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Abstract: We consider the problem of invariance of distillable entanglement D and

quantum capacities Q under erasure of information about single copy of quantum state

or channel respectively. We argue that any 2 «N two-way distillable state is still two-way

distillable after erasure of single copy information. For some known distillation protocols

the obtained two-way distillation rate is the same as if Alice and Bob knew the state from

the very beginning. The isomorphism between quantum states and quantum channels

is also investigated. In particular it is pointed out that any transmission rate down the

channel is equal to distillation rate with formal LOCC-like superoperator that uses in

general nonphysical Alice actions. This allows to we prove that if given channel ¤ has

nonzero capacity (Q! or Q$) then the corresponding quantum state %(¤) has nonzero

distillable entanglement (D! or D$). Following the latter arguments are provided

that any channel mapping single qubit into N level system allows for reliable two-way

transmission after erasure of information about single copy. Some open problems are

discussed.
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1 Introduction

Distillation of quantum entanglement [1] is an interesting way to make some quantum

communication possible despite destructive actions of environment (external noise). It

allows one to perform quantum teleportation [3] as well as quantum cryptography [2]

with entangled states possible in the presence of external noise. In fact both mentioned

phenomena require one or more numbers of maximally entangled pairs, say in two spin- 1
2
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state

ª¡ =
1p
2

(j0ij1i ¡ j1ij0i) (1)

where j0i (j1i) correspond to spin-\up" (spin-\down") state. If Alice and Bob stay in

separate locations and share pairs of particles in state (1) then they can perform the

quantum cryptography scheme or teleport some number of quantum states form one site

to another. In practice however, they share a number of mixed (noisy) states % having

only some residual entanglement. Then usually they can distill noisy entanglement of

% getting some smaller number of (approximately) singlet states by means of so called

LOCC operations i. e. operations involving an arbitrary local actions plus classical

(one-way or two-way, see [4]) communication between Alice and Bob.

The asymptotic rate of singlets produced by LOCC protocol P is denoted by

DP(%) and it is called distillable entanglement under the protocol P. The quantity

DC = max
P

DP
C (%) is called distillable entanglement (see [4]). Here maximum is taken

over subclass of protocols that involve only chosen type C of classical communication

between two labs where C = ¿; !; Á; $ corresponds to zero-way, one-way and two-way

communication scheme (see [4]).

In general one says that % is distillable or that it represents free entanglement when

D$ is nonzero. All bipartite separable states ie. those represented by convex combination

of produced states (see [7]) are nondistillable ie. D$ = 0. The entangled state which

is distillable is called free entangled. There are [10] states which are entangled but not

distillable and they are called bound entangled. For bipartite spin-like systems bound

entanglement phenomena where global spin is greater than 3=2 (see [10]). In particular

for 2 « 2, (2 « 3) systems [11] all entanglement is free and the corresponding protocol

is provided in [9]. For 2 « N there is bound entanglement, but any free entanglement

must violate PPT separability test [12], and is distillable (see [13]) with help of the

immediate extension of two-qubit protocol. There is a long-standing open problem [14]

whether so called NPT bound entanglement exists ie. entanglement that violates PPT

separability test but is nondistillable. Its existence would lead to serious consequences

like nonadditivity of distillable entanglement D [15] or nonadditivity of two-way quantum

channels capacity [19](c.f. [20]).

2 States and channels connection

On the other hand there is a quantum channels theory (see [4, 6]) where one of the

main tasks is, roughly speaking, to send maximal number of quantum bits down a given

quantum channel (completely positive tracepreserving map). In this scenario, like in

distillation protocols, sender (Alice) and receiver (Bob) can communicate classically. Op-

timal rate of sent qubits is called quantum capacity QC of given quantum channel and is

de¯ned in some analogy to distillable entanglement DC .

There is well-known connection between quantum states and quantum channels.

