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The Bennett-Brassard cryptographic scheme needs two bases, at least one of them linearly polarized. The
problem is that linear polarization, formulated in terms of helicities, is not a relativistically covariant notion:
State which is linearly polarized in one reference frame becomes depolarized in another one. We show that a
relativistically moving receiver of information should define linear polarization with respect to projection of
Pauli-Lubanski’s vector in a principal null direction of the Lorentz transformation which defines the motion,
and not with respect to the helicity basis. Such qubits do not depolarize.
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In nonrelativistic quantum mechanics a generic state of &nt yes-no observables, and helicity eigenstates are not suf-
free particle with spin takes the form where spin and momenficient. Natural candidates for such yes-no observables are
tum degrees of freedom are nonentangled, i.e., projectors on linear combinations of opposite helicities, i.e.,

linear polarizations. The problem with linear polarizations
o(p) o ) (1) defined in terms of helicities is that different momentum
U1(p) U ). components undergo different &) transformations. In the
photon case, the SB) transformations are diagonal and
This is the reason why it is possible to base the concept of multiply opposite helicities by phase factors whose phases
nonrelativistic qubit on a two-dimensional Hilbert space. Inare opposite and momentum dependent: A wave packet
particular, observables asociated with spin are always ofvhich is linearly polarized in one reference frame becomes a
form A®1, wherel= [dp|p)(p| is the identity in momen- combination of different linear polarizations in another ref-
tum space and stands for a spin operator. FormulgoTA erence frame and, hence, depolarizefl Sec. 2.5 in Ref.
®1)=Tr.p,A allows one to define states of qubits in terms[5]). An exception occurs for massless wave packets consist-
of 2X 2 reduced density matrices. ing excusively of parallel momenta since the Wigner phase
In relativistic quantum mechanics, a generic state satisfiefactor is independent dfp|. Below, we shall see that geo-
metrically the effect is rooted in noninvariance of
o(p) " o ) @ =(1,0,0,0) under nontrivial Lorentz boosts.
1(p) A Y(p)- Different quantization axes lead to different yes-no ob-
servables. Taking®*=(0,t) we arrive at observables equiva-
The origin of this property is very deeply rooted in the struc-lent to spins defined via relativistic center of mé@kor, in
ture of unitary representations of the Poincgreup. A qubit  the Dirac case, to the so-called even part of the Dirac spin.
which takes form(1) in one referencg frame will be seen in The even part is obtained from Dirac by sandwitching it
form (2) by another observer. A Poincaransformation nec-  between projectors on signs of energy. Physically, one elimi-
essarily involves multiplication bp-dependent S(2) matri-  nates in this way th&pinbewegungscillations[7]. The first
ces, a fact making formil) noncovariant. Definitions of qu- applications of such spins to the relativistic Einstein-
bits in terms of reduced density matrices with traced-outPodolsky-RosenEPR problem were given by one of us
momenta are no longer justified. This is why quantum infor-many years aggeven part of Dirac’s spin in Ref8], rela-
mation theory based on such a formal notion of qiibit4] tivistic center of mass, the PL vector, and even spin in Refs.
is in danger of internal physical inconsistency. [9,10]). Quite recently, the reviell1] discusses in the same

Constructing nonzero-spin unitary representations of theontext Dirac’s and rest-frame spins, however, the link of
Poincaregroup, we always encounter certain spinor struc-Dirac’s ¥ to the results of Refl9] was here overlooked.
ture. The simplest representation corresponds to meessd During the past year, various relativistic aspects of EPR
spin 1/2. Whenever we write the state in fo(@), we im-  correlations were discussed in a series of detailed works. The
plicitly choose a “spin-quantization axis” and spin is here intriguing papef12] starts with a definition of spin in terms
associated with the second Casimir invariant of the groupof a generator of rotations but taken from a representation of
WAW,, whereW, is the Pauli-LubanskiPL) vector. the Poincaregroup involving a nonstandard clock synchro-

