
Archives of Hydro-Engineering and Environmental Mechanics
Vol. 53 (2006), No. 1, pp. 49–69

© IBW PAN, ISSN 1231–3726

Application of Potential Theory in Calculating Wave-Induced

Vertical Forces on Horizontal Cylinders Near a Plane

Boundary

Tomasz MarcinkowskiŁ, Piotr WildeŁŁ

ŁGdańsk University of Technology, Faculty of Civil and Environmental Engineering,

ul. G. Narutowicza 11/12, 80-952 Gdańsk, Poland, e-mail: tmar@pg.gda.pl
ŁŁPolish Academy of Sciences, Institute of Hydro-Engineering (IBW PAN)

ul. Kościerska 7, 80-328 Gdańsk, Poland

(Received July 07, 2005; revised March 02, 2006)

Abstract

Hydrodynamic forces acting on a horizontal cylinder located in the vicinity of the
bottom are analyzed by a diffraction theory which solves the problem in terms of
a velocity potential. The cylinder is assumed to be rigidly anchored to the bottom at
a sufficient depth, so that it has no influence on the surface profile. The potential
function � is defined as the sum of the incident wave velocity potential �w and the
scattered wave velocity potential �a . The results of measurements of wave-induced
pressures and forces on a horizontal cylinder located close to the bottom are com-
pared with the theoretical solution based on the potential theory for incompressible,
perfect fluid and ideal boundary conditions at the bottom and the surface of the
cylinder. The experiments were carried out in the Large Wave Channel in Hannover
with a cylinder of 0.8 m diameter. Thus the results are in a scale which corresponds to
real pipelines. The analysis shows that the potential theory explains the components
with double frequency of the wave in pressures and vertical forces as far as the amp-
litudes are concerned. In the experiments, the Keulegan-Carpenter number is rather
low and the inertia hydrodynamic forces on the cylinder are dominant. It seems that
the observed phase shift between the force component and the wave results from the
energy dissipation which is not considered in the theoretical solution.

Key words: hydrodynamic forces, underwater pipeline, potential theory, diffraction
theory, curvilinear coordinates

1. Introduction

The problem of flow around a cylinder has a long history. A good summary
of solutions of the potential theory in complex function formulation is given by
Müller (1928). This theory is used in the analysis of cylinders near a plane bot-
tom by Carpenter (1958), Yamamoto et al (1974), Wright and Yamamoto (1979),
Chakrabarti (1987), Sumer and Fredsøe (1997).
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One cannot expect a perfect solution within the potential theory for incom-
pressible, perfect fluid and ideal boundary conditions. Further assumption is that
the ratio of the submerged depth to the cylinder radius is big enough, so the influ-
ence of the reflection on the free surface elevation can be neglected. Therefore,
this solution cannot describe the complicated real behaviour. The authors believe
that viscosity must be important, especially for processes near the seabed in con-
nection with a cylinder; even more, the vortex shedding at the cylinder and bottom
might have a considerable influence. Nevertheless the present theory seems to be
useful in explaining some other features. However, the application of the the-
ory in complex function formulation is difficult as far as extension is concerned.
Therefore, the authors decided to look at the solution by applying curvilinear co-
ordinates. A good and useful presentation of curvilinear coordinates is given by
Moon and Spencer (1971).

2. Theoretical Consideration

The bi-cylindrical coordinates form the traditional coordinate system, suitable for
the discussed problem (Fig. 1). The cartesian coordinates x , y are expressed in
terms of the bi-cylindrical coordinates u and v by the following relations:

x D
a Ð sinh u

cosh u � cos v
; y D

a Ð sin v

cosh u � cos v
; (1)

where a is a constant.