Namely any quantum channel ¤ : B(HA) ! B(HB) is in one to one correspondence
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(called JamioÃlkowski isomorphism [16]) with a bipartite quantum state that has maxi-

mally mixed subsystem A:

%(¤) = [I « ¤](P dA
+ ) (2)

Here P dA
+ = jªdA

+ ihªdA
+ j is a projector corresponding to "isotropic" maximally entangled

state on Hilbert space HA « HA:

ªdA
+ ² 1p

dA

dA ¡1X

i=0

jiijii (3)

The above state has an important property (cf. [17]). Namely for any matrix A :

HA ! HB one has

I « AjªdA
+ i =

s
dB

dA

AT « I jªdB
+ i (4)

The above isomorphism (2) together with the so-called binding entanglement channels

idea [18] allows you to point out [19] another consequence of existence of NPT bound

entanglement of some special Werner states: nonadditivity of two-way quantum channels

capacity.

Moreover in seminal paper [4] the isomorphism together with quantum teleportation

idea [3] have been utilised to prove that DC(%(¤)) µ QC(¤). Hence DC > 0 implies

QC(¤) > 0. Below we shall make the states-channels connection even stronger by showing

that the reverse implication is also true.

However, maybe the most interesting problem which we would like to address here is

the question of distillation and transfer rates in case of prior unknown states and channels

respectively.

3 Main problem

The question of whether it is possible to distill entanglement from unknown states was

¯rst raised in Ref. [21] where it was shown that for the hashing method [4] (®ollowed

by a twirling procedure that transforms any given state to a Bell state) the distillation

rate is identical to that of the protocol when the state is unknown. Here we would like

to address quite general question:

Question 3.1. Suppose that distillable bipartite state % is completely unknown to Alice

and Bob. It is possible:

(1a) to distill nonzero amounts of entanglement from it, and

(1b) to distill a number of singlets equivalent to distillable entanglement of the state?

Below we shall argue that the question (1a) has positive answer in general 2 « N

case as far as two-way distillation protocols are concerned. We shall also show that the

universal protocol for two qubits can be modi¯ed to give for unknown states the same

distillation rate as for known states. We shall leave the general case of n « m systems as
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an open question. In the above context it is natural to ask parallel questions for quantum

channels:

Question 3.2. Suppose that quantum channel ¤ has nonzero capacity but is completely

unknown to Alice and Bob. It is possible:

(2a) to send reliably nonzero amount of qubits down that channel, and

(2b) to achieve the same capacity as if the channel were known to the sender and/or

receiver?

Note that analogous questions can be addressed for classical capacities of quantum

channel but it goes beyond the scope of the present paper.

Our approach will be more heuristic that of [21]. Indeed we shall assume that after

the estimation the state Alice and Bob share can be described by produced %0­n rather

than exchangeable state %ex =
R

d®%(®)­n (see [21]) with some distribution d®.

The present approach is less rigorous but gives intuitions for a much more general

case than previously considered Bell-diagonal states.

4 Distilling entanglement from unknown states

Special cases 4.1. Below we shall argue ¯rst why the most naive continuity argument

does not work in case of the above problems. Given n systems in (unknown) state % the

simplest strategy for observers is to scarify some portion of states and perform quantum

tomography (see [23] and references therein). Of course they should get nonzero yield

during their protocol [4]. Thus they can only use same part of pairs say f(n) where
f (n)

n
! c, 0 µ c < 1 (c = 0 means that the number pairs used for tomography is

negligible in the limit). It is crucial here that c < 1, because otherwise they would get

zero e±ciency. After performing the quantum tomography on the part of f(n)
n

pairs they

can take the rest of them n0 = (1 ¡ f(n)
n

)n ¹ (1 ¡ c)n and perform P 0 some protocol on

them as if each of them were in the estimated state %0
n. The parameters of estimated state

however %0
n must have variance proportional to 1p

f(n)
, since the corresponding standard

deviation is proportional to the inverse of number of copies used in quantum tomography.

