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ABSTRACT  

Double-porosity media are composed of two distinct regions with contrasted hydraulic 
parameters. Due to this type of structure, transient water flow is characterized by 
local non-equilibrium conditions. This paper will present a macroscopic model of 
water flow in such media that was obtained by the method of homogenization. This 
method enables us to derive the macroscopic model and its effective parameters 
from a description of the phenomena at the local scale, without any a priori 
hypothesis for the form of the model. The macroscopic non-equilibrium water flow is 
described by a single macroscopic equation with a highly non-linear exchange term, 
leading to a tailing effect. The effective properties, namely the hydraulic conductivity 
tensor and the specific water capacity, are defined as depending on the hydraulic 
characteristics of the more conductive (and connected) domain and the local 
geometry of the medium. A numerical implementation (Fortran program) of the 
proposed model was developed. Numerical simulations were performed for two 
different types of geometry. For each problem the results obtained from 
homogenization are compared with a fine scale numerical simulation where 
heterogeneous structure of the medium is explicitly represented (SWMS_3D 
commercial software). Comparisons with the phenomenological approach of Gerke 
and van Genuchten [14] are also presented.  

KEY WORDS: 

upscaling, homogenization, unsaturated flow, double-porosity media, non-equilibrium, 
tailing effect  

Postprint of: Lewandowska J., Szymkiewicz A., Burzyński K., Vauclin M., Modeling of unsaturated water flow in double-porosity soils by the 
homogenization approach, Advances in Water Resources, Vol. 27, Iss. 3 (2004), pp. 283-296, DOI: 10.1016/j.advwatres.2003.12.004
© 2004. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.advwatres.2003.12.004
https://creativecommons.org/licenses/by-nc-nd/4.0/


 2

1. INTRODUCTION 
 
Double-porosity media consist of two interacting sub-domains with contrasted 
hydraulic properties. One sub-domain corresponds to the porous matrix or soil 
aggregates, and the other includes inter-aggregate space filled with coarser material, 
macropores, fractures or fissures which are highly conductive compared to the matrix 
(Fig. 1). In this type of medium three distinct observation scales can be considered: 
the microscopic scale (or pore scale), associated with single grains and pores of the 
medium, the mesoscopic scale (or Darcy scale), which is the scale of a single soil 
aggregate or porous block and the macroscopic scale, which is of major interest from 
the point of view of soil hydrology and groundwater modeling. Due to the large 
contrast in local hydraulic parameters of the soil, non-equilibrium phenomena arise 
during water flow and contaminant transport, which should be properly taken into 
account in the mathematical description applied at the macroscale.  
 
Modeling of non-equilibrium flow and transport in unsaturated soils/rocks has 
received increasing attention during recent years since it concerns such vital 
problems as protection of groundwater aquifers or securing of waste depositories. A 
recent review on the subject can be found in Šimůnek et al. [39]. A number of 
different approaches to modeling the unsaturated flow of water in structured porous 
media have been developed. They vary from relatively simple single-porosity models 
to more complicated dual- or multi-porosity/permeability concepts. In the simplest 
models the heterogeneity of soils is captured by introduction of composite retention 
and hydraulic conductivity functions into the Richards equation [14,28]. Such single-
porosity models account for rapid changes in conductivity when a highly conductive 
macroporous domain is activated, but they cannot represent non-equilibrium 
processes between two sub-domains. A simple non-equilibrium flow model was 
proposed by Ross and Smettem [34] in which an additional kinetic description of the 
approach of the water content towards equilibrium is added to the Richards equation 
[33]. 
 
The dual porosity phenomenological model was initially suggested by Barenblatt et 
al. [8], and is widely used in reservoir modeling [7,41]. In this phenomenological 
approach the regions of high and low permeability are treated as two overlapping 
continua. The macroscopic model consists of two flow equations:  one for each sub-
domain. The equations are coupled by a term describing the exchange of water 
between the two regions. A dual-porosity model for flow and transport in unsaturated 
soils was presented by Gerke and van Genuchten [15,16]. They assumed that flow in 
both sub-domains can be simulated by the Richards equation and they proposed a 
first-order coupling term for water transfer with the difference in pressure heads 
between the two sub-domains as the driving force, similarly to the model of 
Barenblatt et al. [8]. The rate of water transfer depends on the local geometry of the 
medium, which was represented by a geometry dependent coefficient. Gerke and 
van Genuchten [17] provided values of that coefficient for some simple geometries. 
For other geometries they suggested a functional relationship between the coefficient 
and the normalized surface to volume ratio of the matrix aggregates.  
 
Another approach is to use the kinematic wave equation to describe water flow in 
highly permeable sub-domain, as proposed by Germann [18] and Germann and 
Beven [19]. The kinematic wave equation was applied in the MACRO model by Jarvis 
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[24] to simulate macroporous flow, while the flow in soil aggregates was modeled by 
Richards equation. The rate of water transfer between the two sub domains was 
assumed to be proportional to the difference in saturations. For porous media that 
exhibits more than two distinct sub-domains the dual-porosity approach can be 
extended into multi-porosity models [20].  
 
Alternatively, upscaling (macroscopisation) methods can be used to derive the 
macroscopic model from the description of physical processes at the local scale, 
which is the scale of single matrix blocks. The corresponding macroscopic equations 
can be obtained by different methods. The volume averaging method was applied by 
Quintard and Whitaker to study one-phase [31] and two-phase [32] equilibrium fluid 
flow in heterogeneous porous media, while the non-equilibrium model for dispersive 
transport was presented in [30]. The asymptotic homogenization method has been 
widely used in recent years to model different flow and transport problems in porous 
media [22]. For example Saez et al [36] and Amaziane et al [1] studied two-phase 
equilibrium fluid flow. Macroscopic models of incompressible fluid flow in a dual 
porosity medium were presented by Arbogast et al. [3], whereas Hornung and 
Showalter [23] derived dual-porosity transport models. Hornung in [21] applied 
homogenization to the unsaturated flow and transport in aggregated soils. Application 
of homogenization theory to obtain macroscopic models of flow and transport in 
highly heterogeneous porous media was extensively presented in Panfilov in [29]. 
Lewandowska and Laurent [27] derived a macroscopic model for unsaturated water 
flow for the conditions of local equilibrium. They applied the physical homogenization 
approach, proposed by Auriault [5]. This method is based on the analysis of 
dimensionless numbers which govern the physical processes. The resulting 
macroscopic models are mathematically and physically rigorous and their domain of 
validity is precisely defined. The physical homogenization approach was also used to 
double porosity media by Royer et al. [35], to study highly compressible gas flow in 
rigid fractured media and incompressible fluid flow in deformable fractured media. 
 
