The paper presents a constitutive model for concrete which combines a continuous and discontinuous fracture description. In a continuum regime, two different constitutive laws were used. First, a plasticity model with a Rankine failure criterion and an associated fl ow rule was used. Second, a constitutive law based on isotropic damage mechanics was formulated. In order to capture the width of a localized zone and to obtain mesh-independent results, both models were equipped with a characteristic length of micro-structure by applying a non-local theory of an integral format. In order to describe a macro-crack as a displacement jump along/across a localized zone, the eXtended Finite Element Method (XFEM) was used. A transition algorithm between a non-local continuum model and XFEM was formulated. The implementation details of a coupled approach were given. The performance of two coupled models were numerically analysed based on several 2D benchmarks with a dominating mode-I (e.g. uniaxial tension and bending) and under mixed-mode conditions. The numerical results were compared with our experimental ones. The advantages of a continuous – discontinuous coupling in describing crack patterns were outlined.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1016/j.finel.2016.02.001
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2016