Abnormal electrical activity of heart can produce a cardiac arrhythmia. The electrocardiogram (ECG) is a non-invasive technique which is used as a diagnostic tool for cardiac diseases. Non-stationarity and irregu- larity of heartbeat signal imposes many difficulties to clinicians (e.g., in the case of myocardial infarction arrhythmia). Fortunately, signal processing algorithms can expose hidden information within ECG signal contaminated by additive noise components. This paper explores a method of de-noising ECG signal by the discrete wavelet transform (DWT) and further detecting arrhythmia by estimated statistical parameters. Parameters of the de-noised ECG signals were used to form an input data vector determining whether the examined patient suffers from a cardiac arrhythmia or not. Input data were transformed using selected lin- ear methods in order to reduce dimension of the input vector. A neural network was used to detect illness. Compared with the results of recent studies, the proposed method provides more accurate diagnosis based on the examined ECG signal data.
Authors
- Amine B. Slama,
- Łukasz Lentka link open in new tab ,
- Aymen Mouelhi,
- Mohamed F. Diouani,
- Mounir Sayadi,
- prof. dr hab. inż. Janusz Smulko link open in new tab
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.24425/118163
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2018