The aims of this paper are as follows: (i) development of a macroscopic model using 
the homogenization technique, including the following elements: the macroscopic 
boundary value problem, the definitions of the effective parameters and the local 
boundary value problem, (ii) definition of the domain of validity of the model, (iii) 
presentation of the numerical implementation of the mathematical model, (iv) 
presentation of the results of two numerical simulations, and (v) comparison of the 
results with other solutions existing in literature. 
 
 
2. MATHEMATICAL MODEL OF FLOW IN DOUBLE POROSITY SOILS 
 
2.1. General assumptions 
 
We consider a porous medium (soil) that has a double-porosity structure. It is 
composed of two porous sub-domains of contrasted hydraulic properties. We do not 
consider fractured media. Let us assume that this medium can be characterized by a 
representative elementary volume (a REV) [9] or a period, if the medium has a 
periodic structure. This assumption concerns the scale separation and the existence 
of an equivalent medium. It is formally written 
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1<<=
L
lε             (1) 

 
where l is the period length (the characteristic microscopic length) and L is the 
dimension of the macroscopic domain (the characteristic macroscopic length). 
Without loss of generality we further assume the periodicity of the porous medium 
and we note Ω the period, Ω 1 and Ω 2 the two porous domains, and Γ the interface 
between them (Fig. 1). We also assume that the domain Ω 1 is continuously 
connected and that the porous medium 1 is much better conductive than the porous 
medium 2. 
 
The unsaturated water flow in a homogenous rigid soil is often described by the 
Richards equation [32] which assumes that the air pressure in the soil is constant and 
equal to the atmospheric pressure during the whole flow process. Under isothermal 
conditions this equation is formulated for the capillary pressure h head [L] being the 
water pressure head relative to the atmospheric pressure ( 0≤h ) [9] as follows: 
 

( ) ( ) ( )( ) 0- 3 =+ Xhgradhdiv
t
hhC XX K
 ∂
 ∂        (2) 

 

where ( )
dh
dhC θ

=  is the specific water capacity [L-1], θ  is the volumetric water content 

[-], ( )hK  is the hydraulic conductivity [L T-1], the ( )321 ,, XXX=X  denotes the physical 
spatial variable [L], where the axis X 3 is positively oriented upwards and t [T] is the 
time. Note that in soil physics h represents the potential which is related not only to 
the capillarity but also to the adsorptive forces [13]. 
This equation is highly non linear because of the non linear functions ( )hC  and ( )hK . 
Due to the parabolic character of the Richards equation, its behavior as a diffusion 
equation can be easily viewed as a function of another hydraulic parameter, which is 
the hydraulic diffusivity ( )hD  [L T-2], defined as the ratio of the conductivity over the 
specific water capacity 
 

( ) ( )
( )hC
hKhD =            (3) 

 
As it can be seen in 2.3, the hydraulic diffusivity ( )hD  plays a fundamental role in the 
estimation of the local capillary pressure gradient. 
 
2.2. Formulation of the problem 
 
Since the porous medium presents a double structure, the problem can be regarded 
at three different scales, namely the pore scale, the Darcy scale and the macroscopic 
scale. In this paper the starting point of the analysis is the Darcy scale. 
 
Let us assume that in each porous sub-domain the unsaturated water flow can be 
described locally by the Richards equation 
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( )( ) 0graddiv 311
1

1 =+− Xh
t
hC  
∂
∂

XX K  in Ω 1      (4) 

( )( ) 0graddiv 322
2

2 =+− Xh
t

hC XX K
∂
∂  in Ω 2      (5) 

 
together with the capillary pressure head and flux continuity conditions at the 
interface Γ  between Ω 1 and Ω 2, written in the form: 
 

21 = hh        on Γ    (6) 
( )( ) ( )( )NKNK XX 322311 gradgrad XhXh +=+   on Γ    (7) 

 
where h 1 and h 2 are the local capillary water pressures heads, ( )h1K  and ( )h2K  are 
the hydraulic conductivity tensors, ( )hC1 and ( )hC2 are the specific water capacities in 
Ω 1 and Ω 2, respectively, and N is the unit vector normal to Γ. In Eqs. (4) and (5) the 
X3 term is related to the gravity. We assume that the water retention curves ( )h1θ  and 

( )h2θ , as well as the conductivity curves ( )h1K  and ( )h2K  for each porous sub-
domain, are known. In case of hysteresis of ( )hK  and ( )hθ , different functions for 
drainage and wetting curves respectively can be used. 
 
2.3. Dimensionless variables and estimations of the parameters of the problem 
 
Let us define the dimensionless variables by dividing each variable by its 
characteristic value. It leads to the following relations 
 

∗= 111 hhh C  ∗= 222 hhh C   
l
Xy =   

L
Xx =   ∗= tTt   

∗= 111 KK CK  ∗= 222 KK CK   ∗= 111 CCC C   ∗= 222 CCC C    (8) 
 
where the subscript c denotes the characteristic quantity (constant) and the asterisk 
denotes the dimensionless variable. We introduce two space variables:  
 
 ( )321 ,y,yy=y  is the microscopic dimensionless space variable,  
 ( )321 ,x,xx=x  is the macroscopic dimensionless space variable. 

