We provide an algorithm for listing all minimal double dominating sets of a tree of order $n$ in time $\mathcal{O}(1.3248^n)$. This implies that every tree has at most $1.3248^n$ minimal double dominating sets. We also show that this bound is tight.
Authors
Additional information
- Category
- Aktywność konferencyjna
- Type
- materiały konferencyjne indeksowane w Web of Science
- Language
- angielski
- Publication year
- 2014
Source: MOSTWiedzy.pl - publication "Minimal double dominating sets in trees" link open in new tab