In this paper, the boundary value problem for second order singularly perturbed delay differential equation is reduced to a fixed-point problem v = Av with a properly chosen (generally nonlinear) operator A. The unknown fixed-point v is approximated by cubic spline vh defined by its values vi = vh(ti) at grid points ti, i = 0, 1, ... ,N. The necessary for construction the cubic spline and missing the first derivatives at the boundary are replaced by the derivatives of the corresponding interpolating polynomials matching the grid points values nearest to the boundary points. An approximation of the solution is obtained by minimization techniques applied to a function whose arguments are the grid point values of the sought spline. The results of numerical experiments with two boundary value problems for the second order singularly perturbed delay differential equations as well as their comparison with the results of other methods employed by other authors are also provided.
Authors
- dr hab. Zbigniew Bartoszewski link open in new tab ,
- dr Anna Baranowska
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.3846/13926292.2015.1048759
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2015