 
T is the characteristic time of observation, chosen to be the time of the water flow in 
the medium 1 at the macroscopic scale L. Therefore, we can write: 
 

C

2

C

2
1C

D
L

K
LC

T
11

==           (9) 

 
In order to capture the double porosity effect and the resulting non-equilibrium, we 
assume that the characteristic values of the hydraulic parameters are very 
contrasted. In particular, we assume that the ratio of the hydraulic diffusivities is of 
the order ( )2O ε  
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 ( )2

1C

1C

2C

2C

C

C

K
C

C
K

D
D

εO
1

2 ==          (10) 

 
According to the relation (10), we can examine for example three different 
combinations of the ratio of the parameters K and C in the medium 1 and 2: 
 

 ( )2O ε=
1C

2C

K
K  and ( )1O=

2C

1C

C
C        (11) 

 ( )εO=
1C

2C

K
K  and ( )εO=

2C

1C

C
C        (12) 

 ( )1O=
1C

2C

K
K  and ( )2O ε=

2C

1C

C
C        (13) 

 
Note that the three combinations of the parameters have the same final effect on the 
macroscopic behavior since they lead to the same estimation of the local capillary 
head gradients on the interface Γ. 
Finally, we can notice that the ratio of characteristic length of the period l to the 
characteristic capillary pressure head hc is of the order ( )εO  in a period. It means that 
the capillary term is dominating over the gravity one. 
 
2.5. Formulation of the problem for the dimensionless variables 
 
By introducing the dimensionless variables, Eqs. (8), and by taking into account the 
parameter estimations, the local problem Eqs. (4)-(7) normalized with respect to l is 
written as: 
 

( )( ) 0ygraddiv 31
1

1
2 =+∗∗

∗

∗
∗ εε h

t
hC y1y K-
∂
∂    in Ω1   (14) 

( )( ) 0ygraddiv 32
2

2 =+∗∗
∗

∗
∗ εh

t
hC y2y K-
∂
∂     in Ω2   (15) 

∗∗ = 21 hh         on Γ    (16) 
 

( )( ) ( )( )NKNK y2y 32
2

311 ygradygrad εεε +=+ ∗∗∗∗ hh   on Γ    (17) 
 
Note that all the terms in the problem (14) - (17) are of the order O(1). The factor 2ε in 
Eqs (14) and (17), comes from the contrast between the hydraulic properties of the 
two materials. 
 
2.4. Homogenization 
 
In this study, the classical method of homogenization by formal asymptotic 
expansions was applied [10,37]. The formalism has been recently extensively 
developed, in particular for the applications to the non-linear problems (see for 
example [6]). The procedure adopted in this paper was presented in details by 
Auriault [4,5]. The homogenization postulates that all the unknowns φ  
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(dimensionless) can be presented in form of an asymptotic expansion: 
 

( ) ( ) ( ) ...*)t,,(*)t,,(*)t,,(*)t,,( +++= 2210 yxyxyxyx φεφεφφ    (18) 
 
where *)t,,( yxφ  stands for ∗

1h , ∗
2h , ∗

1C , ∗
2C , ∗

1K , ∗
2K , ∗

1θ or ∗
2θ . Note that all the 

terms ( ) *)t,,(i yxφ in Eq. (18) are dimensionless. Due to the scale separation the 
unknowns ( )iφ are functions of three variables: x, y and *t , where we have yx ε= . 
The derivation operator is written: 
 

xyy ∂
∂

∂
∂

∂
∂ ε+a           (19) 

In the case considered here the periodicity of the problem implies that ( )ih , ( )iC , ( )iK  
and ( )iθ  in both sub-domains are y-periodic. The strategy of homogenization involves 
three main steps: (i) introducing the expansion (18) into the problem (14)-(17); (ii) 
identification of the problems at the same powers ofε ; and (iii) solving the 
successive order boundary value problems within the period domain. Herein we 
present the main results of homogenization, without formal demonstration of 
existence and uniqueness of the solution of each problem. 
 
2.5. Macroscopic variable ( )0

1h  
 
In order to analyze the behavior of the macroscopic variable ( )0

1h we rewrite Eqs (14) 
and (17) at the power 0ε as follows  
 

0ε : ( )
( )

0
0

10
1 =











j
ij

i y
hK

y ∂
∂

∂
∂

    in Ω1     (20) 

:0ε  ( )
( )

0
0

10
1 =










i

j
ij N

y
hK
∂
∂

    on Γ     (21) 

and ( )0
1h is y-periodic. It can be shown that the solution of the problem (20)-(21) is a 

function which depends on the macroscopic space variable x and does not depend 
on the local space variable y [6, 10, 37],  
 

( ) ( ) ( ) ),(),( 00
1

0
1

∗∗ == ththh xx          (22) 
 
It means that the first order solution ( )0

1h is constant over Ω1 and it can be concluded 
that ( )0

1h  is a macroscopic variable, which will be denoted h(0). From the water 
retention curve we also obtain the corresponding water content ( )0

1θ  
 

( ) ( ) )( 0
11

0
1 hh -1=θ and inversely ( ) ( ) )( 0

11
0

1 θhh =       (23) 
 
2.6. Determination of ( )1

1h  and the local boundary value problem  
 
The local boundary value problem follows from (14) and (17) at the power 1ε  
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1ε : ( )
( )

( )
( )

0
1

10
13

0
0

1 =











+










+

j
ijj

j
ij

i y
hKI

x
hK

y ∂
∂

∂
∂

∂
∂    in Ω1   (24) 

1ε : ( )
( )

( )
( )

0
1

10
13

0
0

1 =











+










+ i

j
ijj

j
ij N

y
hKI

x
hK

∂
∂

∂
∂    on Γ   (25) 

where ( )1
1h  is y-periodic. It can be shown [6,10,37] that the solution of Eqs (24)-(25) 

can be put in the form of a linear function of the macroscopic gradient 
( )









+ 3

0

i
i

I
x

h
∂
∂  

 
( )

