Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Multiclass AdaBoost Classifier Parameter Adaptation for Pattern Recognition

The article presents the problem of parameter value selection of the multiclass ``one against all'' approach of an AdaBoost algorithm in tasks of object recognition based on two-dimensional graphical images. AdaBoost classifier with Haar features is still used in mobile devices due to the processing speed in contrast to other methods like deep learning or SVM but its main drawback is the need to assembly the results of binary two-class classifiers in recognition problems. In this paper an original method of selecting the parameter values of the assembling algorithm using many similar face recognition tasks is proposed. The parameter optimization is done by checking all possible vectors of parameter values. The recognition results with optimized parameter values is $10\%$ better in 8-class face database famous48\footnote{http://eti.pg.edu.pl/documents/176468/27493127/famous48.zip} tasks than using random heuristic which can be represented by the average of all possible vectors of parameter values.

Authors

Additional information

DOI
Digital Object Identifier link open in new tab 10.1007/978-3-319-47274-4_24
Category
Publikacja monograficzna
Type
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Language
angielski
Publication year
2017

Source: MOSTWiedzy.pl - publication "Multiclass AdaBoost Classifier Parameter Adaptation for Pattern Recognition" link open in new tab

Portal MOST Wiedzy link open in new tab