We present the implementation and validation of low-coherence Fabry–Perot interferometer for refractive index dispersion measurements of liquids. A measurement system has been created with the use of four superluminescent diodes with different optical parameters, a fiber-optic coupler and an optical spectrum analyzer. The Fabry–Perot interferometer cavity has been formed by the fiber-optic end and mirror surfaces mounted on a micromechanical stage. The positive result of the validation procedure has been determined through statistical analysis. All obtained results were 99.999% statistically significant and were characterized by a strong positive correlation (r>0.98). The accuracy of the measured result of implemented low-coherence Fabry–Perot interferometer sensor is from 83% to 94%, which proves that the sensor can be used in the measurement of refractive index dispersion of liquids.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1117/1.oe.53.7.077103
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2014