Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

How Specific Can We Be with k-NN Classifier?

This paper discusses the possibility of designing a two stage classifier for large-scale hierarchical and multilabel text classification task, that will be a compromise between two common approaches to this task. First of it is called big-bang, where there is only one classifier that aims to do all the job at once. Top-down approach is the second popular option, in which at each node of categories’ hierarchy, there is a flat classifier that makes a local classification between categories that are immediate descendants of that node. The article focuses on evaluating the performance of a k-NN algorithm at different levels of categories’ hierarchy, aiming to test, whether it will be profitable to make a semi-big-bang step (restricted to a specified level of the hierarchy), followed by a middle-down more detailed classification. Presented empirical experiments are done on Simple English Wikipedia dataset.

Authors

Additional information

Category
Aktywność konferencyjna
Type
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Language
angielski
Publication year
2014

Source: MOSTWiedzy.pl - publication "How Specific Can We Be with k-NN Classifier?" link open in new tab

Portal MOST Wiedzy link open in new tab