The parameters depend on the radius of the cylinder being R and the gap
between the cylinder and the bottom e (Fig. 1). From these conditions follows:

cosh uR D 1 C
e

R
; a D R sinh uR; (2)

where uR is the value of the coordinate u for which x.v/ and y.v/ describe the
surface of the cylinder with v in the interval (�³ , ³/. When gap e goes to zero,
expressions (1) yield unidentified values. Let us introduce new variables uŁ and
vŁ by the following definition:

u D
r

2e

R
uŁ; v D

r

2e

R
vŁ: (3)

When e goes to zero the new variables have limits; appropriate calculations
lead to the following expressions for the curvilinear coordinates (1):

x D
2RuŁ

uŁ2 C vŁ2
; y D

2RvŁ

uŁ2 C vŁ2
: (4)

The relations obtained are the corresponding expressions for the tangential
cylinder coordinates multiplied by 2R (Moon and Spencer 1971). The surface of
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Fig. 1. Bipolar coordinate system
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the cylinder corresponds to uŁ
R D 1. It is obvious from the above, that an ana-

lysis for small gaps has to be carried out carefully as the transition goes through
unidentified symbols.

Fig. 2. Sign convention

In the analysis it is convenient to work simultaneously with polar coordinates
as shown in Fig. 2. It follows that:

sin Þ D

q

2e
R

.1 C e
R

/

1 C e
R

� cos v
sin v; cos Þ D

.1 C e
R

/ cos v � 1

1 C e
R

� cos v
(5)

and for the limiting case e ! 0:

sin Þ D
2vŁ

1 C vŁ2
; cos Þ D

1 � vŁ2

1 C vŁ2
: (6)

The points v D 0 and vŁ D 0 are at the top of cylinder and correspond to Þ D 0.
Points v D ³ and vŁ ! 1 are at the bottom of the cylinder and correspond to
Þ D ³ .

The bi-cylindrical and tangential cylinder coordinate systems are orthogonal,
and the corresponding metric tensors are:

p
guu D

p
gvv D

a

cosh u � cos v
; (7)

p
guŁuŁ D

p
gvŁvŁ D

2R

uŁ2 C vŁ2
: (8)

If � is a potential function and �!n denotes a unit outward normal to the

cylinder and
�!
t is a unit tangential vector which points in the direction of the

increase of Þ, then the normal and tangential velocity components are expressed
by the formulae:
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vn D �
1

p
guu

@�

@u
; vt D

1
p

guu

@�

@v
: (9)

The potential function for the perfect fluid satisfies the Laplace equation,
which in bi-cylindrical coordinates takes the following form:

1

guu

�

@2�

@u2
C

@2�

@v2

½

D 0: (10)

The same relations as given in (9) and (10) are true for the tangential cyl-
indrical coordinates when u and v are replaced by uŁ and vŁ.

As guu 6D 0 and guŁuŁ 6D 0, it follows from equation (10) that the Laplace equa-
tion has the same form in both curvilinear coordinate systems and a cartesian
coordinate system. The same solution obtained by the separation of variables
may be applied to the curvilinear coordinate systems. For the case considered in
this paper, the appropriate solution in terms of a Fourier series which satifies the
Laplace equation is:

� D A Ð u C
1

X

rD1

cosh.ru/[Ar cos.rv/ C Br sin.rv/]: (11)

The normal velocity component at the cylinder surface va
n given by equation

(9) with the potential � yields:

va
n D �

1
p

guu

(

A C
1

X

rD1

r Ð sinh.ruR/[Ar cos.rv/ C Br sin.rv/]

)

: (12)

The sums of the normal velocity components – one resulting from approaching
waves (denoted by vw

n / and the other resulting from additional potential (denoted
by va

n/ – are equal to zero at each point on the cylinder surface.
The values of constants A, Ar , Br are calculated by numerical method while the

values of normal velocity components va
n are defined by taking a limited number

of series elements according to equation (12). Hence it is advisable to introduce
a clearly defined measure of solution accuracy. The measure in question may be
written in the following integral form:

J D
³

Z

�³

W.v/ [vw
n .v/ C va

n.v/]2 ds D 0; (13)

where ds D p
gvvdv is the elementary arc length and W.v/ a weighting function

which must be positive in the range of (�³ , ³/. For an exact solution, the function
under the integral is zero, and thus J is a minimum value. The necessary condition
for J to become a minimum value means that all derivatives with respect to A,
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Ar and Br must be equal to zero. From using the function
p

gvv as a weighting
function W.v/ it follows that:

A D
1

³

³
Z

�³

vw
n

p
gvvdv;

An D
1

n sinh.nuR/

1

³

³
Z

�³

vw
n cos.nv/

p
gvvdv; (14)

Bn D
1

n sinh.nuR/

1

³

³
Z

�³

vw
n sin.nv/

p
gvvdv:

The above-mentioned integrals have generally to be calculated by a numerical
method. For standard calculations, the interval 2³ for v has been divided into 360
parts and two different numerical procedures were applied for the calculation of
the Fourier coefficients.