Consider the mixed states ¯delity [17]

F (%1; %2) = max
jª1 i;jª2 i

jhª1jª2ij2; (5)

where jª1i, jª2i are arbitrary puri¯cations of states %1, %2 respectively. Recall that

F (%1 « ¾1; %2 « ¾2) = F (%1; %2)F (%2; ¾2). The variance condition mentioned above makes

reasonable to assume that jj% ¡ %0
njj ¹ w 1p

f (n)
for some constant w depending on dimen-

sion of Hilbert space but not on n (here jjAjj = T rjAj). It is known that [25]

F (%; ¾) µ 1 ¡ 1

2
jj% ¡ ¾jj2: (6)
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Now one has F (%­n; %0­n
n ) = F (%; %0

n)n ¹ (1 ¡ w2

2f (n)
)n n!1¡ ! exp(¡ w2=2c) and in particular

F (%­n; %0­n
n )

c!0¡ ! 0: (7)

This apparently seems to provide a sort of alternative: either Alice and Bob decide do

spend ¯nite amount of pairs to estimate the state, or they must operate on the quantum

state %­n which becomes \orthogonal" (in the above sense) to the estimated states %0
n

­n.

In other words the results of tomography do not diverge in the usual sense to the state

one needs. This, however, does not imply automatically that Alice and Bob can not distill

any pure entanglement if they do not know %. Indeed, the distillation protocol can be

sometimes highly insensitive to changes of the states since during the protocol Alice and

Bob can gather some sort of global information or information about sets of states (like

in hashing, where parity of sequence of states is checked). Thus the naive representation

of the state they operate by %0­n will fail at some stage of the protocol. Note also that

usually the observers just erase a lot of unknown parameters in the state with help of

twirling-like operations (see [4]).

One can de¯ne the new quantity D?
C(%) which is distillable entanglement under the

condition that information about a single copy has been erased. The questions are: (a)

whether one has D?
C(%) > 0 if DC(%) > 0 (b) whether D?

C(%) < DC(%).

We know that for speci¯c protocols (i.e. if we replace distillable entanglement under

some, not necessarily optimal, protocol) this inequality does not need to be true. In fact,

the case of 2 « 2 Bell diagonal case has been analysed and it has been shown (taking into

account the exchangeability condition mentioned above) that for D?
$ condition (a) above

is satis¯ed and condition (b) is at least satis¯ed for some special (hashing) protocol [21].

Below we shall argue that D$;P = D?
$;P is true for the only universal distillation

protocol P we know so far i.e. the one that allows you to distill nonzero amounts of

entanglement from an arbitrary entangled 2 « 2 state [9]. We shall provide here a proba-

bilistic version of the protocol i.e. the one which some pairs are discarded. This implies

that the involved superoperators are not tracepreserving. It has been shown, however,

that the existence of a probabilistic protocol leads to a deterministic one [8]. So it is

justi¯ed to restrict oneself to probabilistic protocols.

The universal two-qubit protocol Puniv consists of three steps (see [9]) (i) ¯ltering

operation of each pair % followed by the \twirling" operation this gives on average fraction

of ´1 (0 < ´1 µ 1) of pairs in Werner state %W;n with the overlap with singlet state

F (%W;n) > 1
2
; (ii) recurrence protocol which produces on average the fraction ´2(F ) = 1

2L

of 2 « 2 Werner states with the parameter ´3 = 1 ¡ SA(F ) > 0 for local (Alice) von

Neumann entropy SA which can be chosen as as a nonincreasing function of F ; (iii)

hashing protocol which provides on average the fraction 1 ¡ SA singlet pairs from input

pairs in Werner state.

The above protocol Puniv has be shown rigorously [26] to produce on average

D$;Puniv = ´1´3´3 > 0 singlet pairs. Here we address di®erent question: what about

if the state of single copy % is completely unknown ? Is it possible to distill at least the

some number of singlets? What about optimal protocol distilling all possible entangle-

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


700 P. Horodecki / Central European Journal of Physics 4 (2003) 695{707

ment?