( )
( ) ),(1

3

0
1

1
∗+








+= thI

x
hh i

i
i x
∂
∂χ         (26) 

 
where each component iχ of the vector (χ 321 χχχ ,, ) is a function of the three space 

coordinates (y1, y2, y3). Moreover, χ  has a zero-valued volume average, which is 

written 

01
== ∫

Ω

Ω
Ω

dχχ          (27) 

In Eq. (26) the term 3iI  is a component of the identity matrix I, while ( )1h is an arbitrary 
function of x and t. The vector )(yχ  is the solution of a classical linear local boundary 
value problem which is obtained by substituting the solution (26) into the problem 
(24)-(25) ([6],[10],[36]) 
 

( ) 00
1 =






















+

j

k
jkij

i y
IK

y ∂
∂

∂
∂ χ      in Ω1    (28) 

( ) 00
1 =










+ i

j

k
jkij N

y
IK

∂
∂ χ      on Γ    (29) 

The vector field )(yχ  characterizes the micro geometry of the period from the point 
of view of the transfer of water. The solution of the problem (28) and (29) requires 
information about the microscopic geometry of the porous medium. Except for some 
particular cases, this problem has to be numerically solved. 
 
2.7. Local flow equation in medium 2 
 
From Eqs. (15) and (16) at the order 0ε  we get the non linear boundary value 
problem for the capillary pressure head ( ) ),,(0

2
∗th yx  in the domain 2Ω  depending on 

the local space variable y 
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0ε : ( )
( )

( )
( )

0
0

20
2

0
20

2 =









−

∗
j

ij
i y

hK
yt

hC
∂
∂

∂
∂

∂
∂     in 2Ω    (30) 

0ε : ( ) ( )00
2 hh =        on Γ   (31)  

 
where the conductivity ( )0

2ijK  = ( )( )0
22 hK ij  is a function of the capillary pressure head 

( )0
2h . Since ( )0

2h  is not constant over the sub-domain Ω2, it can be concluded that local 
non equilibrium condition is encountered. Thus, we have two capillary pressure head 
fields, namely ( ) ( ) ),(0

1
0

1
∗= thh x  and ( ) ),,(0

2
∗th yx , interacting each other through the 

coupling boundary condition (31). This local non-equilibrium is rather complex since 
the problem (30) and (31) is non linear. Note also that the gravity does not influence 
the behavior of ( )0

2h . 
 
2.8. Macroscopic flow model for 0h  

 
In order to determine the macroscopic model let us write Eqs. (14) and (17) at the 
order ( )2O ε  of approximation: 
 

( )
( )

( )
( ) ( )

( )
( ) ( )

( )

( )
( ) ( )

( ) 03
0

1

1
1

0
0

1

3
1

1

1
1

0
1

1

2
1

1
10

1

0
0

1

=











+










+−

+











+










++










+−

∗

jij
jj

ij
i

jij
jj

ij
jj

ij
i

IK
y
h

x
hK

x

IK
y
h

x
hK

y
h

x
hK

yt
hC

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

   in Ω1 (32) 

            

( )
( ) ( )

( )
( ) ( )

( ) ( )
( )

i
j

ijijij
jj

ij
jj

ij N
y
hKNIK

y
h

x
hK

y
h

x
hK












=












+










++










+

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂ 0

20
23

1
1

1
1

0
1

1

2
1

1
10

1  on Γ (33) 

First, integrate Eq. (32) over the domain Ω1 and divide it by Ω . 
 

( )
( )

( )
( ) ( )

( )
( ) ( )

( )∫
Ω

∗






+











+










++










+−

Ω 3
1

1

1
1

0
1
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The next four steps concern the transformations of the second term of Eq. (34) and 
are as follows: (i) apply the Gauss Ostrogradski theorem to transform the volume 
integral to the surface integral (ii) apply the periodicity condition and the boundary 
condition Eq. (33); (iii) apply once again the Gauss Ostrogradski theorem to pass 
from the surface to the volume integral over the domain Ω2; (iv) make use of Eq. (30). 
After these transformations we get: 
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where: 
 

( )( ) ( ) ( )0
11

0
1

0)0(
1

1

d1 CwChCC eff =Ω
Ω

== ∫
Ω

      (36) 

is the effective specific water capacity. The volumetric fraction of the medium 1, w1 [-] 
is defined as: 
 

Ω

Ω
= 1

1w            (37) 

and is of the order O(1). If we use Eq. (36), then the first term in Eq. (35) can be also 
written as: 
 

( )
( )

( )
( ) ( )

∗∗∗∗ ===
tt

w
t

hCw
t

hC
aver

∂
∂

∂
∂

∂
∂

∂
∂ θθ 0

1
1

0
0

11

0
0

1  (38) 

 
where θ aver [-] is the volumetric water content of the medium 1, averaged with 
respect to the total volume of the period ( )0

11θθ waver = . 
The exchange term in Eq. (35) is written as 
 

 ( )
( )
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( ) ( )
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Ω
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22
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∂

∂
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∂
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Introducing the solution for ( )1

1h  from Eq. (26) into Eq. (35) leads to the following 
macroscopic governing equation: 
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∂

∂
∂      (40) 

 
As we can observe, Eq. (40) has the form of an integro-differential equation. This 
model contains the gravity term and a source term coming from the interaction with 
the medium 2. This source term is non linear and requires the solution of the local 
boundary value problem (30) and (31) over 2Ω . It causes the retardation of the water 
flow and gives rise to the so-called tailing effect [4]. The same type of model was 
formerly obtained by Hornung in [21], using a slightly different mathematical 
methodology. 

