Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Genre-Based Music Language Modeling with Latent Hierarchical Pitman-Yor Process Allocation

In this work we present a new Bayesian topic model: latent hierarchical Pitman-Yor process allocation (LHPYA), which uses hierarchical Pitman-Yor pr ocess priors for both word and topic distributions, and generalizes a few of the existing topic models, including the latent Dirichlet allocation (LDA), the bi- gram topic model and the hierarchical Pitman-Yor topic model. Using such priors allows for integration of -grams with a topic model, while smoothing them with the state-of-the-art method. Our model is evaluated by measuring its perplexity on a dataset of musical genre and harmony annotations 3GenreDatabase (3GDB) andbymeasuringitsabilitytopredictmusicalgenrefromchord sequences. In terms of perplexit y, for a 262-chord dictionary we achieve a value of 2.74, compared to 18.05 for trigrams and 7.73 for a unigram topic model. In terms of genre prediction accuracy with 9 genres, the proposed approach performs about 33% better in relative terms than genre-dependent -grams, ac hieving 60.4% of accuracy.

Authors

Additional information

DOI
Digital Object Identifier link open in new tab 10.1109/taslp.2014.2300344
Category
Aktywność konferencyjna
Type
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Language
angielski
Publication year
2014

Source: MOSTWiedzy.pl - publication "Genre-Based Music Language Modeling with Latent Hierarchical Pitman-Yor Process Allocation" link open in new tab

Portal MOST Wiedzy link open in new tab