Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

The convex domination subdivision number of a graph

Let G = (V;E) be a simple graph. A set D\subset V is a dominating set of G if every vertex in V - D has at least one neighbor in D. The distance d_G(u, v) between two vertices u and v is the length of a shortest (u, v)-path in G. An (u, v)-path of length d_G(u; v) is called an (u, v)-geodesic. A set X\subset V is convex in G if vertices from all (a, b)-geodesics belong to X for any two vertices a, b \in X. A set X is a convex dominating set if it is convex and dominating set. The convex domination number \gamma_con(G) of a graph G equals the minimum cardinality of a convex dominating set in G. The convex domination subdivision number sd_con (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the convex domination number. In this paper we initiate the study of convex domination subdivision number and we establish upper bounds for it.

Authors

Additional information

DOI
Digital Object Identifier link open in new tab 10.22049/cco.2016.13544
Category
Publikacja w czasopiśmie
Type
publikacja w in. zagranicznym czasopiśmie naukowym (tylko język obcy)
Language
angielski
Publication year
2016

Source: MOSTWiedzy.pl - publication "The convex domination subdivision number of a graph" link open in new tab

Portal MOST Wiedzy link open in new tab