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Mean of continuous variables observable via measurement on a single qubit
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It is shown that the mean value of any observable with a bounded spectrum can be uniquely determined from
binary statistics of the measurement performed on asingle-qubitancilla coupled to a given system. The
corresponding positive operator-valued measure fully encodes the observable structure. The method is gener-
alized to the case of distant-laboratory paradigm and is considered in the context of entanglement detection
with few local measurements. The results are also discussed in the context of quantum programming.
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One of the serious problems of quantum-informati
theory @1–4# is the fragility of quantum entanglement. Th
latter is a basic feature of some quantum cryptograp
schemes, quantum teleportation, quantum dense coding
quantum computing@5#.

However, before using entanglement, one has to be
that it is really present in the system~see Ref.@6# for some
paradoxes!. In particular, it is important to be able to detect
in the distant-laboratory scenario, where two observers
far apart and have restricted access to the composed sy
they share~see, for instance, Ref.@7#!. There are many meth
ods checking whether or not there is entanglement in
system~see Refs.@3,8#!. However, they require prior stat
reconstruction, i.e., full knowledge about the density ma
of the system. Recently, a new paradigm was introduced@9#.
Assume that we do not know the state of the system at
Can we detect the presence of entanglement at all with
state reconstruction then? Can we estimate the entangle
measure? The answers have been given in a series of p
@9–11#. In particular, for two-qubit entanglement can be d
tected both qualitatively@9# and quantitatively@10# without
state reconstruction. If partial information about the state
provided, then entanglement can be detected@11# in the
distant-laboratory paradigm with a minimal number of loc
measurements of mean values of product observables.

The problem is that any measurement of the latter usu
requires the estimation of more than one parameter. E
determining the mean value of asingle @sic# observableA
usually requires the estimation ofmanyparameters, namely
the probabilities of outcomes of von Neumann measurem
~see theproblemlater!. The problem is especially striking in
the continuous variables case@12# where any von Neumann
measurement can be only approximate due to finite num
of outcomes of any real experiments. In this context,
address a quite general question:Is there any way to associ
ate the mean value of a given quantum observable A with
experimental estimation of a single parameter?

Here, by the estimation of a single parameter we mean
estimation of the probability of some single outcome in t
easiest way: counting detector clicks corresponding to
outcome and dividing the resulting number by the numbe
all runs of experiments. The simplest example is the sp
polarization measurement along a given axis: to get the p
ability of being ‘‘up,’’ we count up events and divide them
by the number of all~‘‘up’’ and ‘‘down’’ ! results.
1050-2947/2003/67~6!/060101~4!/$20.00 67 0601
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Surprisingly, the answer for the question above is posit
for any bounded observable, no matter whether it involv
continuous variables or not. The nature of the associate
effect seems to be quite fundamental, and it has not b
known in quantum measurement theory so far.

It can be explained as follows. If apart form our syste
we have asingle qubitand can control the system-qubit in
teraction, then there exists a general quantum measure
~positive operator-valued measure, POVM! with two out-
comes such that the mean value ofA can be immediately
reconstructed from the POVM statistics. Because bin
POVM corresponds to the estimation of a single parame
~see previous discussion!, it happens that in the presente
scheme the estimation of the mean value of a single obs
able does correspond to a single parameter. The mecha
of this effect can be roughly summarized with the statem
that the observable has beenencodedinto the interaction
~represented by POVM! between the system and the qub
ancilla.

Note that to get the above POVM statistics, we ne
many runs of the experiment, i.e., we need many copies
our system and many qubit ancillas~each of them coupled to
a single copy of the system!, but this is always needed in
quantum mechanics where mean values are measured.

In context of the results of Ref.@11#, we also pose a simi-
lar issue in case of product observables measured by dis
observers. It happens again that two binary POVMs are
ficient but with data analysis refined to get apart from t
marginal statistics also one correlation probability~such as in
Bell-type experiments!.

Let us note that as a by-product of other investigatio
we have provided a partial positive answer to the abo
question@16# earlier. The idea was to encode any spinli
observableA into some state%A5aI 1bA ~that can be
viewed as a kind of program! of the auxiliary system. Then
after interaction of the ancilla with our system in the giv
state%, the valueh5Tr(%A%) was reconstructed with the
help of an incomplete~binary! measurement giving finally
the mean value (h2a)b21 of the observableA in the state
%. However, the scheme required complex resources: for
d-level system, it needed 2d-level ancillas. Moreover, as dis
cussed subsequently, it cannot be applied for the continu
variables case@12#, though local quantum operations an
classical communication~LOCC! scheme for local~product!
observables is possible@17#. Here, we provide a solution fo
©2003 The American Physical Society01-1
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both single system and bipartite~LOCC! system scenario
This unified approach has further advantages:~i! requires
minimal ancilla—just single qubits and~ii ! is applicable for
the continuous variables case under the only assumptio
boundness of the observable. We also provide a motivat
many-parameter estimation in the typical von Neumann m
surement.

