Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

On-line Ramsey Numbers of Paths and Cycles

Consider a game played on the edge set of the infinite clique by two players, Builder and Painter. In each round, Builder chooses an edge and Painter colours it red or blue. Builder wins by creating either a red copy of $G$ or a blue copy of $H$ for some fixed graphs $G$ and $H$. The minimum number of rounds within which Builder can win, assuming both players play perfectly, is the \emph{on-line Ramsey number} $\tilde{r}(G,H)$. In this paper, we consider the case where $G$ is a path $P_k$. We prove that $\tilde{r}(P_3,P_{\ell+1}) = \lceil 5\ell/4\rceil = \tilde{r}(P_3,C_{\ell})$ for all $\ell \ge 5$, and determine $\tilde{r}(P_{4},P_{\ell+1})$ up to an additive constant for all $\ell \ge 3$. We also prove some general lower bounds for on-line Ramsey numbers of the form $\tilde{r}(P_{k+1},H)$.

Authors

Additional information

Category
Publikacja w czasopiśmie
Type
artykuł w czasopiśmie wyróżnionym w JCR
Language
angielski
Publication year
2015

Source: MOSTWiedzy.pl - publication "On-line Ramsey Numbers of Paths and Cycles" link open in new tab

Portal MOST Wiedzy link open in new tab