First let us recall that both ´1 and F from (i) are continuous parameters of single

copy. Thus given a number n of entangled but unknown 2 « 2 states Alice and Bob can

proceed as follows: divide the sample of particles into two groups consisting of
p

n and

n ¡
p

n pairs. They can spend
p

n pairs on tomography which will lead to estimated

state %0
n such that jj% ¡ %0

njj ¹ 1
4
p

n
. Combining the latter with continuity of parameters ´1

and F one concludes that for large n Alice and Bob operate on states with the ¯ltering

parameter form (i) not less then some ´n
1 > 0 (somewhat underestimated because of

error) and the corresponding Werner state parameter F (%W;n) for any n bounded from

below by sequence of constants F n > 1
2
. Moreover we have the convergences: ´n

1 ! ´1(%)

and F n ! F (%). The recurrence protocol relies on the recurrence function which is

nondecreasing in F if only initial parameter satis¯es F > 1
2
. Thus applying (ii) will

result in a fraction ´n
2 of Werner states bounded from below by ´2(Fn) de¯ned by step

(ii) above. The von Neumann entropy Sn
A will converge in a nondecreasing way to SA

determined by the protocol with known states.

The remaining Werner states %
(n¡

p
n)­

W;n are supposed to be subjected to hashing pro-

tocol. Form results of Ref. [21] we know that the hashing protocol (iii) can be carried out

successfully despite the fact that Alice and Bob do not know the state. This concludes

the protocol distilling entanglement from initially unknown state %.

The above reasoning does not take into account the exchangability assumption [21]

of joint state ie. that if the joint state is unknown than it should be taken as
R

%(~p)nd~p

over some probability distribution rather than %(~p)­n for some unknown, yet single vector

parameter ~p [22]. However, our assumption that Alice and Bob know the Werner state

in product %0
W

­n state up to some error bar of F can be reconstructed as a special case

of the distribution d~p picked around some value of ~p.

The e±ciency of the whole protocol applied to the remaining pairs for ¯xed n will

give on average n¡
p

n
n

´n
1 ´n

2 ´n
3 which for large n approaches

D?
$;Puniv

= ´1´3´3 > 0: (8)

The latter is distillable entanglement of the protocol with known pairs. Since for any

2 « N pairs the scheme of distillation is the same as for 2 « 2 case see [13] the above

protocol immediately applies for entangled 2 « N systems.

Summarising, any 2 « N state remains two-way distillable after erasure of single

copy information and the corresponding distillation rate (distillable entanglement) is not

greater than (8).

Let us consider the general n«m case. There is a theorem [10] saying that distillability

of given state % is always manifested by the existence of a Schmidt rank two tensor such

that (%T2 )­n for some natural n:

hÃj(%T2 )­njÃi < 0 (9)

Using this fact one can immediately make further generalisation of the above results

to any n « m state for which Alice and Bob have the following prior information: if the
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state is distillable then it is manifested by (9) for some n not greater than some ¯xed

n0. Usual tomography method applied on clusters of states %­n, n µ n0 pairs and allows

than to identify the vector Ã as it was in 2 « 2 case [9].

We have investigated only two-way distillation so far. To analyse one-way scenario

one would consider carefully the classical information °ow since any prior one-way state

estimation gives full information about the state only to Bob. Hence it is much more

di±cult to answer whether D?
! is nonzero if only D?

! > 0. It may not be true. Indeed

even if only one-way steps (i) (¯ltering) and (ii) (hashing) are allowed in the original

protocol, it can not be excluded that after erasing single copy information Alice will

never know which kind of ¯ltering she should apply in step (i). If we relax the conditions

seeking for one-way distillation with two-way prior state estimation then obviously the

previous result easily generalises giving nonzero D?
! in all cases when the original protocol

was combined from (i) and (iii).

Let us discuss the result in the context of the behavior (7). It happens that the

superoperator works well (even if the states apparently \diverge" as in (7)). However the

above reasoning will probably fail if we allow some sophisticated collective superoperators

because of counterintutive observation (7). Namely the above analysis strongly relies on

two facts:

(a) all the operations transforming states into Werner states %W;n are continuous in single

copy parameters and are performed only on single copy,

(b) all the involved collective LOCC operations behave "well" on partially unknown

Werner states (in particular result of Ref. [21] on hashing is crucial here).

But in general if Alice and Bob do not know k0 they do not know what part of states

should subject to tomography. It is likely that this step could be somehow omitted.

