We consider the following generalization of the binary search problem. A search strategy is required to locate an unknown target node t in a given tree T. Upon querying a node v of the tree, the strategy receives as a reply an indication of the connected component of T\{v} containing the target t. The cost of querying each node is given by a known non-negative weight function, and the considered objective is to minimize the total query cost for a worst-case choice of the target. Designing an optimal strategy for a weighted tree search instance is known to be strongly NP-hard, in contrast to the unweighted variant of the problem which can be solved optimally in linear time. Here, we show that weighted tree search admits a quasi-polynomial time approximation scheme (QPTAS): for any 0 < epsilon < 1, there exists a (1+epsilon)-approximation strategy with a computation time of n^O(log n / epsilon^2). Thus, the problem is not APX-hard, unless NP is contained in DTIME(n^O(log n)). By applying a generic reduction, we obtain as a corollary that the studied problem admits a polynomial-time O(sqrt(log n))-approximation. This improves previous tilde-O(log n)-approximation approaches, where the tilde-O-notation disregards O(poly log log n)-factors.
Authors
- prof. dr hab. inż. Dariusz Dereniowski link open in new tab ,
- Adrian Kosowski,
- Przemysław Uznański,
- Mengchuan Zou
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.4230/lipics.icalp.2017.84
- Category
- Aktywność konferencyjna
- Type
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Language
- angielski
- Publication year
- 2017