COMPONENT BASED FLIGHT SIMULATION IN
DIS SYSTEMS

Krzysztof Mieloszyk, Bogdan Wiszniewski
Faculty of Electronics, Telecommunications and Informatics
Gdansk University of Technology

krzymi@due.mech.pg.gda.pl, bowisz@eti.pg.gda.pl

Abstract Distributed interactive simulation constitutes an interesting class of information
systems, which combine several areas of computer science enabling each in-
dividual simulation object to visualize dynamic states of all distributed objects
participating in the simulation. Objects are unpredictable and must exchange
state information in order to correctly visualize a dynamic 3D scene from their
local perspectives. In the paper, a component based approach developed in the
ongoing project at GUT', has been described; it can reduce the volume of state
information being exchanged without losing messages essential for reliable ex-
ecution of simulation scenarios.

Keywords:  Distributed objects, remote state monitoring

Introduction

Distributed Interactive Simulation (DIS) systems form an important appli-
cation class of collaborative computing environments, in which many indepen-
dent and autonomous simulation objects, real objects and human operators are
connected to one computational framework. In may be for example a local
cluster of helicopter flight simulators in a lab with a group of real tanks oper-
ating in a remote shooting range, a city traffic simulation system where cars
and traffic lights are simulated but some intersections are operated by real po-
licemen, or a complex building on a simulated fire seen on computer screens
at the command center, and real firemen on a drill. Any such system performs
specific computations, which are unpredictable, have no algorithmic represen-
tation, and because of participating real objects, all events must be handled in
real-time despite of the system geographical distribution.

Objects participating in a simulation exercise are sending updates on their
local state to other objects in irregular intervals. If the updates were sent just
in periodic samples, a network supporting any realistic DIS system with many
objects would soon be overloaded. Moreover, increasing dynamics of reporting



A\ MOST

objects would imply higher sampling rate and would make the performance
problems even worse. Delayed (or lost) messages would certainly make any
visualization unrealistic. However, if a simulated object dynamics could be
estimated with some function of time, the number of messages to be sent would
be limited, since “new” states would be calculated by a receiving object instead
of sending them out by the reporting object.

This paper reports on the project started at TUG in 2002 and aimed at devel-
oping a DIS system with time-critical constraints, involving simulated flying
objects (helicopters) and ground vehicles (tanks) in a 3D space.

1. DIS system architecture

Any DIS system consists of simulators (called simulation objects), each one
designed to model a specific human operated device or vehicle. Any partic-
ular simulator may be operating in a distinct geographical location, and its
underlying operating system, software and hardware are usually incompatible
to other simulators, preventing direct interaction between them. In order to
create a collaborative computing environment a system architecture must en-
able integration of such objects (called active participants), and also provide
access for observers (called passive participants) with logging and monitoring
capabilities. Active participants exchange information to update one another
on their states as soon as they change. State updates sent by reporting objects
are needed by receiving objects to model a 3D global dynamic virtual scene
from their local perspectives. Passive observers usually limit their actions to
on-line state tracing and logging for future replay, evaluation of active partic-
ipants progress in a particular training scenario, as well as collecting data for
new training scenarios. A generic architecture of a DIS system is outlined in
Figure 1; it involves communication, service, and interaction layers, with dis-

tinct functionality and interfaces, marked with vertical arrows described further
on.

human operator human operator human observer

| } | i }
- T = —— ¥ : — ; T o
E Visualizer Visualizer DTl e 2
B - ction layer Visualizer Z
2 | Simulator Simulator e e o
g f } ? > 1%
o e
B Simulation Simulation § Logger & =
> . 7 service layer ; o
H services services monitor 5
S £ 1 ¥ [ i =

communication layer

Figure 1. Distributed interactive system architecture


http://mostwiedzy.pl

A\ MOST

Interaction layer. = Human operator provides an external stimulus affecting
the internal state of a simulator. According to the semantics of the latter and its
current state a new state is determined, reported to the lower layer simulation
services, and broadcasted via the communication layer. State updates are re-
ceived at irregular intervals by simulation services of an interested participant
and passed to the visualizer component, which generates (modifies) its local
perspective of a global dynamic scene. Based on the view of moving objects
outside the cabin and a local state indicated by flight instruments inside the
cabin, a decision is made by the human operator (pilot) on the next stimulus
(maneuver).