For an approximated calculation, a measure of accuracy must be introduced.
When calculating the coefficients A, Ar , Br , the values of va

n were evaluated by
means of the equation (12) and the value of J was determined by a numerical
method. This value should be zero for an exact solution. The square root of J is
therefore considered a good measure. In order to obtain a relative measure, this
value J , which was also used for other calculations, was divided by the square root
of the integral (13) when va

n.v/ was disregarded. The value of this measure was
in the order of 10�4 for the numerical calculations, but increased for very small
gaps. For that reason the interval had to be divided into more parts than before,
and the number of Fourier coefficients considered had also to be increased.

The Fourier series may be written in complex number notation by introducing
a complex number Fourier coefficient An C i Bn where i D

p
�1.

The final formula with the variables uŁ and vŁ defined by equation (3) has the
following form:

� D
R

q

1 C e
2R

³

1
X

�1

cosh.�nuŁ/

�n sinh.�nuR/

r

2e

R

³

q

R
2e

Z

�³

q

R
2e

vw
n exp.i�nwŁ/

1 C R
e

�

1 � cos

�

q

2e
R

wŁ
�½ ð

ð dwŁ exp.�i�nvŁ/;

(15)

where wŁ is a dummy variable of integration and �n D n
q

2e
R

.
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When e
Ž

R ! 0, then �n ! � in continuum,
q

2e
R

! d� and the sum goes over

to the integral from �1 to 1. Finally it follows that:

� D
R

³

1
Z

�1

cosh.�uŁ/

� sinh �

1
Z

�1

vw
n exp.i�wŁ/

1 C wŁ2
dwŁd�: (16)

The solution of the Fourier series then goes over to the Fourier integral solu-
tion.

The same solution may be obtained by the standard procedure which leads
to the Fourier integral transform of the Laplace equation and the boundary con-
dition. It follows from these calculations that the Fourier transform of �.uŁ; vŁ/

is:

F.uŁ; � / D
2R

p
2³

cosh.�uŁ/

� sinh.�uŁ
R/

1
Z

�1

vw
n exp.i�wŁ/

1 C wŁ2
dwŁ; (17)

and the inverse transformation is:

�.uŁ; vŁ/ D
1

p
2³

1
Z

�1

F.uŁ; � / exp.�i�vŁ/d� : (18)

The above result corresponds exactly with the relation (16).

The difficulties which arise when a finite gap comes over to the case of a cyl-
inder welded at the bottom, appear in the numerical calculations for very small
gaps compared to the radius of the cylinder.

3. Comparison of Theoretical Results with Experimental Data

The problem of wave forces on a cylinder is, among others, discussed by Sarp-
kaya and Isaacson (1981). The formulae used in engineering practice are of
a semi-empirical nature and the understanding of the mechanics is far from being
complete.

Comparing theoretical and experimental results we follow Bowie (1977) in the
sense that we compare the time-dependent Fourier components obtained from the
theoretical treatment with those obtained from data processing of the measured
time sequences.

In the theoretical treatment, it was assumed that the waves can be described
by Stokes’ second order theory. Thus the potentials of approaching waves are
the sum of two terms with frequencies ! and 2! in time. The normal velocity
components were calculated at the surface of the cylinder from the solution of
the wave problem in the layer without the cylinder for the first and second term.
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For these terms, the Fourier coefficients were determined by numerical integration
and the value of the potentials and tangential velocities of the imaginary cylinder
were determined. The hydrodynamic pressures were then calculated at points on
the surface of this cylinder with the help of the following formula:

p

²
D �

@�

@t
�

1

2
.vt/

2; (19)

where � D �w C �a is the sum of the potential �w for the approaching wave
and �a is an additional potential which is due to the disturbances caused by the
cylinder, vt is the sum of vw

t C va
t and ² is the density of the water.

