Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Synthesis and photoelectrochemical behaviour of hydrogenated titania nanotubes modified with conducting polymer infiltrated by redox active network

In this work, we show preparation of ordered inorganic-organic composite electrode material where hydrogenated titania nanotubes H-TiO2 with tubularly developed surface modified with poly(3,4-ethylenedioxythiophene) matrix permeated by Prussian Blue (PB) inorganic redox network in order to reach highly photoactive heterojunction. The polymer deposition was realized via two subsequent processes covering: i) potentiostatic polymerization carried out at H-TiO2 electrode immersed in solution of EDOT monomer and Fe[(CN)6]3−/4− ions and ii) cyclic voltammetry routs in iron chloride solution. The inorganic-organic hybrids were characterized by scanning electron microscopy, spectroscopic techniques (UV-Vis, Raman, Fourier transform infrared and X-ray photoelectron spectroscopy) and using electrochemical methods. Cyclic voltammetry curves registered for inorganic-organic composite exhibit clear reversible reduction/oxidation peaks attributed to the high spin (HS) FeII/FeIII redox activity when low spin (LS) FeII/FeIII redox activity overlaps with the water oxidation process. The LS FeII/FeIII redox center of PB imbedded in pEDOT matrix plays crucial role in high increase of photocurrent recorded for composite H-TiO2NTs/pEDOT:BP that is 3.7 times higher in comparison to photocurrent measured for H-TiO2NT at anodic polarization of electrode.

Authors