Service layer.  Simulation services provided by the service layer enable re-
duction of the volume of state update messages being sent over the system by
active participants. Ifthe simulation object movement (state trajectory) can be
described with kinesthetic parameters like acceleration, speed, position, mass,
force, moment, etc., state prediction can be based on Newtonian rules of dy-
namics, using a technique known as dead reckoning [Lee2000]. States that can
be calculated based on the current reported state do not have to be sent out,
as the receiving participant can calculate them anyway. Further reduction of
the volume of state updates can be achieved by relevance filtering of messages
that are redundant with regard to some specific context of the scene, e.g. a
reporting object is far away and its movement will result in a pixel-size change
at a remote display.

Communication layer. The main job of the bottom layer shown in Figure 1
is to make the underlying network transparent to upper layers. Objects may
want to join and leave the simulation at any time, require reliable sending of
messages, and need time synchronization. This layer has no knowledge on the
semantics of data being sent by simulation objects but has knowledge about the
location of participants over the network. Two models of communication have
been implemented in the project reported in this paper: one with a dedicated
server and another with multicast [MKKK2003]. The former (server based)
enables lossless communication and make data filtering easier, but the cost is
that each message has to go through the server and a network load increases
when many participants work in the same local area network. The latter is
scalable, but requires implementation of dedicated transmission protocols on
top of the existing unreliable UDP protocol.

2. Component interaction model

Since simulation objects have to invoke specialized services of the com-
munication layer, rather then to communicate directly with each other. The
communication layer must implement a standard, system-wide functionality.


http://mostwiedzy.pl

A\ MOST

For example, High Level Architecture (HLA) standard [HLA] requires de-
livery of such services as: federation management for creating, connecting,
disconnecting and destroying simulation objects in the system, time manage-
ment for controlling logical time advance and time-stamping of messages, and
declaration management for data posting and subscribing by simulation ob-
jects.

Reduction of the volume of data being sent by objects is achieved by a dead
reckoning technique, which basically extrapolates new position of an object
using its previous position and state parameters such as velocity or accelera-
tion. If object movements are not too complex, the amount of messages to be
sent can be significantly reduced [Lee2000] However, the method developed
in the reported project utilizes a notion of a semantics driven approach to mes-
sage filtering, based on maneuver detection, allowing for further reduction of
the space of states to be reported. This has been made possible by introducing
operational limits characterizing real (physical) objects (vehicles) [OW2003].
We will refer to this method briefly when presenting below another important
concept introduced in the reported project, which is component based simula-
tion.

In order to build and run a simulation system, the reported project required
simulators of various physical objects of interest. They had to be realistic in the
sense of their physical models, but allowing for easy configuration and scala-
bility of simulated vehicles. This has been achieved by adopting the concept
of a physical component shown in Figure 2a.

A component has its local state S, set initially to some predefined value.
Upon the external stimulus  coming from the operator or other component its
new (resultant) state S’ is calculated as S' = G(S, Z), where G represents a
state trajectory of the simulated component, given explicitly by a state func-
tion or implicitly by a state equation. Subvector F(S") of the resultant state is
reported outside to other components (locally) or other simulators (externally),
where F is a filtering function, selecting state vector elements relevant to other
components or simulators.

With such a generic representation a component may range from the body
with a mass, airfoil objects, like a wing, rotor or propeller, through various
types of engines generating power and momentum, up to undercarriage inter-
acting with a ground.

Simulation object

The main idea behind the component based approach is to divide a sim-
ulated object into most significant units, and then to simulate each one sep-
arately. This approach allows for flexibility, since simulators can be readily
reconfigured by changing parameters of a particular component (or by replac-


http://mostwiedzy.pl

/\_/\\ MOST WIEDZY Downloaded from mostwiedzy.pl

A

a)

state trajectory
model

external stimulus

x F(S) | reported state

Figure 2. Simulation object: (a) generic component (b) view of components (c) remote view

ing one with another), as well as parallelization, since components may run on
clusters if more detailed calculations are required.

With the external stimulus, the user can influence behavior of the compo-
nent work by changing some of its parameters. Reported state vector F'(S)
can affect the state of other components of the simulation object. Based on all
states, control parameters and the semantics of a component, it is possible to
calculate the external state vector as an influence of the component on simu-
lated object. After combining all state vectors reported by components of the
simulation object, it is possible to define its resultant behavior.

Consider for example two cooperating components, an engine and a pro-
peller. In order to simulate correctly each component, local state vectors S
of an engine and a propeller have over 10 elements, and over 15 elements re-
spectively. However, interaction between them can be modeled with just a
2-element vector consisting of a rotation velocity and torque. Similarly, a two
element state vector is sufficient to represent cooperation between a helicopter
rotor and an engine, despite that simulation of a rotor requires over 25-element
state vectors.