The pressure with respect to the squared term has frequencies up to (4!). It
should be noted that if a higher order of Stokes’ approximation is used, it changes
the values of the components. Because calculations performed with data obtained
in experiments show that the terms with frequencies higher than (2!) are small,
the discussion on the experiments is limited up to the double frequency terms.

The pressures at points around the cylinder were integrated numerically to
obtain the values of the horizontal and vertical force components.

It is standard practice to consider only the velocities and accelerations at the
centre of the cylinder. In the case considered, the radius of the cylinder is small
compared with the wave length, and the distance from the cylinder to the bottom
is also small compared with the radius of the cylinder. Calculations with normal
velocities of the approaching waves which are approximated by the linear term in
kR, where k is the wave number, in the power series expansion showed that such
approximation is good for values down to e

Ž

R D 1
Ž

20.
In the calculations, it was assumed that the changes in the velocity field caused

by the cylinder had a local effect only, without any coupling between the free
boundary and the approaching waves. Calculations show that the influence of the
bottom is small when the gap is equal to the radius of the cylinder. The biggest
gap in the experiment was not greater than 0.40 m. As the water depth was h =
4.5 m, the distance to the still water level became more than 3.3 m which was very
large compared to the radius of the cylinder R = 0.40 m.

The Fourier coefficients and the values of the tangential velocities and pres-
sures on the surface of the cylinder were calculated with the appropriate software
prepared in the project.

In Fig. 3, the tangential velocity components are plotted as a space- and
time-dependent function for waves with a height of H = 1.0 m and a wave period
of T = 4 s. The water depth was 4.5 m, the cylinder diameter D = 0.80 m and
the gap width e = 0.03 m. The time step was chosen as T/8. It must be taken into
account that a decreasing gap width causes an increasing velocity; a significant
contribution to the pressure through the v2

t term should therefore be expected.
The corresponding pressures are plotted in Fig. 4. It is obvious that the v2

t

term is very important and that a component with the double frequency of the
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Fig. 3. Tangent velocities on the surface of the cylinder

Fig. 4. Pressure distribution on the surface of the cylinder
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wave appears in the pressure values. It should be noted that the component with
double frequency is due to the second term in the Stokes’ approximation and due
to the square term. The calculations showed that the second influence is dominant
with respect to the parameters used in experiments.

In Figs. 5 to 7, the comparison of the theoretical solution with the results of
the experiments is given for three gap widths: e = 0.08 m, 0.05 m, and 0.02 m.
It may be seen that the surface elevation is well described by the second order
Stokes’ approximation. The drag term of the Morison formula is not included
in the theoretical solution of the first component of the horizontal force. The
experimental results show a small phase shift and differences in amplitudes which
become significant for the very small gap e

Ž

D D 0:025. There is good conformity
for the first component of the vertical force, but the phase shift increases with
decreasing gap width for the second component. It can be seen that the potential
theory solution gives a reasonable estimation of the amplitudes, whereas the phase
shifts cannot be described well. For the small gap e = 0.02, the phase shift is
considerable and thus the total theoretical diagram of the vertical force does not
fit the experimental data. The authors believe that the discrepancy is caused by
the dissipation of energy which cannot be considered in the potential theory.

A comparison of theoretical pressures at the bottom of the cylinder shows
that the agreement between theoretical and experimental values is good for the
first component, but the differences in amplitudes and phase shifts increase when
the gap width decreases. The great differences in amplitudes do not correspond
to the differences of the resultant vertical forces. It should be remembered that
the pressure distribution around the considered point (Fig. 4) is complicated, and
a local difference may have little influence on the resultant force. The authors
believe that the viscosity for small gaps must have a substantial influence and that
it reduces the tangential velocity compared with the calculated values for a perfect
fluid with ideal boundary conditions.

4. No Gap Case

When the gap width decreases, the number of significant terms in the Fourier
series increases and for very small gaps the obtained numerical results become
dubious.

