Let G=(V,E) be a graph with no isolated vertices. A set S⊆V is a paired-dominating set of G if every vertex not in S is adjacent with some vertex in S and the subgraph induced by S contains a perfect matching. The paired-domination number γp(G) of G is defined to be the minimum cardinality of a paired-dominating set of G. Let G be a graph of order n. In [Paired-domination in graphs, Networks 32 (1998), 199-206] Haynes and Slater described graphs G with γp(G)=n and also graphs with γp(G)=n−1. In this paper we show all graphs for which γp(G)=n−2.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.7494/opmath.2013.33.4.763
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
- Language
- angielski
- Publication year
- 2013