( )( )0heffK  is the effective conductivity tensor which can be demonstrated to be 
symmetric and positively definite. It depends on ( )0h and )(yχ . Its definition follows 
from (35) and (26): 
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( ) ( ) Ω
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= ∫

Ω

dI
y

K)h(K kj
k

j
ik

eff
ij

2

00 1
∂
∂

       (41) 

The determination of eff
ijK  requires to solve the local boundary value problem (28)-

(29) for )(yχ over Ω1 and then to apply the formula (41).  
If the local conductivity tensor in the domain Ω1 is isotropic 
 

( ) ( )0
1

0
1 KIK ijij =            

then Eq. (41) becomes 
 

( )∫
Ω

Ω

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



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Ω
=

1

d1 0
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ij I

y
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∂
∂ χ

        (42) 

If ( )0
1K  is constant within the domain Ω1, than we have 

 
( )

∫
Ω

Ω







+

Ω
=

1

d
0

1
ij

i

jeff
ij I

y
KK

∂
∂ χ

        (43) 

Note that both effective hydraulic parameters, )h(eff 0K and )h(C eff 0 depend on the 
local parameters of the more conductive domain Ω1 and on the local geometry. 
 
3. APPLICATION OF THE MODEL 
 
3.1. General strategy of the complete solution of a particular macroscopic 
boundary value problem 
 
In order to solve a particular boundary value problem one has to follow three main 
steps: (i) solution of the local boundary value problem (28)-(29) for a given local 
geometry of the medium; (ii) calculation of the effective parameters effK by Eq. (41) 
and effC by Eq.(36); (iii) solution of the macroscopic boundary value problem i.e. Eq. 
(40) together with particular initial and boundary conditions of the problem. 
The local boundary value problem concerns an elliptic partial differential equation 
which can be solved using any commercial code that enables the application of 
periodic boundary conditions, like for example FEMLAB. To solve the macroscopic 
problem that has an integro-differential form, a numerical model had to be developed. 
It is presented in the next section. 
 
3.2 Numerical model of the macroscopic problem 
 
3.2.1 General structure of the numerical model. 
 
The numerical application of the model presented deals with the macroscopically 
one-dimensional vertical flow problem in a double porosity soil with two- or three-
dimensional inclusions, named (DPH). The algorithm described below was 
implemented in the Fortran code DPOR_1D developed by the authors. 
After replacing the dimensionless variables by the dimensional ones the macroscopic 
model obtained by homogenization, Eq. (40), can be rewritten as follows: 
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01
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averθ   (44) 

where θ aver is average water content defined by Eq. (38) and Keff is the effective 
conductivity in the vertical direction. In this case it is a scalar. Q denotes the source 
term: 

t
Q

∂
∂

= 2θ   (45) 

The volumetric water content in medium 2, θ 2, is a function of the microscopic 
variable y. In order to determine the value of Q, the local flow problems in all periods 
should be solved. Due to the continuity of pressure at the interface Γ, the source term 
Q is a non-linear function of the macroscopic variable h.  
For the purpose of numerical solution the mixed (mass-conservative) formulation of 
unsaturated flow equation proposed by Celia et al. [12] was used. The macroscopic 
equation is discretized in space by finite differences. The integration in time is 
performed by fully implicit scheme. The discretized form of Eq. (44) is as follows:  
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            (46) 
where i is the node index, j is the time level index, ∆x is the spatial interval (uniform) 
and ∆t is the time step. The interblock conductivities were estimated by arithmetic 
averages: 
 

( ) ( )[ ]i
eff

i
eff

i hKhKK += ±± 12/1 2
1         (47) 

 
Since θ aver, Keff and Q are nonlinear functions of h, at each time level a system of 
nonlinear equations arises. It was linearized by the Newton method [2], which 
appeared to be more robust than Picard one, commonly used for typical unsaturated 
flow problems. The Newton method requires estimation of jacobian matrix in each 
iteration, which means that derivatives of all terms of the equation should be 
computed with regard to the macroscopic pressure head which is the main variable. 
The implicit treatment of source term Q means that its derivative with respect to h 
should also be computed. This should be done numerically and requires that local 
flow problems in each period are solved twice. In order to simplify the solution we 
computed the derivative of Q only for the first iteration in each time step and used the 
same value in subsequent ones. We found that this significantly reduces the overall 
computational cost, while maintaining good accuracy of the solution. 
Another important issue concerning numerical solution is the time step control. 
Efficient solution requires variable time step. Usually a simple empirically based 
algorithm is used, where the size of time step is adjusted according to the number of 
performed iterations. We found that more rigorous approach based on the estimation 
of local truncation error can be more robust in case of strongly nonlinear problems. 
We used an algorithm similar to the one presented in [25], however with the 
possibility of specifying accuracy in terms of either pressure head or water content. 
 
3.2.2 Solution of the local flow problem in the medium 2. 
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The local flow problems in the medium 2 can be one-, two- or three-dimensional, 
according to the geometry of the period. Since we considered simple and regular 
local geometries (see next section), the finite difference method was used for spatial 
discretization. In case of two- and three- dimensional problems we used a fractional 
step method with decomposition of the spatial operator [26]. Each time step was split 
into three substeps. First, for a given initial value j

ih , the solution in the y1 direction is 
performed, which gives the first intermediate value of 3/1+j

ih . The intermediate values 
are used as initial condition for the second substep - solution in the y2 direction. The 
corresponding value 3/2+j

ih  obtained from that second substep is used for the solution 
in the y3 direction, which gives the final value 1+j

ih . Thus the original 3D problem is 
replaced by a series of 1D problems for each space direction. This approach 
considerably speeds up the solution. The additionally introduced error is negligible if 
the size of time step is sufficiently small. 
 
4. NUMERICAL EXAMPLES 
 
4.1. Description of the test problems 
 
In order to illustrate the presented approach numerical simulations of infiltration into a 
double-porosity soil were carried out, for two types of geometry.  
 