The general modeling technique is to describe a simulation object with a
graph, of which each single node corresponds to the respective component.
For each pair of nodes which can affect one another an arc is drawn and the
corresponding reported state vector F'(S) associated. The size of reported state


http://mostwiedzy.pl

A\ MOST

vectors attributed to individual arcs determine the real volume of data that have
to be exchanged between components during simulation. For simulation ob-
jects considered in the project, namely ground vehicles, single and twin rotor
helicopters, propeller and jet planes, and which may consist of the components
described below the size of reported state vectors F'(.5) never exceeded two. A
sample view of cooperating components of a simulated single rotor helicopter
is shown in Figure 2b

Wing. A wing has parameters which describe its dimension, fixing point to
the fuselage and the airfoil sections with characteristics combining lift and drag
with angle of attack. State of the wing can be affected by the arrangement of
ailerons and flaps, and its possible rotation along the longitudinal axis. In this
way it is possible to model both lifting and control surfaces of the wing. Addi-
tionally, by taking into consideration linear speed of the air stream or angular
speed of the wing, the resultant moment and force applied to the simulated
object can also be calculated.

Rotor. A helicopter rotor is the most complex component in the project, as
it is modeled with several rotating wings (blades). Its state vector elements in-
clude dimension of blades, their number, elasticity, induced speed of air flow,
airfoil section characteristics, blade fluctuations and angular speed. By chang-
ing parameters affecting the collective pitch and periodic pitch, the user (pi-
lot) can control the rotor _jn the same way as in a real helicopter [SN2002].
Reported state vector F'(S) consists of the resultant forces and moments cal-
culated at over a dozen points evenly distributed over a rotor disk. It is also
necessary to consider torque, which is required to determine correctly the state
of the entire power transmission system.

Propeller.  This component is a simplified version of a helicopter rotor,
based on the same semantics and parameters. Elasticity and fluctuations of
blades are neglected in calculating of F'(.S), but the parameter describing the
collective pitch setting is added. The internal state vector of a propeller is the
same as in the rotor component.

Engine.  This component supports the semantics of both, a jet turbine and
a piston engine. Including the internal state vector describing angular speed,
working temperature and the maximum power, the user can control its behavior
by setting up a throttle. Calculation of the reported state vector F'(S) requires
gathering torque values of all attached components, like a propeller or rotor,
to calculate the resulting angular speed for the entire power transmission unit

taking into account its inertia.


http://mostwiedzy.pl

A\ MOST

Undercarriage. It is the only component that allows the simulated object to
interact with a ground. The internal state vector describes the radius of a tire,
shock-absorber lead, and its elasticity, as well as speed of the entire plane, and
the relative location of the undercarriage with regard to the plane (helicopter)
body. This component has its semantics, defined by a characteristic describing
interaction patterns between the tire and the absorber during the contact with a
ground. By changing the angle of turn of the wheel and the braking factor, it
is possible to control the traction over the runway. As with other components,
the reported state vector F'(S) describes the moment and the reaction force of
the ground applied through the undercarriage to the simulated object body.

Remote object interaction

As mentioned before any simulation object in a DIS system sends out up-
dates on its state changes to enable other (remote) objects to calculate its po-
sition in global scene from the local perspective of each one. The volume of
messages is reduced by adopting a dead reckoning scheme, allowing calcu-
lation of some “future” states based on current states. While dead reckoning
applies mostly to calculating trajectories of moving objects, further reduction
of the volume of information being sent is possible based on specific relation-
ships between various elements of the material object state vector. A sample
view of a remote object’s state (a helicopter) from the local perspective of an-
other object (also a helicopter) is shown in Figure 2c

Active participants.  State vector F' (§ ) reported by each component locally
may allow a certain degree of redundancy, depending on the specific internal
details of the simulation object. However, the reported state (update) sent out
to remote objects must use a state vector in a standard form. In the current
implementation it consists of position E, orientation 6, linear velocity v, lineg'r
acceleration @, angular velocity @, angular acceleration ¥, resultant force F,
and resultant moment M. In a properly initiated simulation system, where
each receiver (observer) has once got full information about each participant,
for objects associated with decision events (maneuvers initiated by their human
operators) only changes in their acceleration are needed [OW2003].

Passive participants.  State prediction is less critical for passive partici-
pants, as they do not interact (in the sense of providing a stimulus) with other
objects. They do not have any physical interpretation and there is no need to
inform users about their existence in a system. They may be independent 3D
observers, like a hot-air balloon, or a 2D radar screen, or a map with points
moving on it. Their only functionality is monitoring and/or logging the traffic
of state update messages. In a DIS system implemented in the project a logger
has been introduced. Based on the recorded log entries it can create simulation


http://mostwiedzy.pl

A\ MOST

scenarios, which can be next edited, modified and replayed in the system. In
that particular case the logger may temporarily become an active participant.

