The electronic structure of selected rare-earth atoms adsorbed on a free-standing graphene was investigated using methods beyond the conventional density functional theory (DFT+U, DFT +HIA, and DFT+ED). The influence of the electron correlations and the spin-orbit coupling on the magnetic properties has been examined. The DFT+U method predicts both atoms to carry local magnetic moments (spin and orbital) contrary to a nonmagnetic f6 (J=0) ground-state configuration of Sm in the gas phase. Application of DFT+Hubbard-I (HIA) and DFT+exact diagonalization (ED) methods cures this problem, and yields a nonmagnetic ground state with six f electrons and J=0 for the Sm adatom. Our calculations show that Nd adatom remains magnetic, with four localized f electrons and J=4.0. These conclusions could be verified by STM and XAS experiments.
Authors
- Agnieszka Kozub link open in new tab ,
- Alexander Shick,
- František Máca,
- Jindřich Kolorenč,
- Alexander Lichtenstein
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1103/physrevb.94.125113
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2016