As we have already mentioned, the LOCC scheme
provide here is especially important for the local detection
unknown or partially unknown entanglement. In particular
provides additional justification to approaches from R
@11#.

It is worth mentioning that recently one developed ide
of quantum computing with quantum data structure@9,16#,
quantum programmable interferometric networks@16#, and
programmable quantum gates@18#. In this context, we ad-
dress a natural~open! question: what observable can b
implemented as a kind of quantum program, and, if so, h
to do it optimally and how to quantify this process.

The paper is organized as follows. First we pose the pr
lem with the standard von Neumann measurement and
show how to solve it by encoding a given observable into
binary POVM. Then, we provide a similar result for th
product observable in the LOCC paradigm. Finally, w
briefly discuss the result, especially in context of the recen
considered computing with quantum data structure and
lated issues.

The problem. Consider an arbitrary quantum observab
A5( il i uc i&^c i u. If it has more than two different eigenva
uesl1 , l2 , . . . ,ln , n.2, then the usual procedure to g
the mean value ofA in the given state%,

^A&%5Tr~A% !, ~1!

requires von Neumann measurement withn outcomes corre-
sponding to n eigenvectors of the observableA: c1 ,
c2 , . . . ,cn . The measurement relies on the estimation
n21 parameters that are probabilities of outcomesp1
5^c1u%uc1&, p25^c2u%uc2&, . . . , pn215^cn21u%ucn21&
~the last parameterpn can be inferred from the normalizatio
condition!. Finally, we multiply the probabilities by eigen
values and calculate the sum( i 51

n pil i that is equivalent just
to the mean valuêA&% we were looking for. Clearly, ifn is
greater than 2, we need an estimation of more than one
rameter in the sense that~apart from counting runs of ou
experiment! we have to count clicks corresponding tomore
than oneoutcome. Moreover, if the observable correspon
to the continuous variables case (n5` above!, then there is
no way to measure it directly and any indirect measurem
must be approximate.

We shall see, however, that one can overcome these
advantages under two assumptions:~i! boundness of the ob
servable spectrum and~ii ! additional resource: well-
controlled interaction with a single quantum bit.

Solution for a single observable. Let us first assume tha
the observable has the spectrum bounded and its lower
upper bounds correspond toamin andamax, respectively. Let
us define the non-negative numbera2[max@0,2amin#.
Then the following operatorD5a2I 1A is positive (D
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>0), i.e., has no negative eigenvalue. Now, we define
new operator, i.e., the Hermitian operatorD85D/(a1) (a1

[a21amax#), such that it satisfies the property1 0<D8<1
which means that all its eigenvalues belong to the inter
@0,1#. Consider now the following operators:

V05AD85A~a2I 1A!/a1,

V15AI 2V0
†V0. ~2!

They satisfy the following condition:( i 50
1 Vi

†Vi5I so they
represent the so-called generalized quantum measure
and can be easily implemented on our system. It has
outcomes i 50,1 with probabilities p05Tr(V0

†V0%), p1

5Tr(V1
†V1%)512p0. Note that only thesingle parameter

p0 describes this binary statistics. Now, it is elementary
see that because of the Hermicity ofV0 ~which means that
V05V0

†), one hasp05Tr@(a2I 1A)%#/a1 and, finally, be-
cause of Tr(A%)5^A&% this leads to the main conclusion

^A&%5a1p02a2 . ~3!

Thus, we have reproduced the mean value of the arbit
observableA with a bounded spectrum with the help of
single parameterp0 coming from the binary generalize
quantum measurement~POVM!.