For the limiting case, with e D 0, a singularity is existent in the solution at the
bottom. For a finite gap, the theoretical solutions are unique and well defined for
functions vw

n due to the velocity field of the Stokes’ theory. There is no uniqueness
for e D 0 if nothing is stated about the type of singularity. The singularity may
be defined directly beforehand, but the existence of a solution must be outlined.
In a second approach, the singularity is defined by the method of solution. The
latter method is used in the present approach and the physical meaning of this
singularity is explained.
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Fig. 5a. Comparison of measured data with theoretical solution
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Fig. 5b. Comparison of measured data with theoretical solution
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Fig. 6a. Comparison of measured data with theoretical solution

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


62 T. Marcinkowski, P. Wilde

Fig. 6b. Comparison of measured data with theoretical solution
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Fig. 7a. Comparison of measured data with theoretical solution
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Fig. 7b. Comparison of measured data with theoretical solution
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The velocity field for the approaching wave was expanded in terms of power
series around the origin of the x , y coordinate system and only linear terms were
retained. For a D ³ it follows that vw

n is zero. The solution is calculated with the
help of the Fourier integrals, and the Fourier transforms are evaluated according
to the equation (17), expressing the functions sin Þ, cos Þ, sin.2Þ/, cos.2Þ/ for
vw

n in terms of vŁ by means of the relations (6). The integrals are calculated
with the help of the residue theorem, and the inverse transformation is given by
the equation (18). In most cases it is not easy, and sometimes not possible, to
find a closed form of the solution for the inverse transformation. Then a term
appears under the integral, which is equal to coth ¾ ; this term approaches one for
large values of ¾ . For that reason, the integral was calculated from zero to M by
means of a numerical method and analytically from M to 1 fixed by the condition
that coth ¾ can be replaced by one (M is sufficiently small, i.e. cosh M D 1/. The
measure of error, as defined before, was of the order of 10�4 when the interval
from 0 to M had been divided into 1000 parts and M had been chosen sufficiently
large.

The values cannot be calculated by the outlined way if Þ ! ³ , vŁ ! 1; the
limit has to be calculated analytically. For large values of vŁ, there is the import-
ant contribution to the value of the integral at small values of ¾ but the power
expansion may be used for small values of ¾ . After the expansion is substituted,
the integrals are calculated and then the limit is taken for vŁ ! 1; this results
in:

lim
vŁ!1

�.vŁ/ D �R!H

�

cos.!t/

sinh.kh/
C

3kH

8

cos.2!t/

sinh4.kh/

½

³

2
; (20)

where k is the wave number.
If the same procedure for the case of vŁ ! �1 is applied then the same

expression, but with a reversed sign, is obtained. Thus, the singularity at Þ D ³

corresponds to a finite jump which will appear in the corresponding expressions
for the pressures.

If the same procedure is repeated for the tangential velocity components,
then the result shows that the additional tangential velocity at Þ D ³ cancels the
corresponding velocities for the approaching wave, and the total velocity becomes
zero.

The calculated limits around the point Þ D ³ characterize the singularity. Phys-
ically it can be assumed that the cylinder is welded to the bottom with the con-
sequence that there cannot be any flow from one side to the other; however, there
are different pressures on both sides of this imaginary connection. This bound-
ary condition might not be easily achieved in experiments because the pressure
differences on both sides tend to a break of water through the contact region.

The solution via Fourier series for finite gaps does not tend to this solution
when the gap goes to zero for ideal boundaries.
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In order to reveal this problem, it is assumed that a vertical rigid partition
wall is installed between the bottom of the cylinder and the bottom of the flume
(Fig. 8). The normal velocities are zero, but forces due to pressure differences on
both sides of the wall act on the wall. Such a solution should tend to the solution
obtained for a cylinder welded to the bottom when e ! 0.

