Oxygen 1s excitation and ionization processes in the CO2 molecule have been studied with dispersed and non-dispersed fluorescence spectroscopy as well as with the vacuum ultraviolet (VUV) photon-photoion coincidence technique. The intensity of the neutral O emission line at 845 nm shows particular sensitivity to core-to-Rydberg excitations and core-valence double excitations, while shape resonances are suppressed. In contrast, the partial fluorescence yield in the wavelength window 300-650 nm and the excitation functions of selected O+ and C+ emission lines in the wavelength range 400-500 nm display all of the absorption features. The relative intensity of ionic emission in the visible range increases towards higher photon energies, which is attributed to O 1s shake-off photoionization. VUV photon-photoion coincidence spectra reveal major contributions from the C+ and O+ ions and a minor contribution from C2 +. No conclusive changes in the intensity ratios among the different ions are observed above the O 1s threshold. The line shape of the VUV-O+ coincidence peak in the mass spectrum carries some information on the initial core excitation.
Authors
- Antti Kivimaki,
- J. Alvarez-Ruiz,
- Tomasz J. Wąsowicz,
- C. Callegari,
- M. De Simone,
- M. Alagia,
- R. Richter,
- M. Coreno
Additional information
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2011