Zadanie klasyfikacji treści może zostać podzielone na dwa etapy: ekstrakcji cech istotnych dla podziału na klasy oraz etapu klasyfikacji na podstawie cech wyznaczonych w poprzednim etapie. Dzięki takiemu podziałowi, możliwe jest użycie w drugim etapie standardowych algorytmów budowy (uczenia) klasyfikatorów, takich klasyfikator bayesowski, drzewa decyzyjne, sztuczne sieci neuronowe czy metoda wektorów wspierających (SVM). Przy wyborze jednej z wymienionych metod należy wziąć pod uwagę czynniki takie jak możliwość uogólniania, niezawodność, szybkość uczenia, liczbę cech czy możliwość wyjaśniania wiedzy.
Authors
Additional information
- Category
- Publikacja monograficzna
- Type
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku o zasięgu krajowym
- Language
- polski
- Publication year
- 2011