Fig. 8. The cylinder with partition wall

The first step for a solution with respect to this partition wall is to work with
a finite gap: the distribution of the tangential velocity components vt is calculated
for Þ D ³ along the vertical line corresponding to the position of the partition wall,
that is from u D 0 to u D uR. As a second step, a theoretical solution is constructed
with a potential �Ł.u; v/ for which the normal velocities at the cylinder surface
and at the bottom are equal to zero and which includes velocities for v D ³ at
the partition wall; the velocities calculated in the first step will be eliminated.
A suitable solution of the Laplace equation has the following form:

�Ł D AŁv C
1

X

rD1

AŁ
r sinh

�

r³

uR
v

�

cos

�

r³

uR
v

�

: (21)

The coefficients AŁ, AŁ
r for r = 1, 2: : : are calculated with the help of numerical

integration as presented in the introduction.
In Fig. 9 the amplitudes of components of vertical forces are plotted versus

the relative gap e/ D (D – diameter of the cylinder). The solid lines represent the
solution with a finite gap width. The points shown by stars correspond to the solu-
tion e

Ž

D D 0. It may be seen that the solutions represented by the solid lines do
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Fig. 9. Amplitudes of component as function of bottom clearance
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not approach the points denoted by stars when e
Ž

D ! 0. The dashed lines rep-
resent the relations of a partition wall. The values obtained from experiments are
indicated by dots. For the constant included in the time component, the measured
values follow the theoretical solution for large values of e/ D. The series solution
for e/ D going to zero diverges. The measured values deviate from the solid line
and go to the zero-gap solution.

The amplitude of the first component can be described in a reasonable way by
the theoretical solution only for small values of e/ D. The differences for e

Ž

D ½ 0:2
are considerable, and the authors believe that they stem from the assumption of
perfect fluid and ideal boundary conditions. The amplitudes of the second com-
ponent follow the theoretical solution more or less exactly, substantial differences
appear only for e D 0 and for very small relative gap widths. The calculations
show that the constant of the time term and the second component are due to
the squared velocity term in pressure. For e

Ž

D > 0:05, the velocity field obtained
from the potential theory offers a good basis for calculating the vertical force
component.

The introduction of a partition wall does not describe the dynamical behaviour
of a cylinder for small gaps when the viscosity of the fluid is of primary importance.
It can be noted from the results of this elaboration that the pressure distribution
in the neighbourhood of small gaps is sensitive to local boundary conditions.

It is interesting to note that for e
Ž

D > 0:02 the constant included in the time
component of the vertical force acts downwards, while for e

Ž

D D 0 it acts up-
wards.

The solution of the case with partition wall has no direct technical meaning,
but it shows how sensitive the solutions are. For small gaps, viscosity should di-
minish the velocity in the fluid and behaviour similar to that introduced by the
installation of the partition wall could be expected. If the pipe is laid on a seabed,
the natural conditions of the contact are of a random nature and thus one may
expect complicated three dimensional behaviour.

When one thinks about design formulae as proposed by Bowie (1977), in an
interesting range of e/ D – results of the presented analysis show that the constant
included in the time term and the amplitude of the component with the double
frequency of the wave, may be calculated from potential theory with reasonable
accuracy.

5. Conclusions

The theoretical solution based on the potential theory of incompressible per-
fect fluids and ideal boundary conditions gives a useful description of the
wave-induced pressures on the surface of a cylinder as far as the amplitudes
of the time-dependent components are concerned. The increase of the pressure
near the gap is described well, when compared with experimental results.
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The pressure distribution near small gaps is very sensitive to local boundary
conditions. The solution for a finite gap does not go uniformly to the limiting case
when there is no gap at the bottom.

The phase shifts with respect to the waves are poorly described by the potential
theory. The suggestion is that the dissipation of energy due to viscosity and vortex
shedding, which cannot be described by the applied potential theory, plays an
important role.

The resultant horizontal force component is not as sensitive to the local condi-
tions near the gap as the vertical force component, and a solution for finite gaps
goes uniformly over to the limiting case of no gap. The potential theory gives
a good estimate of the influence of the e/ D parameter on the inertia term in the
Morison formula.

The squared velocity term in the pressures is important for the resultant ver-
tical forces. The potential theory solution gives a good estimate of the amplitude
components due to this term. The phase shift must be taken from experiments,
and it is plausible that it may be estimated when viscous effects are considered.
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