4.1.2 Geometry and local hydraulic functions 
 
Two different types of local geometry were considered. In example 1 the more 
conductive regions have the form of vertical columns of square cross section, 
embedded in less conductive continuous matrix (Fig. 2a). In example 2 the less 
conductive medium forms horizontal columns of square cross-section (Fig. 2b).  
In each case a macroscopic one-dimensional problem was solved for a 50 cm long 
soil column. The local flow problems are two-dimensional. The volume fractions of 
the sub domains are nearly equal (w1 = 0.49 and w2 = 0.51 in example 1, w1 = 0.51 
and w2 = 0.49 in example 2). 
We assumed that the water retention curve (Fig. 3) and the relative conductivity 
curve (Fig. 4) were identical in both porous sub-domains, whereas the values of 
saturated conductivity differed by four orders of magnitude. We used the van 
Genuchten – Mualem [40] hydraulic functions of the following form: 
 

( )
( ) ( )[ ]

( )[ ] 2/

2
1

1

11
mn

mnn

S
h

hh
KhK

α

αα

+







 +−

=

−−

  (48) 

 

( ) ( ) ( )[ ] mn
RSR hh

−
+−+= αθθθθ 1   (49) 

 
with the following parameters: θR = 0.045 cm3 cm-3, θS = 0.430 cm3 cm-3, α = 0.145 
cm –1, n = 2.68, m = 1-1/n = 0.627, which corresponds to the typical sand parameters 
as given by Carsel and Parrish [11]. The values of saturated conductivities were KS1 
= 30 cm h-1 and KS2 = 0.003 cm h-1 for medium 1 and 2, respectively. 
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4.1.3 Effective parameters 
 
The effective parameters were calculated according to Eqs (36) and (43). In example 
1 the local boundary problem is one-dimensional and can be analytically solved. For 
this particular geometry we obtained ( ) ( )hKhK eff

149.0= . In example 2 the local 
problem is two-dimensional. It was numerically solved, using FEMLAB. The resulting 
relation for the effective conductivity was found to be: ( ) ( )hKhK eff

1328.0=  and the 
effective water retention capacities were ( ) ( )hChCeff

149.0=  and ( ) ( )hChCeff
151.0=  

for example 1 and 2, respectively. The corresponding effective conductivity and 
retention curves are shown in Figs. 3 and 4, respectively. 
 
4.1.4 Initial and boundary conditions 
 
In example 1 the initial and boundary conditions were assumed to represent the 
infiltration of water into a dry soil under a prescribed constant flux less than 1sK : 
 
h = -1000 cm   -50 cm  ≤  x  ≤ 0, t < 0 
q = 12 cm h-1   x3 = 0, t ≥  0 
 
In Example 2, the initial and boundary conditions correspond to the infiltration into dry 
soil under constant pressure applied at the surface: 
 
h = -100 cm of water -50 cm ≤ x3 ≤ 0, t < 0 
h = -2 cm    x3 = 0, t ≥  0 
 
In both cases, a free drainage was imposed at the bottom of the column: 
∂h / ∂x3 = 0   x3 = -50 cm, t ≥   0 
 
 
4.2. Comparison of the solutions 
 
For the purpose of comparison for each test problem three different numerical 
solutions were performed: 
 
1. The fine scale three-dimensional solution (FS3D) of the Richards equation in which 
the heterogeneous structure of the column is exactly represented.  
 

( ) ( ) ( )( ) 03 =+−
∂
∂ yhgradhKdiv

t
hhC yy   (50) 

 
The SWMS_3D finite element code developed by Šimůnek et al. [38] was used and 
the solution was considered as the reference one. 
 
2. The dual porosity model of Gerke and van Genuchten (DPGG) [15] where the flow 
domain is assumed to consist of two continuous overlapping sub domains. The flow 
in each sub domain is described by the Richards equation. The equations are 
coupled by a first-order exchange term: 
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( ) ( ) ( )( ) 031111
1

111 =++−
∂

∂ QxhgradhKwdiv
t
hhCw xx  (51) 

( ) ( ) ( )( ) 032222
2

222 =−+−
∂

∂ QxhgradhKwdiv
t

hhCw xx  (52) 

 
where the indices 1 and 2 refer to the medium 1 and 2, respectively. The water 
exchange term Q has the following form: 
 

( ) ( )212 hhhK
a

Q aa −= γβ   (53) 

 
where β [-] is a geometry dependent coefficient, a is the distance from centre to 
surface of low permeable block of medium 2, γ [-] is an empirical coefficient and Ka is 
the conductivity of the interface between medium 1 and 2, defined as a function of 
the average pressure at the interface ha. The interface conductivity Ka was evaluated 
from the following formula: 
 

( ) ( )( )215.0 hKhKK aaa +=   (54) 
 
We assumed that the function Ka (h) is equal to the conductivity of low permeable 
medium K2 (h). In example 1 the following values of parameters were used: γ = 0.4, a 
= 0.75 cm and β = 2.82, whereas in example 2 γ = 0.4, a = 0.175 cm and β = 11. The 
value of β was chosen following the suggestions presented in [15]. 
The numerical solution of the DPGG model was obtained using our own Fortran code 
with the corresponding finite difference discretization scheme and the Picard iterative 
method. 
 
3. The single porosity model (SP), where the less conductive domain is completely 
inactive (no flow and no water exchange with the more conductive domain). 
 

( ) ( ) ( )( ) 03 =+−
∂
∂ xhgradhKdiv

t
hhC x

eff
x

eff   (55) 

 
The solution was obtained using the DPOR_1D (DPH) code with the exchange term 
set to zero. 
 
4.3. Treatment of the boundary conditions 
 
The flux imposed at the soil surface in example 1 represents mean value averaged 
over the cross section of the soil surface. It was assumed that the whole amount of 
water infiltrates into the more conductive medium 1 (medium 2 is effectively sealed at 
the surface). Thus, for the DPGG solution we imposed local infiltration rates q1 = 
12/0.49 = 24.49 cm h-1 in medium 1 and q2 = 0 in medium 2. Similarly, in the FS3D 
solution with SWMS_3D code we imposed infiltration rate equal to 24.49 cm h-1 only 
on the part of surface occupied by medium 1 and flux was set to zero on the other 
part. 
 