It is remarkable that the above POVM can be perform
on the system if we only have one-qubit ancilla~additional
physical system! and can control the interaction between o
system and the ancilla. In fact, this is all what a bina
POVM requires~ @13#, see the Appendix of Ref.@7# for tu-
torial review!. Indeed, we prepare our ancilla qubit in th
pure stateu0&. Then, we subject our joint system~initially in
a state% ^ u0&^0u) to unitary evolutionU that leads to an
interaction between our system and the ancilla~for definition
of evolution U, realizing a given POVM, see Ref.@7#!. Fi-
nally, we measure observablesz on our ancilla. If we get the
result up~ancilla state unchanged i.e., remains in initialu0&),
this corresponds to the resulti 50, and if we get the resul
down ~ancilla state changed tou1&) this corresponds to the
result i 51; both occurring with probabilitiesp0 , p1 defined
above. This has a similarity to the scheme of a univer
quantum estimator allowing one to detect nonlinear st
functions@16#, where one finally measures a single qubit
get the output of the measurement. There is a differen
however. Indeed, while there the mean value of the n
Hermitian unitary ‘‘shift’’ operator is estimated, here w
have theHermitian operator structure which is built in th
POVM scheme in a more complex way. Still, it is interesti
to perform a more detailed comparison of the two schem

Note that the above scheme allows one to detect the m
value of the non-Hermitian operatorX defined bŷ X&% with
the help of decomposingX into Hermitian and anti-
Hermitian parts~cf. Ref. @14#! and detecting the correspond
ing observables with the help of two binary POVMs.

1We say thatA>B, if for all C one haŝ CuA2BuC&>0.
1-2
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Product observables and the distant-laboratary par
digm. Suppose now that Alice and Bob are in the dista
laboratary paradigm, i.e., they are far apart and they sh
some bipartite quantum state%AB . This is similar to quan-
tum teleportation process where they shared a single s
~here, we allow% to be mixed!. In such a case, Alice an
Bob are allowed to perform local operations~LO! and com-
municate classically~CC!. Suppose now that they want t
detect the mean value of some entanglement witnessW
5(k51

m Ak^ Bk with its structure and number chosen pro
erly ~see Ref.@11#!. Because of LOCC restrictions, this ca
be achieved only by the measurement of local measurem
and exchange of information. Usually, it is done as in st
dard Bell inequalities~for similarity of entanglement wit-
nesses formalism to Bell inequalities theory, see Ref.@15#!:
namely, this corresponds to local measurements of obs
ablesAk , Bk ~for each fixedk), but by keeping the record o
results and finally establishing the mean value from jo
statistics. However, there are more outcomes, in genera
again there is a question whether we can reduce the a
scheme to binary experiments. The answer is ‘‘yes,’’ thou
the solution is not so simple as it was before. Suppose
Alice and Bob want to measure the mean value

^A^ B&%AB
5Tr~A^ B%AB! ~4!

of product observableA^ B on the shared state%AB . Then
they should perform local POVMs corresponding to loc
observables as defined in the preceding section, but
should use the data in a more sophisticated way. Let A
POVM be $V0 ,V1% ~as before!, while by Bob’s POVM we
denote $W0 ,W1%. They have pairs of possible local ou
comesi A ,i B50,1, wherei A ( i B) corresponds to the Alice
~Bob! outcome. Then, performing measurements on their
cillas they should not only estimate parametersp0

5Tr(W0
†W0%A), q05Tr(W0

†W0%B) which correspond to
normalized numbers of outcomesi A50, i B50, respectively.
In addition, they should also communicate classically a
count all cases when they get the resultsi A5 i B50 corre-
lated, i.e., coming from the copy of the state%AB . Normal-
izing the resulting number of the cases, i.e., dividing it by
number of all measurements by which they get the joint c
relation probability

p005Tr~V0^ W0%AB! ~5!

of getting the same outcomei A5 i B50 on both sides from
the same copy of the state.

The above process is equivalent to the estimation of m
values ^sz

(A)&, ^sz
(B)&, and ^sz

(A)
^ sz

B& on Alice and Bob
local ancillas that were needed to implement the POV
Thus, the process is virtually identical to what happens in
usual Bell-type inequality on two spin-1

2 particles where
marginal and correlation probabilities are also determin
Summarizing, Alice and Bob need to determine probabilit
p0 ,q0, andp00 of standard Paulisz measurements on the
ancillas. It is easy to see that from the probabilities th
easily get the needed mean value as follows:
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^A^ B&%AB
5a1b1p001a2b22@a1b2p01a2b1q0#,

~6!

where b6 are defined with respect to observableB in full
analogy toa6 . Thus, again we have reduced the LOC
measurement ofA^ B to two binary POVMs with more
careful data analysis, leading not only to binary margin
distributions~determined by probabilitiesp0 , q0) but also to
correlation probabilityp00. Finally, let us note that the abov
reasoning can be generalized to the multipartite LO
scheme. Then, only the proper hierarchy of correlation pr
abilities must be taken into account.

