Understanding the non-Markovian mechanisms underlying the revivals of quantum entanglement in the presence of classical environments is central in the theory of quantum information. Tentative interpretations have been given by either the role of the environment as a control device or the concept of hidden entanglement. We address this issue from an information-theoretic point of view. To this aim, we consider a paradigmatic tripartite system, already realized in the laboratory, made of two independent qubits and a random classical field locally interacting with one qubit alone.We study the dynamical relationship between the two-qubit entanglement and the genuine tripartite correlations of the overall system, finding that collapse and revivals of entanglement correspond, respectively, to the rise and fall of the overall tripartite correlations. Interestingly, entanglement dark periods can enable plateaux of nonzero tripartite correlations. We then explain this behavior in terms of information flows among the different parties of the system. Besides showcasing the phenomenon of the freezing of overall correlations, our results provide insights on the origin of retrieval of entanglement within a hybrid quantum-classical system.
Authors
- Bruno Leggio,
- Rosario Lo,
- Diogo Soares-Pinto,
- prof. dr hab. Paweł Horodecki link open in new tab ,
- Giuseppe Compagno
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1103/physreva.92.032311
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2015