The mechanical performance of underground flexible structures such as buried pipes or culverts made of plastics depend not only on the properties of the structure, but also the material surrounding it. Flexible drains can deflect by 30% with the joints staying tight, or even invert. Large deformations of the structure are difficult to model in the framework of Finite Element Method, but straightforward in Discrete Element Methods. Moreover, Discrete Element approach is able to provide information about the grain–grain and grain–structure interactions at the microscale. This paper presents numerical and experimental investigations of flexible buried pipe behaviour with focus placed on load transfer above the buried structure. Numerical modeling was able to reproduce the experimental results. Load repartition was observed affected by number of factors such as particle shape, pipe friction and pipe stiffness
Authors
- dr inż. Krzysztof Szarf link open in new tab ,
- Gaël Combe,
- Pascal Villard
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.2478/sgem-2014-0028
- Category
- Aktywność konferencyjna
- Type
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Language
- angielski
- Publication year
- 2013