However the case D > D? (or even, somewhat unlikely, D > D? = 0) can not be

de¯nitely excluded at the moment. In any case the main problem remains: the optimal

protocol achieving D (even in 2 « 2) case might necessarily involve collective operations

which will not behave \well" (see (a), (b) above). Then even if the conclusions remain

true, the proof must be changed.

5 Quantum states and channels: qualitative equivalence of D

and Q

In the above context we shall consider remarkable theorem which shows the power of

analogy between mixed-states entanglement and quantum error correction [4]. Namely

let us consider the

Observation 5.1. For any channel ¤ and C =!; $ one has DC(%¤) > 0 i® QC(¤) > 0.

Remark 5.2. The implication DC(%¤) > 0 ) QC(¤) > 0 is well-known since it has

been proven [4] that DC(%¤) µ QC(¤) for all types of classical communication involved

(C =Á; ¿; !; $).
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Remark 5.3. The above Observation can be understand to represent qualitative equiv-

alence of distillable entanglement and channel capacity. Qualitative equivalence means

here that one quantity is not trivial (zero) if and only i® another is not.

Proof 5.4. Proof of the second implication ()). We shall prove the \only if’ part of the

theorem. First we need some general observations. Optimal distillable entanglement is

achieved by tracepreserving LOCC action [8]. The most general tracepreserving LOCC

action Alice and Bob can perform has a form of \ping-pong" protocol. In the protocol

Alice and Bob perform sequence of POVM-s in turn where any particular POVM depends

on the results of all previously performed. This corresponds to the sequence of families of

operations: Vk1 , Vk1 ;k2 , Vk1k2k3 , Vk1 k2k3k4 , ..., Vk1k2k3 ;:::;km . The corresponding k-th POVM

with the tracepreserving condition
P

k1k2 k3 ;:::;kl
V y

k1k2k3 ;:::;kl
Vk1k2k3 ;:::;kl = I for any l repre-

sents Alice (Bob) action for odd (even) index k. Roughly speaking Alice and Bob have

their operations correlated. This is not so in case of zero-way distillation protocol C = ¿

where one has just product of two operations. Thus given any channel ¤ the most general

Alice and Bob LOCC protocol corresponds to

¤0 =
X

k

¤B
k ¯ ¤ ¯ ¤A

k: (10)

In the above formula the multiindex k can be equivalent to sequence

fk1; k2; :::; klmax g: (11)

Then the operations ¤A
k, (¤B

k) correspond to Alice (Bob) elementary action. They are

¯ltering actions [27] composed of products of Vk1 ;:::;kl with even (odd) index l, (l µ lmax).

It may happen however that the multiindex corresponds to collection of sequences of type

(11). Then the maps ¤A
k, (¤B

k) correspond to sum of elementary ¯ltering operations and

can be in general tracepreserving, even bistochastic (both trace and identity preserving).

Sometimes it can possess the intermediate property: preserving trace and maximally

mixed state (which coincides with bistochasticity only if dimensions of input and output

are the same).

Following the above, using standard analysis from quantum channels theory one can

conclude that the capacity QC(¤), for given channel ¤, (C =!; $) can be achieved by

the sequence of LOCC operations which, composed with power of quantum channel, are:

¤(n) =
X

k

¤B
k ¯ ¤­n ¯ ¤A

k: (12)

Here for simplicity of the notation we shall consider the channel that acts ¤ : HA !
HB (dim HA = dA, dim HB = dB). The two (equivalent) de¯nitions of quantum capacity

have been provided in Refs. [4, 5]. Here it is natural to understand it [4] as a optimal (i. e.

optimized over composed actions of type (12)) ratio log2m(n)=(nlog2d) (d = min[dA; dB ])

with the parameter n from (12) and m(n) being the dimension of \reliably sent" Hilbert

space playing the role of domain of Alice and Bob actions: ¤A
k : Hm(n) ! H­n

A , ¤B
k :
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H­n
B ! Hm(n). It should be stressed that k depends on n though we do not make it

explicit here. Usually it is assumed that m(n) = 2k(n) and then log2m(n) = k(n) is

interpreted as rate of qubits that can be sent down the channel reliably asymptotically.

