Consider a game played on the edge set of the infinite clique by two players, Builder and Painter. In each round, Builder chooses an edge and Painter colours it red or blue. Builder wins by creating either a red copy of $G$ or a blue copy of $H$ for some fixed graphs $G$ and $H$. The minimum number of rounds within which Builder can win, assuming both players play perfectly, is the \emph{on-line Ramsey number} $\tilde{r}(G,H)$. In this paper, we consider the case where $G$ is a path $P_k$. We prove that $\tilde{r}(P_3,P_{\ell+1}) = \lceil 5\ell/4\rceil = \tilde{r}(P_3,C_{\ell})$ for all $\ell \ge 5$, and determine $\tilde{r}(P_{4},P_{\ell+1})$ up to an additive constant for all $\ell \ge 3$. We also prove some general lower bounds for on-line Ramsey numbers of the form $\tilde{r}(P_{k+1},H)$.
Authors
- dr Joanna Cyman link open in new tab ,
- Tomasz Dzido,
- John Lapinskas,
- Allan Lo
Additional information
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2015
Source: MOSTWiedzy.pl - publication "On-line Ramsey Numbers of Paths and Cycles" link open in new tab