Human operator

In order to implement any realistic DIS scenario involving “material” ob-
jects two problems must be solved. One is state predictability, important from
the point of view of the volume of state update messages, and another is object
ability to perform maneuvers within specific limits imposed by its operational
characteristics. Each object having a mass and characterized with kinesthetic
parameters behaves according to the Newtonian laws of dynamics. Classes
of behavior that such a material object may exhibit are described by basic
equations combining these parameters (function G(S). Such a form of ob-
ject representation, although true from the point of view of physics is far too
detailed from the point of view of simulating exercises with real flying objects
controlled by humans. It has been argued [OW2003] that by introducing the
notion of a maneuver and operational characteristics of simulation objects, the
space of possible states to be considered can be significantly reduced. In con-
sequence, there are less states to predict and the flow of state update messages
can be reduced further.

State predictability. The “logic” of flight may be described with a simple
automaton involving just five states representing human operator (pilot). The
basic state of a flying object is neutral, i.e. it remains still or is in a uniform
straight line motion. According to the first Newton’s law of dynamics both
linear and angular accelerations are zero, while the linear velocity is constant.
An object in a neutral state may start entering a new maneuver and keep doing
it as long as its linear or angular acceleration vary. This may eventually lead to
a stable state, which is the actual maneuver; in that case both linear and angular
acceleration vectors of the object are constant and at least one of them must be
non-zero. Any subsequent increase or decrease of any of these acceleration
vectors implies further entering or exiting a maneuver. Exiting a maneuver
may end up with entering another maneuver or returning to a neutral state.
There is also a crash state, when at least one of the object parameters exceeds
its allowed limits, e.g. exceeding a structural speed of the airplane ends-up with
its disintegration. It found out in the project, practically each state transition
of the automaton described above can be detected just by tracing changes of
angular or linear acceleration.

Operational characteristics.  All components described before has realistic
operational limits, usually listed in the user’s manual of the simulated object.
The mass may vary, but stay between some minimum (empty) and maximum
(loaded) values. There are several speeds characterizing a flying object, e.g.


http://mostwiedzy.pl

A\ MOST

for planes it is the minimum (stall) speed for each possible configuration (flaps
up or down, landing gear up or down), maximum maneuvering speed to use in
maneuvers or turbulent air, and maximum structural speed not to be exceeded
even in a still air. Resultant lift and drag forces for the wing are the function
of the airflow speed and angle of attack, which may change up to the critical
(stall) angle, specific to a given profile. Finally thrust is a function of engine
RPMs, which may change within a strictly defined range of [min,max] values.
Based on these parameters, and a maneuver “semantics” described before, it
is possible to calculate (predict) most of the in-flight states intended by the
human operator, excluding only random and drastic state changes such as mid-
air collision or self-inflicted explosion.

3. Summary

In the current experimental DIS application three classes of simulation ob-
jects have been implemented using components described in the paper: a tank,
a light propeller airplane, and two kinds of helicopters, with single or twin ro-
tors. The notion of a generic component introduced in Figure 2a proved to be
very useful. Current development is aimed at expanding the concept of compo-
nents on vessels, which besides a propeller-like component and engine, require
a body model, simple enough to avoid complex computations but precise to de-
scribe interactions between the hull and surrounding water.

Notes

1. Funded by the State Committee for Scientific Research (KBN) under grant T-11C-004-22

References

[SN2002] Seddon J. and Newman S. (2002). Basic Helicopter Aerodynamics Masterson Book
Services Ltd.

[HLA] DoD. High Level Architecture interface specification. IEEE P1516.1, Version 1.3.
http://hla.dmso.mil.

[Lee2000] Lee B.S., Cai W., Tirner S.J., and Chen L. (2000). Adaptive dead reckoning algo-
rithms for distributed interactive simulation. I. J. of Simulation, 1(1-2):21-34.

[MKKK2003] Mieloszyk K., Kozlowski S., Kuklinski R., and Kwoska A. (2003). Architec-
tural design document of a distributed interactive simulation system KBN-DIS (in Polish).
Technical Report 17, Faculty of ETI, GUT.

[OW2003] Orlowski T. and Wiszniewski B. (2003). Stepwise development of distributed inter-

active simulation systems. In Proc. Int. Conf. Parallel and Applied Mathematics, PPAMO3,
LNCS, Springer Verlag, to appear.


http://mostwiedzy.pl

