The problem of identifying measurement scenarios capable of revealing state-independent contextuality in a given Hilbert space dimension is considered. We begin by showing that for any given dimension d and any measurement scenario consisting of projective measurements, (i) the measure of contextuality of a quantum state is entirely determined by its spectrum, so that pure and maximally mixed states represent the two extremes of contextual behavior, and that (ii) state-independent contextuality is equivalent to the contextuality of the maximally mixed state up to a global unitary transformation. We then derive a necessary and sufficient condition for a measurement scenario represented by an orthogonality graph to reveal state-independent contextuality. This condition is given in terms of the fractional chromatic number of the graph χ f (G) and is shown to identify all state-independent contextual measurement scenarios including those that go beyond the original Kochen-Specker paradigm.
Authors
- Ravishankar Ramanathan,
- prof. dr hab. Paweł Horodecki link open in new tab
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1103/physrevlett.112.040404
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2014