4.4. Numerical parameters 
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In example 1 all numerical solutions were performed using uniform spatial 
discretization in x3 direction (∆x = 0.25 cm). The discretization of 2D local flow 
problems in y1 and y2 direction for the DPOR_1D solution was uniform (0.125 cm), 
whereas for the SWMS_3D solution the spatial interval varied from 0.0625 cm to 
0.125 cm. In example 2 the SP, DPGG and DPH solutions were obtained with ∆x = 
0.5 cm. In the DPH solution each node corresponds to one inclusion. Each inclusion 
was discretized with ∆y = 0.0175 cm. Due to the symmetry, the local problem is 
solved in a quarter of inclusion only. In case of fine scale solution we used variable 
spatial discretization with spatial step ranging from 0.0025 to 0.06 cm for each 
direction. All calculations were performed with variable time step, with the initial value 
being as small as 10-12 h. The real time of the numerical simulation varies 
considerably for different models. For the SP and the DPGG solutions it is of the 
order of a few seconds, for the DPH approach - several hours and for the FS3D 
solution - up to 100 hours (all calculations were performed on comparable machines) 
 
4.5. Results and discussion 
 
4.5.1. Example 1 
 
The evolution of the mean capillary pressure head in medium 1 at the bottom of the 
column is shown in Fig. 5. The mean capillary pressure head corresponds to the 
macroscopic capillary pressure for DPH and SP solutions, while for DPGG solution it 
corresponds to h1 in medium 1. In FS3D solution it is calculated as an average over 
the part of cross section surface occupied by medium 1. It can be seen that the DPH 
gives a solution very close to the fine scale solution (FS3D). The evolution of the 
capillary pressure head in the DPGG model is slightly different.  
The time evolution of the flux at the bottom of the column is presented in Fig. 6. The 
presence of the low conductive medium 2 slows down the propagation of wetting 
front, which is clearly visible. The homogenized solution (DPH) is nearly the same as 
the 3D reference solution (FS3D). The DPGG approach produced a different solution. 
In that case the arrival of the wetting front is faster, but later on the flux takes longer 
time to reach a steady state. This difference can be clearly explained by comparing 
the values of the source term in the DPGG and DPH models. The time evolution of 
these terms at different depths in the column is shown in Fig. 7. We also provided the 
water exchange rates obtained in FS3D solution, calculated as the variation of water 
content in medium 2 over time. It can be seen that the water transfer rate in the 
DPGG model is significantly underestimated during the initial phase of infiltration, 
while during later stages of the process it is slightly overestimated. This problem was 
also shown by Gerke and van Genuchten [16].  
The flux in the double porosity soil reaches its steady state value considerably later 
compared to the single porosity example. This retardation, known as the tail effect, 
can be estimated by the normalized tail flux qT  defined as: 
 

S

DS
T q

qqq −
=   (56) 

 
where qS and qD are the fluxes calculated from the simple porosity and double 
porosity models (DPH, DPGG or FS3D, respectively). Thus, the value of qT varies 
between 0 and 1, which indicates minimum and maximum value of the tail effect. Fig. 
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8 presents the evolution of qT at the bottom of the column with respect to time tR. 
which represents the time of appearance of the non zero flux in the single porosity 
model (SP). 
 
4.5.2. Example 2 
 
The evolution of the mean capillary pressure head in medium 1 is presented in Fig. 9 
and the evolution of the mean flux at the bottom of the column is presented in Fig 10. 
The slower propagation of the wetting front in the double porosity medium can be 
easily observed, as it was in example 1. The solution obtained from the DPGG 
approach is significantly different from the others. This can be partially explained by 
the fact that the estimation of the effective macroscopic conductivity of medium 1 in 
the DPGG model is based on the volume fraction of medium 1 only. As a result the 
steady state flux corresponding to given boundary conditions is about 50% greater 
than the one obtained with the other solutions. The small discrepancy between the 
steady state flux obtained by DPH and FS3D calculations can be explained by 
numerical factors (different methods of spatial discretization and grid sizes).  
The time evolution of the exchange term along the column is shown in Fig 11. Again, 
the values from DPH, DPGG and FS3D models are compared. Note that the DPH 
solution is close to the reference solution, while the DPGG gives results that are very 
different qualitatively and quantitatively. The normalized tail flux qT as a function of 
the time tR is presented in Fig 12. In that case the negative values obtained from the 
DPGG solution are due to the fact that the macroscopic flux in this model is 
considerably larger than that obtained from the single porosity approach. 
 
 
5. CONCLUSIONS 
 
A macroscopic model (mathematical and numerical) of water flow in unsaturated 
double porosity soils was presented, based on the homogenization approach. The 
model consists of a single integro-differential equation with two effective hydraulic 
parameters. It was found that the macroscopic behavior is governed by the capillary 
pressure head in the more conductive and connected sub domain. Non equilibrium of 
the capillary pressure prevails locally in such media. This non equilibrium is attributed 
to the contrast in the hydraulic parameters of the two sub-domains of the double 
porosity soil. The model is valid if the scale separation exists and the contrast 
between the hydraulic diffusivities of the two sub-domains is of the order ( )2O ε , 
which means ( ) ( )εε ODDO <<<< 12

3 / . The effect of the “double porosity” in the 
macroscopic governing equation was taken into account through an exchange term 
which represents the coupling between the microscopic and the macroscopic scales. 
This term causes the retardation of the water flow (tailing effect) with respect to the 
simple porosity medium in which the less conductive domain was considered as 
completely impermeable. When the hydraulic diffusivities are less contrasted, the 
local equilibrium model is applicable [27]. 
 
It was shown that the effective hydraulic parameters depend on the parameters of the 
more conductive sub domain and the local geometry of the medium. The effective 
hydraulic parameters can be easily calculated if the local hydraulic parameters of the 
more conductive domain and the local geometry of the medium are known. 
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The numerical simulations showed that the double porosity model gives the results 
close to the fine scale solution, which was considered as the reference solution within 
the capillary flow physics (the Richards equation). For a simple local geometry 
(example 1), the Gerke and van Genuchten phenomenological model gave results for 
mean capillary pressures and fluxes close to the double porosity model obtained from 
the present homogenization approach. This is valid, despite of the poor 
approximation of the exchange term at short times. In the case of a more complex 
local geometry (example 2), the comparison between the Gerke and van Genuchten 
model and the double porosity homogenization model showed very different results. 
The differences observed can be explained by an inadequate in this case estimation 
of the effective hydraulic conductivity and the source term proposed in the Gerke and 
van Genuchten model. 
 
