Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Implementation of FDTD-compatible Green's function on heterogeneous CPU-GPU parallel processing system

This paper presents an implementation of the FDTD-compatible Green's function on a heterogeneous parallel processing system. The developed implementation simultaneously utilizes computational power of the central processing unit (CPU) and the graphics processing unit (GPU) to the computational tasks best suited to each architecture. Recently, closed-form expression for this discrete Green's function (DGF) was derived, which facilitates its applications in the FDTD simulations of radiation and scattering problems. Unfortunately, implementation of the new DGF formula in software requires a multiple precision arithmetic and may cause long runtimes. Therefore, an acceleration of the DGF computations on a CPU-GPU heterogeneous parallel processing system was developed using the multiple precision arithmetic and the OpenMP and CUDA parallel programming interfaces. The method avoids drawbacks of the CPU- and GPU-only accelerated implementations of the DGF, i.e. long runtime on the CPU and significant overhead of the GPU initialization respectively for long and short lengths of the DGF waveform. As a result, the seven-fold speedup was obtained relative to the reference DGF implementation on a multicore CPU thus applicability of the DGF in FDTD simulations was significantly improved.

Authors

Additional information

Category
Publikacja w czasopiśmie
Type
artykuł w czasopiśmie wyróżnionym w JCR
Language
angielski
Publication year
2013

Source: MOSTWiedzy.pl - publication "Implementation of FDTD-compatible Green's function on heterogeneous CPU-GPU parallel processing system" link open in new tab

Portal MOST Wiedzy link open in new tab