Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Performance Evaluation of Selected Parallel Object Detection and Tracking Algorithms on an Embedded GPU Platform

Performance evaluation of selected complex video processing algorithms, implemented on a parallel, embedded GPU platform Tegra X1, is presented. Three algorithms were chosen for evaluation: a GMM-based object detection algorithm, a particle filter tracking algorithm and an optical flow based algorithm devoted to people counting in a crowd flow. The choice of these algorithms was based on their computational complexity and parallel structure. The aim of the experiments was to assess whether the current generation of low-power, mobile GPUs has sufficient power for running live analysis of video surveillance streams, e.g. in smart cameras, while maintaining energy consumption at a reasonable level. Tests were performed with both a synthetic benchmark and a real video surveillance recording. It was found that the computational power of the tested platform is sufficient for running operations such as background subtraction, but in case of more complex algorithms, such as tracking with particle filters, performance is not satisfactory because of inefficient memory architecture which stalls the processing.

Authors

Additional information

DOI
Digital Object Identifier link open in new tab 10.1007/978-3-319-69911-0_16
Category
Publikacja monograficzna
Type
rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
Language
angielski
Publication year
2017

Source: MOSTWiedzy.pl - publication "Performance Evaluation of Selected Parallel Object Detection and Tracking Algorithms on an Embedded GPU Platform" link open in new tab

Portal MOST Wiedzy link open in new tab