The most popular choice of quantization axis correspondsization. This seems to be the first work where details related
to a timelike directiont®=(1,0,0,0). The resulting spin op- to spatial localization of measurements were taken into ac-
eratort®W, is proportional to the helicityin order to obtain  count, and the conclusion is that EPR correlations might, in
directly the helicity, one should choot®=(1//p|,0,0,0)). In  principle, reveal a preferred reference frame. An approach
application to quantum cryptography we need several differstartingab initio from the level of quantum electrodynamics

can be found in Ref.13]; as opposed to the approach advo-
cated in Refs[1,11] the momentum degrees of freedom are
*Email address: mczachor@sunrise.pg.gda.pl taken into account in measurements of spin and the loophole
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of the argument given in Reff1] is not present. The roles of A formalism which almost ideally suits the purposes of
appropriate choices of spin measurements in EPR experrelativistic quantum information theory is the two-spinor cal-
ments were discussed in Refd4,15. The authors stress culus, especially in the form developed by Penri&33. The
differences of their analysis with the one given in R, unitary representations of the Poincayeup can be trans-
but the main conclusiofthe degree of violation of the Bell lated into a two-spinor language by means of “Bargmann-
inequality decreases with increasing velocities of the obserwVigner (BW) spinors” [24]. One exploits here the special
ers remains unchanged. Similar conclusions can be found imole played in two-spinor formalism by null directions. Four-
Ref.[16]. Finally, a completely new direction of theoretical momentump, is split into a linear combination of two null
investigation was initiated by the work in Rdfl7], and directionsw, andw,, defined by

extended in Refs[18,19. The problem is what happens if o o

the observers move noninertially. One expects here a host of Pa=Tat (M?/2) = Tampr + (M?2) wpwar, 4
new quantum-field-theoretic phenomena related to inequiva-

lence of vacua in accelerated frames. The situation awaits Wherem,, w, is a field of spin-frames, i.ewa7*=1. If vy
detailed review, especially in the context of possible experiiS anyp-independent spinor, the spin frame may be taken as
ments.

In the present paper, we concentrate on the choice of qu- A A A
bits appropriate for cryptographic problems involving rela- w"(p)= —\/sz (v.p), ®)
tivistically moving observers. At the level of first quantiza- P~ veve

tion we do not experience the subtleties related to the Unruh
effect[17—19 and can, in principle, also discuss noninertial A A A
motions. Quantization in curved spaces and accelerated sys- m(p)= T 7 (v,p). (6)
tems is still an open probleif20], so we prefer to concen- Vp®® vgvg:
trate on purely kinematic phenomena which can be naturally ) ) ) o
treated at the level of representations of the Poingaoep. ~ ©On€ can directly verify that the spin frame satisfies &g
We define qubits by vectors from the massspin-1/2 and
unitary representation ofcovering space ofthe Poincare
group. In momentum space the qubits are given by pairs of
functions (fo(p),f1(p)) and p?=m?. It is essential that
whenever one writes paiffq(p),f1(p)), one implicitly
chooses a basis of states coresponding to a projection of t
PL vector in some direction®e R* in Minkowski space.
This choice is implicitly present in the transformation prop-
erties of the qubif21].

—
AA v

’

Amp(r,p)=Aa me(v, A" p)=ma(Ar,p),, (D)
Awa(v,p)=ApPwp(r, AT P)=wa(Av,p). (8
rﬁwe latter formulas will be crucial for our analysis of rela-

tivistic qubits. The simplest unitary representation is charac-
terized by massand spin-1/2 and its BW-spinor form reads

PL vectorW,=PP* S, is a tensor operatd22] and un- Uy, Af 4(p)=€YPU(A,p) LE5(A " 1p), 9
der the action of the Poincagroup its projection in direc- v
tion t? gets transformed by whereU(A,p) £e SU(2) andp?=m?. The BW-spinor in-
dices are written in the calligraphic font to distinguish them
U, NEPW,lhy = 12A W, (3)  from the SL(2C) ones. The matrix

wherel, , is a unitary representation. One can say that aJ(A,p)°
moving particle experiences measurements of spins in

Lorentz-modified directions*A ,° . Of particular interest are A m A
1) A -— A
directionst? satisfying the eigenvalue conditiaiiA ,°~tP A(P) (P) \/EwA(p) o (P)
since they lead to Lorentz-invariant yes-no observables. = m (10
Eigenvectors of Lorentz transformations are known to be o (DA™ o (DVATA
given by null vectors (>=t3,=0) and anyA e SL(2,) J2 on (PR (P) on(PIAT(P)
possesses at least one and at most two, such eigendirections
[principal null directiongPND9] [23]. is responsible for changes of the “polarization” whereas