Since the channel (12) is assumed to allow for reliable transmission, it preserves max-

imally entangled state if half of it is sent down that channel. It means that for large n

the state

¾n = [I « ¤(n)](P
m(n)
+ ) (13)

satis¯es the condition T r(P
m(n)
+ ¾n) ! 1. Now can see that

¾n = [
X

k

¤
B
k « ¤A

k] ¯ [[I « ¤](P dA
+ ]­n = [

X

k

¤
B
k « ¤A

k][%(¤)]­n): (14)

Here the de¯nition ¤ ² (dA )n

m(n)
T ¯ ¤y ¯ T has been used (here T (¢) ² (¢)T stands for trans-

position map). For any completely positive (CP) ¤ the above formula (14) follows easily

from the property (4) and Kraus representation of CP map. Straightforward calculation

shows that ¤ shares with ¤ the property of complete positivity.

Before continuing the proof we shall made some digression providing two observations.

Observation 5.5. Let the quantum error correction protocol with resource C achieves

the rate QP
C with the transmission down the channel ¤ with help of the protocol P

corresponding to (12). Then there is a "formal" entanglement distillation protocol ~P
represented by (in general not tracepreserving) LOCC-like superoperator family:

SC =
X

k

¤
A
k « ¤B

k (15)

that achieves on the state %(¤) the same rate DP 0

C = QP
C .

The formal distillation protocol may be in general unphysical since it is nontracep-

reserving, however it preserves still the ping-pong like structure and in that sense it is

LOCC-like. Note by the way, that the following superoperators

S 0
C ²

X

k

¤A

k « ¤B

k (16)

are always legitimate LOCC operations involving resource C. This follows from the fact

that each of the observers performs the same actions as in the case of tracepreserving

transfer process (12). The only di®erence is an object the actions concern.

Summarising, Observation 5.5 says us that quantum capacity is equal to optimal

distillation rate under in (general nonphysical) class of LOCC superoperators. Note that

¤A
k in the Observation 5.1 correspond to Alice "encoding" actions. As a by-product of

the above analysis we have the following immediate consequence:

Observation 5.6. If the transmission rate QP
C is achieved under Alice encoding actions

¤A
k that preserves maximally mixed state then there is a distillation protocol ~P with the

rate D
~P
C (%(¤)) = QP

C(¤).
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Note that the property of preserving maximally mixed state does not imply that the

map is identity preserving since input and output have di®erent dimensions in general.

Now we can easily prove the needed implication of the Observation 5.6. To see this

note ¯rst that reliable transmission with help of above protocol means that the generalised

singlet fraction F (¾n):

F (¾n) = hªk(n)
+ j¾njªk(n)

+ i (17)

approaches unity in the limit of large n. Now for one-way scenario (C =!) the map ¤(n)

can be decomposed in a new form:

¤(n) =
X

k

¤B
k ¯ ¤­n ¯ ¤A

k (18)

where ¤A
k(¢) = Vk(¢)V y

k is a local ¯ltering operation (V y
kVk µ I) while ¤B

k is tracepreserv-

ing. This is because Bob can not perform any selection process since he must not inform

Alice about it (classical information can °ow only form Alice to Bob and not vice versa).

The separable superoperator formalism can be easily applied to the new decomposition

(18). Convexity of the entanglement ¯delity F followed by simple calculation leads to

the conclusion that for some k one must have:

F (%0
n) ² F (

[¤
A
k « ¤B

k](%(¤))­n

T r([¤
A
k « ¤B

k](%(¤))­n)
)

n!1
¡ ! 1 (19)

where ¤
A

k(¢) = [

r
(dA )n

m(n)
Vk]¤(¢)[

r
(dA )n

m(n)
Vk]T . Now one can always ¯nd some positive con-

stant ± > 0 such that new completely positive map ±¤
A
k(¢) is again legitimate local

¯ltering on Alice side. This means that given large number of states %(¤) Alice and Bob

can produce probabilistically in one way scenario (since Bob action is tracepreserving)

entangled state with arbitrary high ¯delity. Now the standard argument combining the

above probabilistic scheme with local projections and one-way schemes (i) U «U ¤ twirling

and (ii) hashing protocol achieves ¯nally nonzero distillation rate DC > 0.

