Warm mix asphalt additives are effective in decreasing production, laying and compaction temperatures of asphalt mixes. However, there are still questions concerning influence of warm mix additives on properties of asphalt mixes and pavement performance. This paper presents results of the comprehensive research of viscoelastic behaviour of asphalt mixes and pavement structures with layers made with warm mix asphalt additives at high temperatures. Two additives of significantly different effects on mixes at higher temperatures were selected for analysis, namely aliphatic synthetic wax produced with the use of Fisher–Tropsch method and formulation of surfactant- based molecules (ionic and non-ionic). Viscoelastic properties of mixes with these two additives and, as a reference mix, with neat unmodified asphalt binder were determined in uniaxial compression with sinusoidal loading using Asphalt Mixture Performance Test. The viscoelastic analysis of pavement structures was performed with use of the VEROAD software and data from laboratory testing. Two different pavement structures were analysed, for light and heavy traffic. The temperature distribution in pavement structure during the hottest summer day in northern Poland in 2012 was taken into account. The model of pavement was loaded with moving wheel at different speeds. The analysis has shown that two tested warm mix additives had different effect on viscoelastic transient response at high temperatures. One of them (Fischer–Tropsch wax) evidently caused an increase in resistance of asphalt mix and pavement structure to loading at high temperature. The second additive (formulation of surfactant-based molecules) slightly reduced resistance of asphalt mix and pavement to loading at high temperatures as compared with the reference mix.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1080/10298436.2016.1199882
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2018