Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Guided wave propagation in structures. Modelling, experimental studies and application to damage detection

Celem niniejszej pracy są eksperymentalne i numeryczne analizy propagacji prowadzonych fal sprężystych w stalowych konstrukcjach prętowych, belkowych, ramowych, tarczowych i płytowych. W szczególności praca poświęcona jest: (a) modelowaniu propagacji fal z uwzględnieniem zjawiska dyspersji; (b) budowie modeli obliczeniowych w formalizmie metody elementów spektralnych; (c) eksperymentalnej weryfikacji zaproponowanych modeli; (d) zastosowaniu technik propagacji fal prowadzonych do wykrywania uszkodzeń. Praca składa się z siedmiu rozdziałów:W rozdziale 1 opisano metody monitoringu technicznego, dokonano przeglądu literatury doty-czącej detekcji uszkodzeń za pomocą ultradźwiękowych fal sprężystych oraz przedstawiono celi zakres pracy. W rozdziale 2 wyprowadzono równania propagacji fal w prętach, belkach, tarczach i płytach. Przedstawione w dalszej części pracy wyniki pokazały, iż w modelowaniu propagacji fal szczególnie ważny jest wybór teorii opisującej ruch. Klasyczne teorie, jak elementarna teoria prętów rozciąganych, teoria belek Eulera-Bernoulliego, płaskiego stanu naprężenia, czy też teoria płyt zginanych Kirchhoffa, nie umożliwiają dokładnego modelowania zjawisk falowych. Do precyzyjnego opisu propagacji fal wymagane jest uwzględnienie zjawiska dyspersji oraz efektów ścinania i bezwładności obrotowej, co umożliwiają teorie wyższych rzędów. Na podstawie porównania krzywych dyspersji dla rozważanych teorii ze ścisłymi rozwiązaniami fal Lamba oraz z wynikami eksperymentalnymi wykazano, iż przybliżone teorie wyższego rzędu (teoria pręta Mindlina-Herrmana, teoria belki Timoshenki, teoria tarczy Kane-Mindlina oraz teoria płyty Mindlina) umożliwiają poprawny opis zjawiska propagacji fal sprężystych, szczególnie w odniesieniu do najniższych postaci drgań: symetrycznej (S0) i anty-symetrycznej (A0). Rozdział 3 poświęcono metodzie elementów spektralnych sformułowanej w dziedzinie czasu. Metoda ta jest rozwinięciem klasycznej metody elementów skończonych. W metodzie elementów spektralnych stosuje się w każdym z przestrzennych kierunków aproksymacji elementy wielowęzłowe z rozkładem węzłów w punktach Gaussa-Lobatto-Legendre'a oraz z interpolacją Lagrange'a. Podejście to ma dwie znaczące zalety w analizie dynamicznej w zakresie wysokich częstotliwości. Po pierwsze wymagana liczba węzłów zmniejsza się do ok. 5-10 na długość fali (podczas gdy przy zastosowaniu elementów dwuwęzłowych liczba ta osiąga wartość 20 do 40). Drugą zaletą jest uzyskanie diagonalnej macierzy mas w wyniku całkowania numerycznego kwadraturą Gaussa-Lobatto-Legendre'a, co powoduje znaczące przyspieszenie całkowania w czasie. W rozdziale 3 przedstawiono wyprowadzenia macierzy elementów spektralnych, w szczególności elementu ramowego na podstawie teorii prętowej Mindlina-Herrmanna oraz belki Timoshenki, a także elementu tarczowego na podstawie teorii Kane-Mindlina i elementu płytowego na podstawie teorii Mindlina. Numeryczne i eksperymentalne analizy propagacji fal podłużnych i giętnych w prętach oraz belkach przeprowadzono w rozdziale 4. W wykonanych badaniach doświadczalnych do wzbudzania fal użyto wzbudnika piezoelektrycznego, natomiast sygnał propagującej fali rejestrowany był bezstykowo za pomocą wibrometru laserowego. Efektywność zaproponowanych numerycznych modeli spektralnych została potwierdzona na podstawie porównania z eksperymentalnymi krzywymi dyspersji. W rozdziale przedstawiono także dyskusję na temat doboru liczby węzłów w elementach wielowęzło-wych oraz doboru fali wzbudzającej. Zaprezentowano eksperymentalne i numeryczne wyniki propagacji fal w prętach i belkach bez uszkodzeń oraz z uszkodzeniami. Detekcja uszkodzeń w formie nieciągłości materiału bądź pola przekroju analizowana była na podstawie prędkości i czasów odbicia zarejestrowanych sygnałów propagujących fal. Rozdział 5 zawiera eksperymentalne i numeryczne wyniki propagacji fal w ramach płaskich typu L, T oraz w ramie portalowej. Badano wpływ zjawiska konwersji postaci drgań przez węzły ramy na możliwość wykrywania uszkodzeń. Na podstawie analizy różnych położeń i liczby uszkodzeń określono wskazówki dotyczące liczby i położenia wzbudników oraz punktów odbioru sygnałów czasowych, tak by monitoring obejmował całą analizowaną konstrukcję. W rozdziale 6 przedstawiono wyniki eksperymentalnych i numerycznych badań propagacji fal w tarczach i płytach z uszkodzeniem w formie powierzchniowej zmiany grubości. Badano trzy różne położenia uszkodzenia. Identyfikacja położenia uszkodzenia została wykonana na podstawie sygnałów prędkości fali w formie zobrazowań typu A (zobrazowanie wielkości amplitudy sygnału w funkcji czasu), B (zobrazowanie wielkości amplitud w funkcji czasu i położenia) oraz C (dwuwymiarowy obraz konstrukcji w wybranej chwili czasowej). Uwagi końcowe oraz kierunki dalszych prac zawarto w rozdziale 7.

Authors

Additional information

Category
Publikacja monograficzna
Type
książka - monografia autorska/podręcznik w języku o zasięgu międzynarodowym
Language
angielski
Publication year
2011

Source: MOSTWiedzy.pl - publication "Guided wave propagation in structures. Modelling, experimental studies and application to damage detection" link open in new tab

Portal MOST Wiedzy link open in new tab