Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Average Redundancy of the Shannon Code for Markov Sources

It is known that for memoryless sources, the average and maximal redundancy of fixed–to–variable length codes, such as the Shannon and Huffman codes, exhibit two modes of behavior for long blocks. It either converges to a limit or it has an oscillatory pattern, depending on the irrationality or rationality, respectively, of certain parameters that depend on the source. In this paper, we extend these findings, concerning the Shannon code, to the case of a Markov source, which is considerably more involved. While this dichotomy, of convergent vs. oscillatory behavior, is well known in other contexts (including renewal theory, ergodic theory, local limit theorems and large deviations of discrete distributions), in information theory (e.g., in redundancy analysis) it was recognized relatively recently. To the best of our knowledge, no results of this type were reported thus far for Markov sources. We provide a precise characterization of the convergent vs. oscillatory behavior of the Shannon code redundancy for a class of irreducible, periodic and aperiodic, Markov sources. These findings are obtained by analytic methods, such as Fourier/Fej´er series analysis and spectral analysis of matrices.

Authors

Additional information

DOI
Digital Object Identifier link open in new tab 10.1109/isit.2013.6620560
Category
Publikacja w czasopiśmie
Type
artykuł w czasopiśmie wyróżnionym w JCR
Language
angielski
Publication year
2013

Source: MOSTWiedzy.pl - publication "Average Redundancy of the Shannon Code for Markov Sources" link open in new tab

Portal MOST Wiedzy link open in new tab