For two-way schemes the above reasoning can be just rewritten with the only change

of m back to k in (18). This turns both Alice and Bob elementary actions into ¯ltering

and makes the subsequent protocol two-way. This concludes our proof.

Note that the latter, as it is, it does not generalise to the case C =Á since in that

case any Alice action ¤k in (12) is tracepreserving but its counterpart ¤k in separable

superoperator scheme (14) fails to have that property in general (it is identity preserving).

The same problem concerns the case when C = ¿.

Consider now channels for which nonzero transmission can be achieved with Alice

actions ¤k that preserve maximally mixed state. It is remarkable that for such channels

the Observation 5.1 generalises also to resources C =Á; ¿.

It is interesting to ask about an example where the rates in Observation 5.6 are

optimal ie. when the capacity of ¤ is equal to the corresponding entanglement distillation

of the state %(¤). An elementary example here is ¤ de¯ed as a product of ideal channel

and maximally depolarising channel. Application of computable capacity bound [24]
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immediately shows that tensor product of the two channels has capacity of the ideal

channel that is a part of the product. Now local actions (on both Alice and Bob side)

that correspond to optimal distillation scheme are just partial traces. They both preserve

maximally mixed state.

6 Quantum capacity after erasure of single channel copy

Consider an arbitrary channel ¤ : B(HA) ! B(HB) with dimHA = 2 unknown to Alice

and Bob. Following our Observation 5.1 if the channel has nonzero capacity Q$ > 0

then the corresponding 2 « (dimHB) state %(¤) has nonzero distillable entanglement

D$. Let us note that the state %(¤) can be produced by zero-way operation (sending

half of singlet down the channel). The state is unknown but, following previous analysis,

Alice and Bob can distill nonzero rate of singlets. Final teleportation of unknown qubits

down the singlets achieves then nonzero two-way capacity of the channel ¤. Similarly,

all the discussion concerning one-way distillable entanglement previously performed can

be mutatis mutandis applied to one-way capacity.

This concludes the result parallel to that obtained for 2 « N states in one of pre-

vious paragraphs. The result can be immediately extended to general channels (that

have no restriction on input and output dimensions) under the only condition that the

corresponding state %(¤) satis¯es the condition (9) for n bounded form above by some

constant.

Discussion and conclusions

We have considered the problem whether erasure of information about the state (channel)

preserves the property of nonvanishing distillable entanglement (capacity). We have

argued that for 2 « N states and the corresponding quantum channels the erasure of

single copy information does not nullify the two-way distillable entanglement and capacity

respectively. For the case of one-way schemes the result still holds for some special one-

way protocols (¯ltering plus hashing) under an additional assumption that Alice and Bob

had prior tomography with help of two-way communication.

The universal 2 « N protocol has a ¯nal rate insensitive under the erasure of infor-

mation about single copy of the state (channel). Some generalisations to the case when

Alice system has more levels than two are also possible.

To prove the corresponding results for channels we have utilised the states-channels

isomorphism and proven rigorously the Observation 5.1 that nonzero QC with C =!; $
for given channel leads to nonzero distillable entanglement for the corresponding state.

This completes the previous result of other authors and can be viewed as qualitative

equivalence between distillable entanglement and quantum capacity for the two classical

resources. It is an open problem whether the equivalence is true for resources C =Á; ¿

if Alice elementary actions do not preserve maximally mixed state.

Also, there is a general question about what happens in general one-way distilla-
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tion schemes. Does one-way classical communication assumption inevitably make the

equivalence impossible? One can expect positive answer, but the example is not known.

Another question is: what if we forbid naive LOCC tomography and ask for "fully quan-

tum" protocol ? The above questions deserve further investigation probably with more

powerful mathematical tools.
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