We are aware that the model presented here should be experimentally validated. 
Since the experimental data in double-porosity soils are very scarce and/or are not 
fully exploitable for that purpose, experiments are currently being carried out, under 
controlled laboratory conditions, and will be published in a forthcoming paper, when 
completed. 
 
It should also be emphasized that the work presented in this paper is related to the 
problem of the preferential water flow in soils. It is just a matter of vocabulary. One 
can consider the more conductive medium as a source of an enhanced flow 
(preferential flow) or the less conductive medium as a cause of retardation of the 
flow. The latter point of view was chosen in the paper. 
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LIST OF SYMBOLS 
 
Latin letters 
 
a   the characteristic size of the less permeable inclusion ( in DPGG 
   model )[L] 
C1, C2   specific water capacity [L-1] 
C eff   effective specific water capacity [L-1] 
C1*,C2*  dimensionless specific water capacity [-] 
D   hydraulic diffusivity [L T-2] 
h1,h2   capillary pressure head in medium 1 and 2 [L] 
h1*,h2

*   dimensionless capillary pressure head [-] 
I   identity matrix 
K   hydraulic conductivity tensor [L T-1] 
Ka   hydraulic conductivity of the interface (in DPGG model) [L T-1] 
Keff   effective hydraulic conductivity [L T-1] 
Ks1, Ks2  hydraulic conductivity at saturation of medium 1 and 2 [L T-1] 
K*   dimensionless hydraulic conductivity tensor [-] 
L   characteristic macroscopic length [L] 
l   characteristic microscopic length [L] 
m   water retention function parameter (in van Genuchten model) [-] 
N   unit vector normal to the surface Γ  
n   water retention function parameter (van Genuchten model)  [-] 
Q   exchange term [T-1] 
t   time [T] 
tRRR         retardation time [T]   
t*   non-dimensional time [-] 
T   characteristic time [T] 
w1,w2   volumetric fractions of medium 1 and 2 [-] 
X   dimensional space variable [L] 
x   macroscopic dimensionless space variable [-] 
y   microscopic dimensionless space variable [-] 
 
Greek letters 
 
α   water retention function parameter (van Genuchten model) [L-1] 
β   parameter (in DPGG model)  [-] 
Γ   interface between medium 1 and 2 
γ   parameter (in DPGG model) [-] 
∆t   time step [T] 
∆x    space interval [L] 
ε   scale separation parameter [-] 
θ 1, θ 2   volumetric water content [-] 
θ aver   average volumetric water content [-] 
χ    vector function, solution of the local boundary value problem [-] 
Ω   period 
Ω1, Ω2   domains of the period occupied by medium 1 and 2 
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Acronyms: 

DPH Double Porosity Homogenization Model 
DPGG  Dual Porosity Model of Gerke and van Genuchten 
FS3D Fine Scale 3D Model 
SP  Single Porosity Model 
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Fig. 1. Structure of double porosity medium 
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Fig. 2. Geometry of double porosity medium and boundary conditions used in 
numerical tests: A) example 1, B) example 2 
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Fig. 3. Water retention function of medium 1 (θ 1(h))  and effective water retention 
functions (θεver (h))  used in numerical examples 
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Fig. 4. Hydraulic conductivity of medium 1 (K1(h)) and effective conductivity (Keff (h))  
used in numerical examples 
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Fig. 5. Example 1: Evolution of the mean capillary pressure head in medium 1 at 
x3 = -50 cm according to the model obtained by homogenization (DPH), the reference 
solution (FS3D), the Gerke and van Genuchten (DPGG) and the simple porosity (SP) 

approaches 
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Fig. 6. Example 1:  Evolution of the macroscopic flux q at x3 = -50 cm according to 
the model obtained by homogenization (DPH), the reference solution (FS3D), the 
Gerke and van Genuchten (DPGG) and simple porosity (SP) approaches 
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Fig. 7. Example 1: Evolution of the exchange term Q at different depth of the column 
according to the model obtained by homogenization (DPH), the reference solution 
(FS3D) and the Gerke and van Genuchten model (DPGG) 
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Fig. 8. Example 1: Evolution of the normalized tail flux qT  at x3 = -50 cm according to 
the model obtained by homogenization (DPH), the reference solution (FS3D) and the 
Gerke and van Genuchten model (DPGG); qT is the relative difference between the 
flux in simple (SP) and double (DPH, DPGG and FS3D) porosity models; the 
retardation time tR = 0 corresponds to the arrival of wetting front in the simple porosity 
model. 
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Fig. 9. Example 2: Evolution of the mean capillary pressure head in medium 1 at 
x3 = -50 cm according to the model obtained by homogenization (DPH), the reference 
solution (FS3D), the Gerke and van Genuchten model (DPGG) and the simple 
porosity model (SP) 
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Fig. 10. Example 2: Evolution of mean flux q at x3 = -50 cm according to the model 
obtained by homogenization (DPH), the reference solution (FS3D), the Gerke and 
van Genuchten (DPGG) model and the simple porosity model (SP) 
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Fig. 11. Example 2: Evolution of the exchange term Q at different depths of the 
column according to the model obtained by homogenization (DPH), the reference 
solution (FS3D) and the Gerke and van Genuchten model (DPGG) 
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Fig. 12. Example 2: Evolution of the normalized tail flux qT  at x3 = -50 cm according 
to the model obtained by homogenization (DPH), the reference solution (FS3D), and 
Gerke and van Genuchten model (DPGG); qT is the relative difference between the 
flux in simple (SP) and double (DPH, DPGG and FS3D) porosity models; the 
retardation time tR = 0 corresponds to the arrival of wetting front in the simple porosity 
model 
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