Accordingly, it is very natural to contemplate projections f5(A ~1p) introduces Doppler shifts.
of the PL vector in null directions instead of the usual time- One can show24] that the amplitudes$,(p) and f(p)
like or spacelike ones. Moreover, the projection of the PLplay, for Dirac electrons, the roles of momentum-space wave
vector in momentum direction vanishe®®W,=0, and functions associated with eigenvectors of the projection of
therefore we obtain a kind of gauge freedom: For any paramthe PL vector in null directiont?®=w?, with eigenvalues
eter 6, observables®W, and ¢+ 6P®)W, are identical. An  —1/2 and+1/2, respectively. Choosing=—m~2 we find
appropriate choice of and aP-dependent? will allow usto  that the projectionm®W, is an observable identical to the
work with invariant yes-no observables which are equivalenprojection ofW, in directionw®—m~2p? which is spacelike
to projections of PL vector in directions perpendicular to theand orthogonal to the four-momentum.
four-momentum. In what follows, we shall describe a simple At the level of BW spinors we do not have to make any
procedure leading to such invariant yes-no observables. reference to the Dirac equation but can directly compute the
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generators, the PL vector, and its projection in any directionPNDs. As an example, consider a general accelerated motion
In particular, in momentum space the projection in the null(of Alice, say in a z-direction. The relevant SL(2) trans-
direction turns out to be formation reads

-1 0

1 1 12
a B__ - __ w 0
w (p)Wa(p)A 2( 0 1) 20-31 (11) AAB:( 0 W—l/Z)’

which agrees with the fact that amplitudggp) and f,(p) B B .
correspond, respectively, to eigenvalued/2 and+1/2 at w=y1+p/y1-p and ,B—U(e)/c. The eigenvalues of
the level of the Dirac equation. are real and there are two eigenvectors

The spin operator we have introduced through projection

of the PL vector on the null quantization axié(p), has led ) 1 +) 0

to the standard-looking spin. So what have we gained with AT VAT (14
respect to the earlier works wheog was taken for granted

as the correct operator associated with relativistic qubits?

The gain is that we have arrived at by means of a sys- In both cases, we fin(A,p)=1 (since¢=0) and
tematic procedure and have the relativistic transformation . G

properties of qubits under control. Recall that in addition to Uy Afo(vH),p) _ iy fo(v(5),A"1p) 15
Eq. (11) we have representatidd) where matrixU(A,p) 4° Uy 71 ( v py| (v A 1p))”

does not, in general, commute withy.

Notice, however, that the actual problem we will need to
solve in practical quantum communication is how to correc
the errors which are due to a relativistic and perhaps nonin unctions associated with prOJectlons of the PL vector in in-

y ar (*) 3)-1
ertial motions— A (s) of an observer. The problem can be variant directionsy®(»*),p) = (p°+p®) *%(1,0,0+1). The

. ) L is that dependent denominators come from the denominator in
reduced to an appropriate choice of quantization axis th — ) () d d be al kibped
defines the qubit. wa(v),p)=2{"(pr'*)) and could be also skipped since

A PND associated witth e SL(2,C) is the flagpole direc- the null directions oil”) andw,(v~),p) are identical. The

tion of an eigenspinor of\, i.e., yes-no observebles a_re_deflned by normalization of e|genval-
ues to+1. This is similar to the problem of choosirt§
AABVB:)\VAI (12) associated with the helicity.

Formula(15) illustrates the role of appropriate choices of
guantization axes. No rotations of qubits are involved, the
relativistic corrections are reduced to the Doppler shifts, and
form (1) will be preserved.

The associated yes-no observables are given in both cases
by o5 but, of course, two different bases are involved. For
future references, we give here the general form of the25U
transformation that maps qubits associated with a adll
direction into those associated with the most general direc-
0 ) tion t* (null, timelike, or spacelike, and in general

Amplitudes f ,(»(7),p) and f (»(*),p) represent wave

where A=|\|e'¢ is in general, complex. Classification of

PNDs of SL(2¢) transformations can be found in RE23].

