Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Feasibility study of a Raman spectroscopic route to drug detection

We present an surface-enhanced Raman spectroscopy (SERS) approach for detection of drugs of abuse in whole human blood. We utilize a near infrared laser with 830 nm excitation wavelength in order to reduce the influence of fluorescence on the spectra of blood. However, regular plasmon resonance peak of plasmonic nanoparticles, such as silver or gold fall in a much lower wavelength regime about 400 nm. Therefore, we have shifted the plasmon resonance of nanoparticles to match that of an excitation laser wavelength, by fabrication of the silver-core gold-shell nanoparticles. By combining the laser and plasmon resonance shift towards longer wavelengths we have achieved a great reduction in background fluorescence of blood. Great enhancement of Raman signal coming solely from drugs was achieved without any prominent lines coming from the erythrocytes. We have applied chemometric processing methods, such as Principal Component Analysis (PCA), to detect the elusive differences in the Raman bands which are specific for the investigated drugs. We have achieved good classification for the samples containing particular drugs (e.g., butalbital, α-hydroxyalprazolam). Furthermore, a quantitative analysis was carried out to assess the limit of detection (LOD) using Partial Least Squares (PLS) regression method. In conclusion, our LOD values obtained for each class of drugs was competitive with the gold standard GC/MS method.

Authors

Additional information

DOI
Digital Object Identifier link open in new tab 10.1117/12.2254803
Category
Aktywność konferencyjna
Type
materiały konferencyjne indeksowane w Web of Science
Language
angielski
Publication year
2017

Source: MOSTWiedzy.pl - publication "Feasibility study of a Raman spectroscopic route to drug detection" link open in new tab

Portal MOST Wiedzy link open in new tab