A novel idea of performing evolutionary computations for solving highly-dimensional multi-objective optimization (MOO) problems is proposed. The information about individual genders is applied. This information is drawn out of the fitness of individuals and applied during the parental crossover in the evolutionary multi-objective optimization (EMO) processes. The paper introduces the principles of the genetic-gender approach (GGA) and illustrates its performance by means of examples of multi-objective optimization tasks.
Authors
Additional information
- Category
- Aktywność konferencyjna
- Type
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Language
- angielski
- Publication year
- 2013