Inserting Eq.(12) into Egs.(5)—(8), we find
Ama(v,p)=€""ma(v,p), Awa(v,p)=€"¢wa(v,p)

and

e '¢
U(A,IO)AB=( 0 e (13)  p-dependent Let

where ¢ is momentum independent. The independence o( Q(t’p)A>

momentum is important since transformatien> A(s) af- Q(t,p)ar
fects all the momentum components in the same way. An — _rg) (t p)[A(t,p) +tp—m(tw)]} 2
arbitrary linearly polarized state is now transformed as fol- 2
lOWS: [2)\(t,p)+tp]7TA_ WctCXIpAX,+37tAXIJ '
fo(P)|  [UpafolP)| (€7 *To(A™"p) - I
— = ) ’
fi(p)) "\ Uy aAf(p) e'?f, (A 1p) E{[Zh(t,p)—tp]wAI—wot% Pa —3txa 7}

and a linear polarization goes into linear polarization, per- 5
haps rotated by some angle. In particular, product febmis ~ Thenf 4(t,p) =W(p) 4~f5(w,p), where
covariant. This was possible only because we replaced helic-

ity qubits by qubits related to an invariant direction. — A AQY
For quantum cryptographic protocols, such as Bennett- W(p) [P= wip) Qtp)ar (PP ,
Brassard cryptographic schert®B84), it may be important —o(PAQ(t,p)a @(P)QL,P)a
to allow for motions that are characterized by two different (16)
010302-3
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QP A=t s QP =0(Lp) s and A(Lp) trarljls?c?:malt?(t)rl:srec:dnss'der the case of photons. The Poincare

=/(tp)?2—m?t?. Notice that in momentum space, the eigen- . 5 5 .,

values of the projection of the PL vector in a directidrare Uy AT 44(p)=€YPU(A,p) ,"U(A,p) 4~ Ta(A™"p),

given by * I\ (t,p). (19
Now, setw”(p)=w*(+{7),p), A(p)=7"(»"),p), and  whereU(A,p) ;5 is the zero-mass version of EG.0). There

t?(p) = w?(»(*),p), where the invariant spinors are given by are only two degrees of freedom, represented gfp) and

Eqg. (14). We find f14(p)-
_ Diagonal elements U(A,p),° and U(A,p),* are
(+) n) — B (-) 0 1
f (7, p)=W(p) L f (v, p), 17) momentum-dependent phase factors. As before, an appropri-
K ix ate choice ofv in spin frames reduceld (A,p) to Eqg.(13),
W(p) 5= 1 4 _ € eSU2) where ¢ is momentum independent. In the massless case
A V1+][Z)? —e X |{ ' there exists a topological restriction that does not occur for

massive fields: For a fixed,, there exists a momentupy

where {=(p;+ipp)/m=|{|e'" is invariant under Lorentz parallel to null vectorn,= vav,s, , Where the spin frames are
boosts along the third axis. The matrix in E47) itself is, 1ot gefined(actually this happens for the direction given by
therefore, also invariant under transformations that do nof,o cjass of momenta parallel ). Usually this is not a

change the quantization axes. , difficulty since one can define the spin frames locally. In our
AS Ehe next appll_catlon let us consider the case where t_hﬁroblem, thisis a difficulty that restricts the choice of, to

SL(2\) transformations do not commute with one another ifp, ;| yectors that are not proportional to any four-momentum

taken at different points on curves—>A(S), i€, i the wave packet. The case where the wave packet does

[A(s),A(s")]#0. A good illustration is a composition of ¢,ntain 4 vector parallel te, has to be treated with some
the previously discussed boost with a null rotation, i.e.,

care.

w(s)2 0 1 a(s) The noise due to relativistic helicity-basis depolarization
A(s)AB=( 1/2) ) (18)  can be reduced for massless fields if wave packgtgp)

0 w(s 0 1 consist of vectors parallel to some given direction. To what

h . | . e&‘) h extent an approximation of a realistic signal by such a plane-
There is only one eigenvector, nam - The construc- 4 e Jike front is acceptable depends on the geometry of the
tion is unchanged but we must make sure the spin is progyperiment. Qubits associated with PNDs do not impose any

jected on null ?Xi$a(v(7)’p)- This presence of only one regyriction on momentum-space wave packets.
invariant direction is not a problem since one direction is

enough to define linear polarizations. We are grateful to J. Rembiétki for comments.
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