Applications to Bell inequalities. Note that, using the
above formalism, any Bell inequality involvingarbitrary
bounded observables can be formally transformed to bin
inequality that has formally ‘‘Bell-like’’ form: namely, it in-
volves joint probabilities of binary events~such asp0 , q0 ,
p00, and their multipartite analogs!. However, the new Bell-
like inequality, as it is, assumes validity of quantum mech
ics ~quantum interaction corresponding to local bina
POVMs!. As such, it does not represent the legitimate B
inequality because it isnot independent of quantum forma
ism. The question whether and when it is possible to ov
come this difficulty will be considered elsewhere. It see
that the new inequalities might serve as an experimental
supporting~may be as a kind of preliminary stage! the fully
detailed experimental tests of original Bell inequalities.

Discussion and conclusions. We have discussed the prob
lem of whether measurement of a single observable w
many eigenvalues can be restricted to the estimation o
single parameter. We have shown that it is always possib
~i! the observable is bounded, i.e., has upper and lo
bounds on its spectrum and~ii ! one has a well-controlled
interaction with the single-qubit ancilla. We have construc
the corresponding POVM and pointed out that it can
achieved with only one additional quantum bit: namely, t
estimated parameter corresponds to the probability of get
one outcome out of two that are possible in the measurem
of Pauli operatorsz on the single-qubit ancilla.

We have also considered the issue of detecting parti
known entanglement with a minimal number of estimat
parameters in context of Ref.@11#. In this case, it happen
that the number of local observables involved in the m
surement is equal to the corresponding binary POVMs t
can supersede them. The result of POVMs, however, sho
be used in a more detailed way to get not only margi
~single parameter! binary statistics $p0 ,12p0% ($q0 ,1
2q0%) on Alice ~Bob! side, but also join correlation prob
ability p00. It can be generalized to multipartite systems a
leads to the compression of usual Bell inequalities into ‘‘
nary Bell-like inequalities’’ involving only joint probabilities
of binary events.

Let us observe that in the continuous variables~CV! case,
the measurement of a general observable is impossible—
to infinite number of outcomes, one can only measure so
approximated~‘‘digitized’’ ! observable instead of the orig
nal one. The present binary POVM method seems to bethe
only onethat provides the mean value of the observable its
1-3
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rather than its approximation. The present result has s
similarity to the recent interferometric method@16# where
final estimation comes from the measurement of Pauli ma
sz . However, its fundamental difference can be seen ea
when one realizes that the interferometric approach by
means can work for infinite-dimensional scenario called
CV case. The observable is there encoded by affine tran
mationA→%A5aI 1bA, whereI stands for identity opera
tor. Hence, for CV,%A is no longer a quantum state~as the
interferometric method of Ref.@16# requires! because it has
no finite trace. There are no problems like that for the pres
method. Even the presence of a square root in formulas
fining V0 , V1 does not mean that the discussed differenc
equivalent to that between probabilities and amplitudes
quantum theory. There is a deeper reason: in the pre
method, the observableA is encoded directlyin global dy-
namics~ancilla-system interaction Hamiltionan that can
inferred from the POVM! rather than ‘‘programmed’’ into
the ‘‘static’’ ancilla as it was proposed in Ref.@16#.

There is, however, an important point that links t
present approach with that of Ref.@16#. Let us recall that
some kind of ‘‘quantum programs’’ that implement som
physical observable in the physical system~ancilla! has been
already presented in the previous approach@16#. Moreover,
there is a general idea of quantum programming with qu
hy
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tum data structure@9,16# and a systematic way of quantum
gates programming@18#.

In the above context, an intriguing question arises na
rally: is it possible to implement a given observable as a k
of program, and if so, what is the most optimal way to do
From the present analysis, we already know that some
observables cannot be implemented as a sort of prog
~state of the ancilla!. But one can imagine the scenario whe
observable parameters are ‘‘split’’ into the programma
part and the one that is nonprogrammable but can be
coded into dynamics. In this context, one would need m
sures that would quantify both parts. It seems that by ch
acterizing the second part, the entangling power concept
be important@19# as well as quantum gates programmi
@18# and gates cost@20#. Also, in the case of continuou
variables, the concept ofboth classical and quantum com
putability of observable parameters will have to be taken in
account.

Finally, it may be interesting to consider the application
the present result in context of Bell inequality tests for co
tinuous variables systems@21#.
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