula(1.2). In addition, one finds

c—®

ay(w) — 0.

(4.18
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